The Long-Term Effect of COVID-19 Infection on Body Composition
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Recruiting and Study Population
2.3. Study Measurements
2.3.1. Baseline Characteristics
2.3.2. Inflammatory Markers and Oxidized LDL
2.3.3. Body Composition Measurements
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Changes in Inflammation
3.3. Annualized Change in Body Composition
3.4. Effect of PASC Status on Body Composition among COVID-19 Survivors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long COVID or Post-COVID Conditions|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 24 August 2023).
- Dotan, A.; Muller, S.; Kanduc, D.; David, P.; Halpert, G.; Shoenfeld, Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 2021, 20, 102792. [Google Scholar] [CrossRef]
- Wrona, M.; Skrypnik, D. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection—Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 13280. [Google Scholar] [CrossRef]
- Davis, P.B.; Xu, R. COVID-19 and Incident Diabetes—Recovery Is Not So Sweet After All. JAMA Netw. Open 2023, 6, e238872. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2022, 41, 3046–3054. [Google Scholar] [CrossRef]
- Marcos-Pardo, P.J.; Abelleira-Lamela, T.; González-Gálvez, N.; Esparza-Ros, F.; Espeso-García, A.; Vaquero-Cristóbal, R. Impact of COVID-19 lockdown on health parameters and muscle strength of older women: A longitudinal study. Exp. Gerontol. 2022, 164, 111814. [Google Scholar] [CrossRef]
- López-Sampalo, A.; Cobos-Palacios, L.; Vilches-Pérez, A.; Sanz-Cánovas, J.; Vargas-Candela, A.; Mancebo-Sevilla, J.J.; Hernández-Negrín, H.; Gómez-Huelgas, R.; Bernal-López, M.R. COVID-19 in Older Patients: Assessment of Post-COVID-19 Sarcopenia. Biomedicines 2023, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Legarra-Gorgoñon, G.; Oscoz-Ochandorena, S.; García-Alonso, Y.; García-Alonso, N.; Oteiza, J.; Lorea, A.E.; Correa-Rodríguez, M.; Izquierdo, M. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J. Appl. Physiol. 2023, 134, 50–58. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Melita, H. COVID-19 infection and body weight: A deleterious liaison in a J-curve relationship. Obes. Res. Clin. Pract. 2021, 15, 523–535. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, S.; Yan, Q.; Gao, Y. Sarcopenia and COVID-19 Outcomes. Clin. Interv. Aging 2023, 18, 359–373. [Google Scholar] [CrossRef]
- Martinez-Ferran, M.; De La Guía-Galipienso, F.; Sanchis-Gomar, F.; Pareja-Galeano, H. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients 2020, 12, 1549. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Screening for Sarcopenia (Physical Frailty) in the COVID-19 Era. Int. J. Endocrinol. 2021, 2021, 5563960. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, R.; McCullough, D.; Butler, T.; de Heredia, F.P.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 lockdown restrictions: Long-term health effects of short-term muscle loss. GeroScience 2020, 42, 1547–1578. [Google Scholar] [CrossRef] [PubMed]
- Letko, M.C.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Obitsu, S.; Ahmed, N.; Nishitsuji, H.; Hasegawa, A.; Nakahama, K.-I.; Morita, I.; Nishigaki, K.; Hayashi, T.; Masuda, T.; Kannagi, M. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein. Arch. Virol. 2009, 154, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Sapra, L.; Saini, C.; Garg, B.; Gupta, R.; Verma, B.; Mishra, P.K.; Srivastava, R.K. Long-term implications of COVID-19 on bone health: Pathophysiology and therapeutics. Inflamm. Res. 2022, 71, 1025–1040. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Imai, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol. 2006, 6, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Meftahi, G.H.; Jangravi, Z.; Sahraei, H.; Bahari, Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm. Res. 2020, 69, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Evcik, D. Musculoskeletal involvement: COVID-19 and post COVID 19. Turk. J. Phys. Med. Rehabil. 2023, 1, 1–7. [Google Scholar] [CrossRef]
- Besutti, G.; Pellegrini, M.; Ottone, M.; Bonelli, E.; Monelli, F.; Farì, R.; Milic, J.; Dolci, G.; Fasano, T.; Canovi, S.; et al. Modifications of Chest CT Body Composition Parameters at Three and Six Months after Severe COVID-19 Pneumonia: A Retrospective Cohort Study. Nutrients 2022, 14, 3764. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Rosa, B.V.; Maldonado, A.J.; de Araújo, A.O.; Neves, L.M.; Rossi, F.E. Impact of the COVID-19 Lockdown on the Body Composition and Physical Performance of Athletes: A Systematic Review with Meta-Analysis and Meta-Regression. Healthcare 2023, 11, 2319. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Arora, B.; Gupta, R.; Anoop, S.; Misra, A. Effects of nationwide lockdown during COVID-19 epidemic on lifestyle and other medical issues of patients with type 2 diabetes in north India. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Al Zaman, K.; Ahmed, S.; Alshamsi, A.; Alshamsi, A.; Alshdaifat, B.; Alaleeli, S.; Mussa, B.M. Impact of COVID-19 Pandemic on Weight Change Among Adults in the UAE. Int. J. Gen. Med. 2023, 16, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.M.; Liboredo, J.C.; Anastácio, L.R.; Souza, T.C.d.M.; Oliveira, L.A.; Della Lucia, C.M.; Ferreira, L.G. Incidence and Associated Factors of Weight Gain During the COVID-19 Pandemic. Front. Nutr. 2022, 9, 818632. [Google Scholar] [CrossRef] [PubMed]
- Hejbøl, E.K.; Harbo, T.; Agergaard, J.; Madsen, L.B.; Pedersen, T.H.; Østergaard, L.J.; Andersen, H.; Schrøder, H.D.; Tankisi, H. Myopathy as a cause of fatigue in long-term post-COVID-19 symptoms: Evidence of skeletal muscle histopathology. Eur. J. Neurol. 2022, 29, 2832–2841. [Google Scholar] [CrossRef]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; van Weeghel, M.; Schomakers, B.V.; et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat. Commun. 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Berktaş, B.M.; Gökçek, A.; Hoca, N.T.; Koyuncu, A. COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3046–3056. [Google Scholar] [CrossRef] [PubMed]
- Elmedany, S.H.; Badr, O.I.; Abu-Zaid, M.H.; Tabra, S.A.A. Bone mineral density changes in osteoporotic and osteopenic patients after COVID-19 infection. Egypt. Rheumatol. Rehabil. 2022, 49, 64. [Google Scholar] [CrossRef]
- Epsley, S.; Tadros, S.; Farid, A.; Kargilis, D.; Mehta, S.; Rajapakse, C.S. The Effect of Inflammation on Bone. Front. Physiol. 2021, 11, 511799. [Google Scholar] [CrossRef]
- Hu, C.-L.; Zheng, M.-J.; He, X.-X.; Liu, D.-C.; Jin, Z.-Q.; Xu, W.-H.; Lin, P.-Y.; Cheng, J.-W.; Wei, Q.-G. COVID-19 and bone health. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3191–3200. [Google Scholar] [CrossRef]
- Yong, S.J.; Halim, A.; Halim, M.; Liu, S.; Aljeldah, M.; Al Shammari, B.R.; Alwarthan, S.; Alhajri, M.; Alawfi, A.; Alshengeti, A.; et al. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev. Med. Virol. 2023, 33, e2424. [Google Scholar] [CrossRef] [PubMed]
- Mouchati, C.; Durieux, J.C.; Zisis, S.N.; Labbato, D.; Rodgers, M.A.; Ailstock, K.; Reinert, B.L.; Funderburg, N.T.; McComsey, G.A. Increase in gut permeability and oxidized ldl is associated with post-acute sequelae of SARS-CoV-2. Front. Immunol. 2023, 14, 1182544. [Google Scholar] [CrossRef] [PubMed]
- Zisis, S.; Durieux, J.; Mouchati, C.; Funderburg, N.; Ailstock, K.; Chong, M.; Labbato, D.; McComsey, G. Arterial Stiffness and Oxidized LDL Independently Associated With Post-Acute Sequalae of SARS-CoV-2. Pathog. Immun. 2023, 8, 1–15. [Google Scholar] [CrossRef] [PubMed]
COVID-19− (n = 80) | COVID-19+ (n = 80) | p-Value | |
---|---|---|---|
n (%), Median (IQR), or Mean ± std | |||
Characteristics | |||
Age (years) | 43.2 ± 15.4 | 42.9 ± 13.6 | 0.9 |
Female Sex | 25 (28.4) | 27 (33.8) | 0.5 |
Non-white Race * | 55 (63) | 33 (41.3) | 0.01 |
Weight (kg) | 83 ± 20.3 | 87 ± 22.2 | 0.4 |
Body Mass Index (kg/m2) | 28.4 ± 6.3 | 29.7 ± 6.8 | 0.2 |
Current Smoker (Yes) | 47 (53.4) | 24 (30) | 0.002 |
Current Alcohol Use (Yes) | 57 (71.3) | 56 (70) | 0.9 |
Physical Activity (min/week) | 2520 (870, 3735) | 2310 (1260, 3525) | 0.7 |
Mid-Waist Circumference (cm) | 95.8 ± 17.6 | 98.2 ± 16.9 | 0.3 |
HIV Status (+) | 69 (78) | 46 (58) | 0.004 |
Days between DXA 1 and 2 | 500 (399, 936) | 899 (569, 1495) | 0.0001 |
HDL (mg/dL) | 46.2 ± 12.9 | 48.1 ± 12.9 | 0.4 |
non-HDL | 120.5 ± 34.5 | 129.2 ± 37.5 | 0.07 |
Creatine Kinase (uL) | 207.3 ± 159.5 | 167.9 ± 117.2 | 0.2 |
Homa-IR | 2.6 ± 2.2 | 3.7 ± 4.9 | 0.6 |
DXA Markers | |||
Total Body BMD | 1.2 (1.1, 1.2) | 1.1 (1.1, 1.2) | 0.33 |
Trunk Fat (g) | 11,806.4 (6907.5, 17,260.8) | 13,206.3 (10,113.7, 17,745.4) | 0.07 |
Total Fat (g) | 24,921.4 (16,809.8, 34,842.2) | 26,782.6 (21,737.7, 34,204.1) | 0.08 |
Total LBM (g) | 52,423 (45,930.1, 58,476.8) | 52,956.2 (45,096.4, 62,194.1) | 0.4 |
Inflammation Markers | |||
IL-6 (pg/mL) | 2.8 (1.8, 5.6) | 2.5 (1.5, 3.8) | 0.1 |
VCAM (ng/mL) | 830.2 (673.7, 1018.5) | 739.8 (642.6, 963.1) | 0.06 |
TNF-RI (pg/mL) | 1046.8 (847.8, 1328.6) | 1006.4 (771.7, 1141.1) | 0.05 |
TNF-RII (pg/mL) | 2961.1 (2364, 4366.7) | 2190.2 (1874, 2898.2) | <0.0001 |
hsCRP (ng/mL) | 3512.4 (1287.5, 7684.6) | 2696.8 (880.4, 8651.2) | 0.3 |
IP10 (pg/mL) | 181.4 (135.4, 328.5) | 124.5 (97.5, 196.7) | 0.001 |
D-dimer (ng/mL) | 411.6 (274.8, 600.2) | 316.4 (195.8, 517.1) | 0.02 |
oxLDL (U/L) | 43.4 (35.3, 52.9) | 50.9 (38.1, 65.7) | 0.02 |
sCD14 (ng/mL) | 1711.9 (1435.1, 2117.8) | 1592.5 (1305.9, 1949.8) | 0.1 |
sCD163 (ng/mL) | 708.6 (530.9, 1148.4) | 624.9 (410.2, 851.2) | 0.01 |
COVID-19− | COVID-19+ | p-Value (between Group) | |
---|---|---|---|
Mean ± Std (p-Vaue) * | |||
VCAM | −53.03 ± 37.3 (0.2) | 71.5 ± 38.4 (0.06) | 0.02 |
TNF_RI | −53.2 ± 46.0 (0.3) | 62.5 ± 47.0 (0.2) | 0.08 |
TNF-RII | −877.9 ± 181.9 (<0.001) | 41.0 ± 185.9 (0.8) | <0.0001 |
hsCRP | −2390.3 ± 1668.5 (0.2) | −312.2 ± 1693.0 (0.8) | 0.4 |
D-dimer | −473.1 ± 230.1 (0.04) | 93.2 ± 235.1 (0.7) | 0.08 |
oxLDL | 47.2 ± 42.4 (0.3) | 33.5 ± 45.1 (<0.001) | <0.0001 |
Trunk Fat | Total Fat Mass | Total LBM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted | |||||||
COVID-19 Status (+ vs. −) | −762.9 ± 279.02 | (0.01) | −895.8 ± 301.6 | (0.004) | −1364.3 ± 484.2 | (0.2) | −1607.6 ± 523.7 | (0.2) | −1039.4 ± 269.7 | (0.0002) | −963.3 ± 293.0 | (0.001) |
VCAM | −1.02 ± 0.42 | (0.02) | −1.1 ± 0.42 | (0.01) | −1.97 ± 0.72 | (0.2) | −2.11 ± 0.72 | (0.2) | −0.7 ± 0.41 | (0.1) | −0.7 ± 0.41 | (0.1) |
TNF-RI | −0.06 ± 0.4 | (0.9) | 0.17 ± 0.4 | (0.7) | −0.4 ± 0.7 | (0.6) | −0.05 ± 0.7 | (0.9) | −0.6 ± 0.4 | (0.1) | −0.2 ± 0.4 | (0.6) |
TNF-RII | −0.14 ± 0.1 | (0.1) | −0.06 ± 0.1 | (0.5) | −0.3 ± 0.2 | (0.4) | −0.13 ± 0.2 | (0.6) | −0.13 ± 0.1 | (0.1) | −0.02 ± 0.1 | (0.8) |
hsCRP | 0.03 ± 0.01 | (0.01) | 0.03 ± 0.01 | (0.01) | 0.03 ± 0.02 | (0.3) | 0.04 ± 0.02 | (0.04) | 0.01 ± 0.01 | (0.2) | 0.02 ± 0.01 | (0.1) |
D-dimer | −0.003 ± 0.07 | (0.9) | −0.01 ± 0.1 | (0.8) | −0.03 ± 0.1 | (0.8) | −0.04 ± 0.1 | (0.8) | −0.04 ± 0.1 | (0.6) | −0.04 ± 0.1 | (0.6) |
oxLDL | 0.004 ± 0.01 | (0.4) | 0.01 ± 0.01 | (0.1) | 0.01 ± 0.01 | (0.5) | 0.02 ± 0.01 | (0.3) | −0.001 ± 0.01 | (0.8) | 0.003 ± 0.01 | (0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atieh, O.; Durieux, J.C.; Baissary, J.; Mouchati, C.; Labbato, D.; Thomas, A.; Merheb, A.; Ailstock, K.; Funderburg, N.; McComsey, G.A. The Long-Term Effect of COVID-19 Infection on Body Composition. Nutrients 2024, 16, 1364. https://doi.org/10.3390/nu16091364
Atieh O, Durieux JC, Baissary J, Mouchati C, Labbato D, Thomas A, Merheb A, Ailstock K, Funderburg N, McComsey GA. The Long-Term Effect of COVID-19 Infection on Body Composition. Nutrients. 2024; 16(9):1364. https://doi.org/10.3390/nu16091364
Chicago/Turabian StyleAtieh, Ornina, Jared C. Durieux, Jhony Baissary, Christian Mouchati, Danielle Labbato, Alicia Thomas, Alexander Merheb, Kate Ailstock, Nicholas Funderburg, and Grace A. McComsey. 2024. "The Long-Term Effect of COVID-19 Infection on Body Composition" Nutrients 16, no. 9: 1364. https://doi.org/10.3390/nu16091364
APA StyleAtieh, O., Durieux, J. C., Baissary, J., Mouchati, C., Labbato, D., Thomas, A., Merheb, A., Ailstock, K., Funderburg, N., & McComsey, G. A. (2024). The Long-Term Effect of COVID-19 Infection on Body Composition. Nutrients, 16(9), 1364. https://doi.org/10.3390/nu16091364