Identifying Longitudinal Compliance Patterns and Determinants in a Multifaceted Childhood Obesity Intervention Using Group-Based Trajectory Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Collection of Compliance Data
2.3. The Influencing Factors of Compliance
2.4. Outcome Measurements
2.5. Statistical Analyses
2.5.1. Compliance Trajectory Analysis
2.5.2. Effect of Compliance on Obesity-Related Anthropometrics
2.5.3. Influencing Factors of Trajectories
3. Results
3.1. Parental Compliance Trajectory
3.2. Children’s Compliance Trajectory
3.3. Different Compliance Trajectories and Obesity-Related Outcomes
3.4. The Influencing Factors of Parental Compliance
3.5. The Influencing Factors of Children’s Compliance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GBTM | Group-based trajectory modeling |
DECIDE-Children | Diet, ExerCIse, and CarDiovascular hEalth Children |
BMI | Body Mass Index |
BF% | Body fat percentage |
WHR | Waist-to-hip ratio |
AvePP | Average posterior probability |
OCC | Odds of correct classification |
SD | Standard deviation |
References
- WHO. Obesity and Overweight. 2024. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 December 2024).
- Dong, Y.H.; Chen, L.; Liu, J.Y.; Ma, T.; Zhang, Y.; Chen, M.M.; Zhong, P.L.; Shi, D.; Hu, P.J.; Li, J.; et al. Epidemiology and prediction of overweight and obesity among children and adolescents aged 7–18 years in China from 1985 to 2019. J. Chin. Med. Assoc. 2023, 57, 461–469. [Google Scholar]
- Zhang, N.; Ma, G.S. Interpretation of Report on Childhood Obesity in China. Acta. Nutr. Sin. 2017, 39, 530–534. [Google Scholar]
- Weihrauch-Blüher, S.; Schwarz, P.; Klusmann, J.H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism 2019, 92, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. Interventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol. 2018, 6, 332–346. [Google Scholar] [CrossRef]
- Giovanazzi, A.; Jones, K.; Carr, R.M.; Fairhurst, C.M.; Backhouse, M.R.; Adamson, J.A. Current practice in the measurement and interpretation of intervention adherence in randomised controlled trials: A systematic review. Contemp. Clin. Trials 2022, 118, 106788. [Google Scholar] [CrossRef]
- Burgess, E.; Hassmén, P.; Pumpa, K.L. Determinants of adherence to lifestyle intervention in adults with obesity: A systematic review. Clin. Obes. 2017, 7, 123–135. [Google Scholar] [CrossRef]
- JaKa, M.M.; Haapala, J.L.; Trapl, E.S.; Kunin-Batson, A.S.; Olson-Bullis, B.A.; Heerman, W.J.; Berge, J.M.; Moore, S.M.; Matheson, D.; Sherwood, N.E. Reporting of treatment fidelity in behavioural paediatric obesity intervention trials: A systematic review. Obes. Rev. 2016, 17, 1287–1300. [Google Scholar] [CrossRef]
- Cheah, W.L.; Poh, B.K.; Ruzita, A.T.; Lee, J.A.C.; Koh, D.; Reeves, S.; Essau, C.; Summerbell, C.; Noor Hafizah, Y.; Anchang, G.N.J.; et al. Process evaluation of a kindergarten-based intervention for obesity prevention in early childhood: The Toybox study Malaysia. BMC Public Health 2023, 23, 1082. [Google Scholar]
- Briatico, D.; Reilly, K.C.; Tucker, P.; Irwin, J.D.; Johnson, A.M.; Pearson, E.S.; Bock, D.E.; Burke, S.M. Using the RE-AIM framework to evaluate the feasibility of a parent-focused intervention targeting childhood obesity. Pilot Feasibility Stud. 2023, 9, 38. [Google Scholar] [CrossRef]
- Zarkogianni, K.; Chatzidaki, E.; Polychronaki, N.; Kalafatis, E.; Nicolaides, N.C.; Voutetakis, A.; Chioti, V.; Kitani, R.A.; Mitsis, K.; Perakis, K.; et al. The ENDORSE Feasibility Study: Exploring the Use of M-Health, Artificial Intelligence and Serious Games for the Management of Childhood Obesity. Nutrients 2023, 15, 1451. [Google Scholar] [CrossRef]
- Rana, P.; Atem, F.D.; Lebron, C.; Sunil Mathew, M.; Natale, R.A.; Messiah, S.E. Relationship between teacher fidelity to an early childhood obesity prevention program and the Child care center nutrition and physical activity environment. Prev. Med. Rep. 2022, 30, 102024. [Google Scholar] [CrossRef] [PubMed]
- Danieles, P.K.; Ybarra, M.; Van Hulst, A.; Barnett, T.A.; Mathieu, M.; Kakinami, L.; Drouin, O.; Bigras, J.L.; Henderson, M. Determinants of attrition in a pediatric healthy lifestyle intervention: The CIRCUIT program experience. Obes. Res. Clin. Pract. 2021, 15, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Moran-Lev, H.; Vega, Y.; Kalamitzky, N.; Interator, H.; Cohen, S.; Lubetzky, R. Factors Associated With Treatment Adherence to a Lifestyle Intervention Program for Children with Obesity: The Experience of a Large Tertiary Care Pediatric Hospital. Clin. Pediatr. 2023, 62, 269–275. [Google Scholar] [CrossRef]
- Arthurs, N.; Tully, L.; O’Malley, G.; Browne, S. Usability and Engagement Testing of mHealth Apps in Paediatric Obesity: A Narrative Review of Current Literature. Int. J. Environ. Res. Public Health. 2022, 19, 1453. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y.; Niu, W.Y.; Feng, X.; Lin, Y.; Gao, A.; Zhang, F.; Fang, H.; Gao, P.; Li, H.J.; et al. A school-based, multi-faceted health promotion programme to prevent obesity among children: Protocol of a cluster-randomised controlled trial (the DECIDE-Children study). BMJ Open 2019, 9, e027902. [Google Scholar] [CrossRef]
- Muthén, B.; Muthén, L.K. Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcohol. Clin. Exp. Res. 2000, 24, 882–891. [Google Scholar] [CrossRef]
- Jones, L.; Daniel, B.N. A Stata Plugin for Estimating Group-Based Trajectory Models; KiltHub: Pittsburgh, PA, USA, 2018; updated 19 March 2023. [Google Scholar]
- Hammersley, M.L.; Jones, R.A.; Okely, A.D. Parent-Focused Childhood and Adolescent Overweight and Obesity eHealth Interventions: A Systematic Review and Meta-Analysis. J. Med. Internet Res. 2016, 18, e203. [Google Scholar] [CrossRef]
- Druce, K.L.; Dixon, W.G.; McBeth, J. Maximizing Engagement in Mobile Health Studies: Lessons Learned and Future Directions. Rheum. Dis. Clin. N. Am. 2019, 45, 159–172. [Google Scholar] [CrossRef]
- Koorts, H.; Timperio, A.; Abbott, G.; Arundell, L.; Ridgers, N.D.; Cerin, E.; Brown, H.; Daly, R.M.; Dunstan, D.W.; Hume, C.; et al. Is level of implementation linked with intervention outcomes? Process evaluation of the TransformUs intervention to increase children’s physical activity and reduce sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 122. [Google Scholar] [CrossRef]
- Wiltsey Stirman, S.; Kimberly, J.; Cook, N.; Calloway, A.; Castro, F.; Charns, M. The sustainability of new programs and innovations: A review of the empirical literature and recommendations for future research. Implement. Sci. 2012, 7, 17. [Google Scholar] [CrossRef]
- Nagin, D.S.; Odgers, C.L. Group-based trajectory modeling in clinical research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.M.; Shrank, W.H.; Pakes, J.; Sanfélix-Gimeno, G.; Matlin, O.S.; Brennan, T.A.; Choudhry, N.K. Group-based trajectory models: A new approach to classifying and predicting long-term medication adherence. Med. Care. 2013, 51, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D.S. Group-based trajectory modeling: An overview. Ann. Nutr. Metab. 2014, 65, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Nezami, B.T.; Wasser, H.M.; Tate, D.F. Parent and child dietary changes in a 6-month mobile-delivered weight loss intervention with tailored messaging for parents. Front. Public Health 2022, 10, 972109. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.; Maddison, R.; Ni Mhurchu, C.; Jiang, Y.; Wei, D.M.; Cheng, L.; Cheng, Y.; Wang, D.; Wang, H.J. A School-Based Comprehensive Intervention for Childhood Obesity in China: A Cluster Randomized Controlled Trial. Child. Obes. 2019, 15, 105–115. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Amer, O.E.; Khattak, M.N.K.; Hussain, S.D.; Alkhaldi, G.; Alfawaz, H.A.; Elsaid, M.A.; Sabico, S. Attendance-Based Adherence and Outcomes of Obesity Management Program in Arab Adolescents. Children 2023, 10, 1449. [Google Scholar] [CrossRef]
- Gunnarsdottir, T.; Njardvik, U.; Olafsdottir, A.S.; Craighead, L.W.; Bjarnason, R. The role of parental motivation in family-based treatment for childhood obesity. Obesity 2011, 19, 1654–1662. [Google Scholar] [CrossRef]
- Rahelić, V.; Głąbska, D.; Guzek, D.; Pavić, E.; Rumora Samarin, I.; Bogdanić, A.; Špehar Uroić, A.; Rojnić Putarek, N.; Krnić, N. Role of Parents in Body Mass Reduction in Children with Obesity-Adherence and Success of 1-Year Participation in an Intervention Program. Medicina 2020, 56, 168. [Google Scholar] [CrossRef]
- Kobes, A.; Kretschmer, T.; Timmerman, G.; Schreuder, P. Interventions aimed at preventing and reducing overweight/obesity among children and adolescents: A meta-synthesis. Obes. Rev. 2018, 19, 1065–1079. [Google Scholar] [CrossRef]
- Glasgow, R.E. eHealth evaluation and dissemination research. Am. J. Prev. Med. 2007, 32, S119–S126. [Google Scholar] [CrossRef]
- Cao, Z.; Hua, J.; Zhang, D.; Thapa, J.R.; Wang, S. A cohort study assessing the sustainable long-term effectiveness of a childhood-obesity intervention in China. Int. J. Epidemiol. 2019, 48, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.L.; Hu, X.Q.; Ma, G.S.; Cui, Z.H.; Pan, Y.P.; Chang, S.Y.; Zhao, W.H.; Chen, C.M. Report on childhood obesity in China (6) evaluation of a classroom-based physical activity promotion program. Biomed. Environ. Sci. 2007, 20, 19–23. [Google Scholar] [PubMed]
- Li, B.; Pallan, M.; Liu, W.J.; Hemming, K.; Frew, E.; Lin, R.; Liu, W.; Martin, J.; Zanganeh, M.; Hurley, K.; et al. The CHIRPY DRAGON intervention in preventing obesity in Chinese primary-school—Aged children: A cluster-randomised controlled trial. PLoS Med. 2019, 16, e1002971. [Google Scholar] [CrossRef] [PubMed]
- Damaske, S.; Smyth, J.M.; Zawadzki, M.J. Has work replaced home as a haven? Re-examining Arlie Hochschild’s Time Bind proposition with objective stress data. Soc. Sci. Med. 2014, 115, 130–138. [Google Scholar] [CrossRef]
- Cason-Wilkerson, R.; Goldberg, S.; Albright, K.; Allison, M.; Haemer, M. Factors influencing healthy lifestyle changes: A qualitative look at low-income families engaged in treatment for overweight children. Child. Obes. 2015, 11, 170–176. [Google Scholar] [CrossRef]
- Davison, K.K.; Kitos, N.; Aftosmes-Tobio, A.; Ash, T.; Agaronov, A.; Sepulveda, M.; Haines, J. The forgotten parent: Fathers’ representation in family interventions to prevent childhood obesity. Prev. Med. 2018, 111, 170–176. [Google Scholar] [CrossRef]
- Vollmer, R.L.; Adamsons, K.; Gorin, A.; Foster, J.S.; Mobley, A.R. Investigating the Relationship of Body Mass Index, Diet Quality, and Physical Activity Level between Fathers and Their Preschool-Aged Children. J. Acad. Nutr. Diet. 2015, 115, 919–926. [Google Scholar] [CrossRef]
- Maleki, M.; Chehrzad, M.M.; Kazemnezhad Leyli, E.; Mardani, A.; Vaismoradi, M. Social Skills in Preschool Children from Teachers’ Perspectives. Children 2019, 6, 64. [Google Scholar] [CrossRef]
- Sutcliffe, A.G.; Barnes, J.; Belsky, J.; Gardiner, J.; Melhuish, E. The health and development of children born to older mothers in the United Kingdom: Observational study using longitudinal cohort data. BMJ 2012, 345, e5116. [Google Scholar] [CrossRef]
- Van Houdt, C.A.; Oosterlaan, J.; van Wassenaer-Leemhuis, A.G.; van Kaam, A.H.; Aarnoudse-Moens, C.S.H. Executive function deficits in children born preterm or at low birthweight: A meta-analysis. Dev. Med. Child. Neurol. 2019, 61, 1015–1024. [Google Scholar] [CrossRef]
Parental Compliance App Usage Times | Parental Compliance App Usage Duration | Child Compliance | ||||
---|---|---|---|---|---|---|
“Relatively High” vs. “Relatively Low” | p | “Relatively High” vs. “Relatively Low” | p | Improving Compliance Group vs. Decreasing Compliance Group | p | |
Change in BMI (mean (SD)) | −0.14 (−0.35, 0.08) | 0.22 | −0.11 (−0.30, 0.09) | 0.28 | −0.11 (−0.28, 0.05) | 0.17 |
Change in BMI z score (mean (SD)) | −0.04 (−0.13, 0.05) | 0.36 | −0.03 (−0.11, 0.05) | 0.43 | −0.03 (−0.10, 0.04) | 0.36 |
Change in waist circumference (mean (SD)) | −1.17 (−1.98, −0.36) | 0.01 | −1.03 (−1.76, −0.30) | 0.01 | −0.19 (−0.81, 0.43) | 0.54 |
Change in WHR (mean (SD)) | −0.01 (−0.02, −0.00) | 0.01 | −0.01 (−0.02, −0.00) | 0.01 | 0.00 (−0.01, 0.01) | 0.88 |
Change in BF% (mean (SD)) | −0.30 (−1.11, 0.51) | 0.44 | −0.15 (−0.87, 0.57) | 0.69 | −0.65 (−0.04, −1.26) | 0.04 |
Characteristics | Level | App Usage Times | OR (95% CI) a | OR (95% CI) b | App Usage Duration | OR (95% CI) a | OR (95% CI) b | ||
---|---|---|---|---|---|---|---|---|---|
Low (n = 610) | High (n = 74) | Low (n = 586) | High (n = 98) | ||||||
Students | |||||||||
Gender (%) | Boy | 297 (48.7) | 46 (62.2) | 1.72 (1.06, 2.86) | 1.95 (1.17, 3.31) | - | - | - | - |
Girl | 313 (51.3) | 28 (37.8) | - | - | - | ||||
Single child (%) # | Yes | 373 (61.8) | 35 (47.3) | 1.80 (1.11, 2.94) | 1.65 (0.96, 2.86) | - | - | - | - |
No | 231 (38.2) | 39 (52.7) | - | - | - | ||||
Age (Mean ± SD)) | - | - | - | 9.61 (0.34) | 9.69 (0.37) | 1.97 (1.07, 3.66) | 1.70 (0.89, 3.25) | ||
Parents | |||||||||
Mother age (year, mean ± SD) | - | - | - | - | 37.73 (4.20) | 38.69 (4.43) | 1.05 (1.01, 1.11) | 1.03 (0.98, 1.09) | |
Father’s education level (%) * | High | - | - | -- | -- | 321 (56.4) | 41 (42.7) | 1.74 (1.13, 2.70) | 1.65 (1.05, 2.60) |
Low | - | - | 248 (43.6) | 55 (57.3) | |||||
Mother’s education level (%) * | High | 362 (61.1) | 35 (48.6) | 1.67 (1.02, 2.73) | 1.21 (0.70, 2.09) | - | - | - | - |
Low | 230 (38.9) | 37 (51.4) | - | - | - | ||||
Mother with the job (%) # | Yes | - | - | - | - | 483 (85.5) | 72 (76.6) | 1.79 (1.03, 3.01) | 1.51 (0.85, 2.59) |
No | - | - | 82 (14.5) | 22 (23.4) |
Characteristics | Level | Improving Compliance Group | Decreasing Compliance Group | OR (95% CI) a | OR (95% CI) b |
---|---|---|---|---|---|
n = 542 | n = 140 | ||||
Students | |||||
Gender (%) | Boy | 259 (47.8) | 83 (59.3) | 1.59 (1.09, 2.33) | 1.47 (0.99, 2.19) |
Girl | 283 (52.2) | 57 (40.7) | |||
BMI (Mean ± SD) | 18.40 (3.59) | 19.11 (4.03) | 0.95 (0.91, 0.99) | 0.96 (0.91, 1.01) | |
Parents | |||||
Mother age (year, mean ± SD) | 38.04 (4.16) | 37.24 (4.49) | 1.05 (1.01, 1.10) | 1.05 (1.01, 1.10) | |
Parental compliance (app usage times) | Low | 476 (87.8) | 132 (94.3) | 2.29 (1.13, 5.27) | 2.36 (1.16, 5.47) |
High | 66 (12.2) | 8 (5.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Li, W.; Zheng, M.; Lyu, J.; Zhou, S.; Wang, H.; Li, Y.; Wang, H. Identifying Longitudinal Compliance Patterns and Determinants in a Multifaceted Childhood Obesity Intervention Using Group-Based Trajectory Modeling. Nutrients 2025, 17, 1701. https://doi.org/10.3390/nu17101701
Yan S, Li W, Zheng M, Lyu J, Zhou S, Wang H, Li Y, Wang H. Identifying Longitudinal Compliance Patterns and Determinants in a Multifaceted Childhood Obesity Intervention Using Group-Based Trajectory Modeling. Nutrients. 2025; 17(10):1701. https://doi.org/10.3390/nu17101701
Chicago/Turabian StyleYan, Shiyu, Wenhao Li, Miaobing Zheng, Jinlang Lyu, Shuang Zhou, Hui Wang, Yan Li, and Haijun Wang. 2025. "Identifying Longitudinal Compliance Patterns and Determinants in a Multifaceted Childhood Obesity Intervention Using Group-Based Trajectory Modeling" Nutrients 17, no. 10: 1701. https://doi.org/10.3390/nu17101701
APA StyleYan, S., Li, W., Zheng, M., Lyu, J., Zhou, S., Wang, H., Li, Y., & Wang, H. (2025). Identifying Longitudinal Compliance Patterns and Determinants in a Multifaceted Childhood Obesity Intervention Using Group-Based Trajectory Modeling. Nutrients, 17(10), 1701. https://doi.org/10.3390/nu17101701