The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dietary Protein Intake and Sources
2.3. The Rate of Change in Brain Structural Markers
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Dietary Protein and Brain Structure
3.3. Dietary Protein Sources and Brain Structure
3.4. Subgroup and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Barber, R.M.; Foreman, K.J.; Abbasoglu Ozgoren, A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abubakar, I.; Abu-Raddad, L.J.; et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: Quantifying the epidemiological transition. Lancet 2015, 386, 2145–2191. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Li, H.; Wardlaw, J.M.; Wang, Y. A new dawn of preventing dementia by preventing cerebrovascular diseases. BMJ (Clin. Res. Ed.) 2020, 371, m3692. [Google Scholar] [CrossRef]
- Gauthier Sea. World Alzheimer Report 2022: Life after Diagnosis: Navigating Treatment, Care And Support; Alzheimer’s Disease International: London, UK, 2022. [Google Scholar]
- Fjell, A.M.; Walhovd, K.B. Structural brain changes in aging: Courses, causes and cognitive consequences. Rev. Neurosci. 2010, 21, 187–221. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P., Jr.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2016, 12, 292–323. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.F.; Beiser, A.; Wolf, P.A.; Au, R.; White, R.F.; D’Agostino, R.B. The preclinical phase of alzheimer disease: A 22-year prospective study of the Framingham Cohort. Arch. Neurol. 2000, 57, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Shen, J.; Cai, X.; Chen, H.; Zong, G.; Zhu, W.; Jing, J.; Liu, T.; Jin, A.; Wang, Y.; et al. Adherence to a healthy lifestyle and brain structural imaging markers. Eur. J. Epidemiol. 2023, 38, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.E.A.; Leoni, V.; Klein-Flügge, M.C.; Ebmeier, K.P.; Suri, S. Associations of dietary markers with brain volume and connectivity: A systematic review of MRI studies. Ageing Res. Rev. 2021, 70, 101360. [Google Scholar] [CrossRef]
- Croll, P.H.; Voortman, T.; Ikram, M.A.; Franco, O.H.; Schoufour, J.D.; Bos, D.; Vernooij, M.W. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study. Neurology 2018, 90, e2166–e2173. [Google Scholar] [CrossRef]
- Kouvari, M.; Tyrovolas, S.; Panagiotakos, D.B. Red meat consumption and healthy ageing: A review. Maturitas 2016, 84, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Hill, E.; Zhu, Z.; Liu, J.; Ge, Z.; Wang, W.; He, M. Macronutrient Intake and Risk of Dementia in Community-Dwelling Older Adults: A Nine-Year Follow-Up Cohort Study. J. Alzheimer’s Dis. JAD 2022, 85, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.; Rainey-Smith, S.R.; Gardener, S.L.; Villemagne, V.L.; Burnham, S.C.; Macaulay, S.L.; Brown, B.M.; Gupta, V.B.; Sohrabi, H.R.; Weinborn, M.; et al. Associations of Dietary Protein and Fiber Intake with Brain and Blood Amyloid-β. J. Alzheimer’s Dis. JAD 2018, 61, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xiong, M.; Wu, S. A review on the application of UK Biobank in neuroimaging. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi J. Biomed. Eng. Shengwu Yixue Gongchengxue Zazhi 2021, 38, 594–601. [Google Scholar]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.L.; Alfaro-Almagro, F.; Bangerter, N.K.; Thomas, D.L.; Yacoub, E.; Xu, J.; Bartsch, A.J.; Jbabdi, S.; Sotiropoulos, S.N.; Andersson, J.L.R.; et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 2016, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Glenn, A.J.; Yang, Q.; Ding, D.; Zheng, L.; Bao, W.; Beasley, J.; LeBlanc, E.; Lo, K.; Manson, J.E.; et al. Dietary Protein Sources, Mediating Biomarkers, and Incidence of Type 2 Diabetes: Findings from the Women’s Health Initiative and the UK Biobank. Diabetes Care 2022, 45, 1742–1753. [Google Scholar] [CrossRef] [PubMed]
- Halkjaer, J.; Olsen, A.; Bjerregaard, L.J.; Deharveng, G.; Tjønneland, A.; Welch, A.A.; Crowe, F.L.; Wirfält, E.; Hellstrom, V.; Niravong, M.; et al. Intake of total, animal and plant proteins, and their food sources in 10 countries in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 4), S16–S36. [Google Scholar] [CrossRef]
- Alfaro-Almagro, F.; Jenkinson, M.; Bangerter, N.K.; Andersson, J.L.R.; Griffanti, L.; Douaud, G.; Sotiropoulos, S.N.; Jbabdi, S.; Hernandez-Fernandez, M.; Vallee, E.; et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 2018, 166, 400–424. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Himali, J.J.; Beiser, A.S.; Aparicio, H.J.; Satizabal, C.L.; Vasan, R.S.; Seshadri, S.; Jacques, P.F. Sugar- and Artificially Sweetened Beverages and the Risks of Incident Stroke and Dementia: A Prospective Cohort Study. Stroke 2017, 48, 1139–1146. [Google Scholar] [CrossRef]
- Lourida, I.; Hannon, E.; Littlejohns, T.J.; Langa, K.M.; Hyppönen, E.; Kuzma, E.; Llewellyn, D.J. Association of Lifestyle and Genetic Risk with Incidence of Dementia. JAMA 2019, 322, 430–437. [Google Scholar] [CrossRef]
- Borgsted, C.; Hoegsted, E.; Henningsson, S.; Pinborg, A.; Ganz, M.; Frokjaer, V.G. Hippocampal volume changes in a pharmacological sex-hormone manipulation risk model for depression in women. Horm. Behav. 2022, 145, 105234. [Google Scholar] [CrossRef] [PubMed]
- Pletzer, B.; Harris, T.; Hidalgo-Lopez, E. Previous contraceptive treatment relates to grey matter volumes in the hippocampus and basal ganglia. Sci. Rep. 2019, 9, 11003. [Google Scholar] [CrossRef] [PubMed]
- Pletzer, B.; Kronbichler, M.; Aichhorn, M.; Bergmann, J.; Ladurner, G.; Kerschbaum, H.H. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 2010, 1348, 55–62. [Google Scholar] [CrossRef]
- Gupta, R.; Advani, D.; Yadav, D.; Ambasta, R.K.; Kumar, P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol. Neurobiol. 2023, 60, 6476–6529. [Google Scholar] [CrossRef]
- Anderson, J.J.; Gray, S.R.; Welsh, P.; Mackay, D.F.; Celis-Morales, C.A.; Lyall, D.M.; Forbes, J.; Sattar, N.; Gill, J.M.R.; Pell, J.P. The associations of sugar-sweetened, artificially sweetened and naturally sweet juices with all-cause mortality in 198,285 UK Biobank participants: A prospective cohort study. BMC Med. 2020, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, J.; Cao, Y.; Sun, Y.; Huang, L.; Ji, J.S.; Voortman, T.; Vernooij, M.W.; Shen, J.; Zheng, Y.; et al. Sugary beverages and genetic risk in relation to brain structure and incident dementia: A prospective cohort study. Am. J. Clin. Nutr. 2023, 117, 672–680. [Google Scholar] [CrossRef]
- Roberts, R.O.; Roberts, L.A.; Geda, Y.E.; Cha, R.H.; Pankratz, V.S.; O’Connor, H.M.; Knopman, D.S.; Petersen, R.C. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J. Alzheimer’s Dis. JAD 2012, 32, 329–339. [Google Scholar] [CrossRef]
- Takeuchi, H.; Kawashima, R. Nutrients and Dementia: Prospective Study. Nutrients 2023, 15, 842. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, H.; Pan, S.; Bai, X.; Zhu, Z.; Zhang, R.; Li, C.; Chen, Y.; Bao, M.; Zhang, K.; et al. Causal Relationships Between Relative Intake from the Macronutrients and Alzheimer’s Disease: A Two-Sample Mendelian Randomization Study. J. Alzheimer’s Dis. JAD 2022, 87, 665–673. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Wilson, R.S.; Aggarwal, N.; Schneider, J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch. Neurol. 2003, 60, 940–946. [Google Scholar] [CrossRef]
- Alves, I.S.; Coutinho, A.M.N.; Vieira, A.P.F.; Rocha, B.P.; Passos, U.L.; Gonçalves, V.T.; Silva, P.D.; Zhan, M.X.; Pinho, P.C.; Delgado, D.S. Imaging Aspects of the Hippocampus. Radiographics 2022, 42, 822–840. [Google Scholar] [CrossRef] [PubMed]
- Salmenperä, T.; Könönen, M.; Roberts, N.; Vanninen, R.; Pitkänen, A.; Kälviäinen, R. Hippocampal damage in newly diagnosed focal epilepsy: A prospective MRI study. Neurology 2005, 64, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Gosnell, S.N.; Meyer, M.J.; Jennings, C.; Ramirez, D.; Schmidt, J.; Oldham, J.; Salas, R. Hippocampal Volume in Psychiatric Diagnoses: Should Psychiatry Biomarker Research Account for Comorbidities? Chronic Stress 2020, 4, 2470547020906799. [Google Scholar] [CrossRef]
- Kohl, I.S.; Luft, V.C.; Patrão, A.L.; Molina, M.; Nunes, M.A.A.; Schmidt, M.I. Association between meatless diet and depressive episodes: A cross-sectional analysis of baseline data from the longitudinal study of adult health (ELSA-Brasil). J. Affect. Disord. 2023, 320, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.F.; House, J.D. Potential impact of the digestible indispensable amino acid score as a measure of protein quality on dietary regulations and health. Nutr. Rev. 2017, 75, 658–667. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 1–66.
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S. High Protein Foods: A Comparison of Animal Origin vs. Plant Origin. In Plant Protein Foods; Manickavasagan, A., Lim, L.-T., Ali, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–25. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutrition 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- García-Espinosa, M.A.; Wallin, R.; Hutson, S.M.; Sweatt, A.J. Widespread neuronal expression of branched-chain aminotransferase in the CNS: Implications for leucine/glutamate metabolism and for signaling by amino acids. J. Neurochem. 2007, 100, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Costa, A.; Maestri, R.; Cotta Ramusino, M.; Perini, G.; Boselli, M.; Iadarola, P.; Buonocore, D.; Verri, M.; Dossena, M.; et al. Is the Brain Undernourished in Alzheimer’s Disease? Nutrients 2022, 14, 1872. [Google Scholar] [CrossRef] [PubMed]
- Platell, C.; Kong, S.E.; McCauley, R. Hall JCJJog, hepatology. Branched Chain. Amino Acids 2000, 15, 706–717. [Google Scholar]
- Hutson, S.M.; Islam, M.F.; Zaganas, I.; Zaganas, I. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: Intersecting metabolic pathways. Neurochem. Int. 2011, 59, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.E.; Hutson, S.M. BCAA metabolism and NH3 homeostasis. In The Glutamate/GABA-Glutamine Cycle: Amino Acid Neurotransmitter Homeostasis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 99–132. [Google Scholar]
- Cole, J.T.; Mitala, C.M.; Kundu, S.; Verma, A.; Elkind, J.A.; Nissim, I.; Cohen, A.S. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc. Natl. Acad. Sci. USA 2010, 107, 366–371. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, F.; Sun, L.; Yu, J.; Sun, L.; Si, Y.; Yao, L. Role of gut microbiota-derived branched-chain amino acids in the pathogenesis of Parkinson’s disease: An animal study. Brain Behav. Immun. 2022, 106, 307–321. [Google Scholar] [CrossRef]
Total | Female | Male | p-Value | |
---|---|---|---|---|
n | 2723 | 1407 | 1316 | |
age, mean (SD) | 52.66 (7.42) | 51.65 (7.16) | 53.74 (7.54) | <0.001 |
sex (%) | ||||
female | 1407 (51.7) | 1407 (100.0) | ||
male | 1316 (48.3) | 1316 (100.0) | ||
MET (%) | 0.376 | |||
low | 474 (17.4) | 233 (16.6) | 241 (18.3) | |
medium | 1118 (41.1) | 592 (42.1) | 526 (40.0) | |
high | 1131 (41.5) | 582 (41.4) | 549 (41.7) | |
TDI, mean (SD) | −1.99 (2.64) | −1.91 (2.68) | −2.07 (2.59) | 0.110 |
smoke (%) | 0.234 | |||
never | 1742 (64.0) | 915 (65.0) | 827 (62.8) | |
ever smoked | 981 (36.0) | 492 (35.0) | 489 (37.2) | |
race (%) | 0.706 | |||
others | 80 (2.9) | 43 (3.1) | 37 (2.8) | |
white | 2643 (97.1) | 1364 (96.9) | 1279 (97.2) | |
drink (%) | 0.101 | |||
never | 56 (2.1) | 35 (2.5) | 21 (1.6) | |
ever drunk | 2667 (97.9) | 1372 (97.5) | 1295 (98.4) | |
education (%) | 0.133 | |||
below | 1226 (45.0) | 614 (43.6) | 612 (46.5) | |
college or above | 1497 (55.0) | 793 (56.4) | 704 (53.5) | |
BMI (%) | <0.001 | |||
underweight | 16 (0.6) | 13 (0.9) | 3 (0.2) | |
normal weight | 1140 (41.9) | 728 (51.7) | 412 (31.3) | |
overweight and obesity | 1567 (57.5) | 666 (47.3) | 901 (68.5) | |
cancer (%) | 226 (8.3) | 139 (9.9) | 87 (6.6) | 0.003 |
CVDs (%) | 78 (2.9) | 8 (0.6) | 70 (5.3) | <0.001 |
hypertension (%) | 529 (19.4) | 163 (11.6) | 366 (27.8) | <0.001 |
DM (%) | 80 (2.9) | 25 (1.8) | 55 (4.2) | <0.001 |
animal protein, mean (SD) | 53.03 (20.18) | 50.71 (18.59) | 55.50 (21.47) | <0.001 |
vegetable protein, mean (SD) | 28.67 (9.65) | 27.30 (9.11) | 30.14 (10.00) | <0.001 |
proportion of animal protein, mean (SD) | 0.64 (0.12) | 0.64 (0.12) | 0.64 (0.11) | 0.844 |
proportion of vegetable protein, mean (SD) | 0.36 (0.12) | 0.36 (0.12) | 0.36 (0.11) | 0.844 |
animal/vegetable, mean (SD) | 0.26 (0.24) | 0.26 (0.25) | 0.25 (0.23) | 0.822 |
total protein, mean (SD) | 81.70 (22.81) | 78.02 (20.23) | 85.64 (24.70) | <0.001 |
Hippocampus (Left) | Hippocampus (Right) | Hippocampus (Total) | ||||
---|---|---|---|---|---|---|
β (SE) | p | β (SE) | p | β (SE) | p | |
total protein | ||||||
model1 | 8.278 × 10−6 (5.342 × 10−5) | 0.877 | 2.899 × 10−5 (4.785 × 10−5) | 0.545 | 8.653 × 10−6 (3.606 × 10−5) | 0.810 |
model2 | 9.956 × 10−5 (7.586 × 10−5) | 0.190 | 7.375 × 10−5 (6.8 × 10−5) | 0.268 | 7.547 × 10−5 (5.118 × 10−5) | 0.141 |
model3 | 9.979 × 10−5 (7.592 × 10−5) | 0.189 | 7.374 × 10−5 (6.803 × 10−5) | 0.279 | 7.48 × 10−5 (5.1235 × 10−5) | 0.144 |
animal/protein | ||||||
model1 | 2.581 × 10−2 (1009 × 10−2) | 0.011 * | 2.403 × 10−2 (9.034 × 10−3) | 0.008 * | 2.399 × 10−2 (6.7998 × 10−3) | 0.001 * |
model2 | 2.528 × 10−2 (1.021 × 10−2) | 0.013 * | 2.558 × 10−2 (9.148 × 10−3) | 0.005 * | 2.443 × 10−2 (6.881 × 10−3) | 0.001 * |
model3 | 2.524 × 10−2 (1.022 × 10−2) | 0.014 * | 2.544 × 10−2 (9.152 × 10−3) | 0.005 * | 2.435 × 10−2 (6.886 × 10−3) | 0.001 * |
vegetable/protein | ||||||
model1 | −2.581 × 10−2 (1.009 × 10−2) | 0.011 * | −2.403 × 10−2 (9.034 × 10−3) | 0.008 * | −2.399 × 10−2 (6.71 × 10−3) | 0.001 * |
model2 | −2.528 × 10−2 (1.021 × 10−2) | 0.013 * | −2.558 × 10−2 (9.148 × 10−3) | 0.005 * | −2.443 × 10−2 (6.881 × 10−3) | 0.001 * |
model3 | −2.524 × 10−2 (1.022 × 10−2) | 0.014 * | −2.544 × 10−2 (9.152 × 10−3) | 0.005 * | −2.435 × 10−2 (6.886 × 10−3) | 0.001 * |
vegetable protein | ||||||
model1 | −3.243 × 10−4 (1.257 × 10−4) | 0.01 * | −1.644 × 10−4 (1.127 × 10−4) | 0.145 | −2.457 × 10−4 (8.479 × 10−5) | 0.004 * |
model2 | −3.909 × 10−4 (1.646 × 10−4) | 0.018 * | −2.731 × 10−4 (1.476 × 10−4) | 0.065 | −3.194 × 10−4 (1.111 × 10−4) | 0.004 * |
model3 | −3.901 × 10−4 (1.648 × 10−4) | 0.018 * | −2.724 × 10−4 (1477 × 10−4) | 0.065 | −3.190 × 10−4 (1.112 × 10−4) | 0.004 * |
animal protein | ||||||
model1 | 8.415 × 10−5 (5.996 × 10−5) | 0.161 | −1.644 × 10−5 (1.127 × 10−4) | 0.169 | 6.676 × 10−5 (4.046 × 10−5) | 0.099 |
model2 | 1.522 × 10−4 (6.924 × 10−5) | 0.028 * | 1.111 × 10−4 (6.208 × 10−5) | 0.074 | 1.194 × 10−4 (4.671 × 10−5) | 0.011 * |
model3 | 1.522 × 10−4 (6.929 × 10−5) | 0.028 * | 1.096 × 10−4 (6.211 × 10−5) | 0.078 | 1.188 × 10−4 (4.674 × 10−5) | 0.011 * |
animal/vegetable | ||||||
model1 | 1.281 × 10−2 (5 × 10−3) | 0.01 * | 1.127 × 10−2 (4.451 × 10−3) | 0.011 * | 1.16 × 10−2 (3.3 × 10−3) | 0.001 * |
model2 | 1.251 × 10−2 (5.03 × 10−3) | 0.01 * | 1.199 × 10−2 (4.508 × 10−3) | 0.008 * | 1.176 × 10−2 (3.391 × 10−3) | 0.001 * |
model3 | 1.249 × 10−2 (5.033 × 10−3) | 0.01 * | 1.193 × 10−2 (4.509 × 10−3) | 0.008 * | 1.173 × 10−2 (3.393 × 10−3) | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, F.; Li, H.; Cao, Y.; Wang, W.; Zhang, D. The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure. Nutrients 2024, 16, 1284. https://doi.org/10.3390/nu16091284
Cui F, Li H, Cao Y, Wang W, Zhang D. The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure. Nutrients. 2024; 16(9):1284. https://doi.org/10.3390/nu16091284
Chicago/Turabian StyleCui, Fusheng, Huihui Li, Yi Cao, Weijing Wang, and Dongfeng Zhang. 2024. "The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure" Nutrients 16, no. 9: 1284. https://doi.org/10.3390/nu16091284
APA StyleCui, F., Li, H., Cao, Y., Wang, W., & Zhang, D. (2024). The Association between Dietary Protein Intake and Sources and the Rate of Longitudinal Changes in Brain Structure. Nutrients, 16(9), 1284. https://doi.org/10.3390/nu16091284