Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. General Characterization of the Sample
3.2. Body Composition According to Vitamin D Serum Concentrations
3.3. Body Composition According to Vitamin D Serum Concentrations by BMI
3.4. Correlations of Vitamin D with Body Composition
4. Discussion
4.1. Prevalence of Vitamin D Inadequacy and Deficiency
4.2. Relationship between Serum Vitamin D Concentrations and Muscle Mass
4.3. Relationship between Serum Vitamin D Concentrations and Body Fat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzaheb, R.A. The Prevalence of Hypovitaminosis D and Its Associated Risk Factors Among Women of Reproductive Age in Saudi Arabia: A Systematic Review and Meta-Analysis. Clin. Med. Insights Women’s Health 2018, 11, 1179562X18767884. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, E.A.; Moura, L.d.A.N.E.; Castro, M.C.R.; Kac, G.; Hadler, M.C.C.M.; Noll, P.R.E.S.; Noll, M.; Rezende, A.T.d.O.; Delpino, F.M.; de Oliveira, C. Prevalence of Vitamin D and Calcium Deficiency and Insufficiency in Women of Childbearing Age and Associated Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4351. [Google Scholar] [CrossRef] [PubMed]
- Sofi, N.Y.; Jain, M.; Kapil, U.; Seenu, V.; Ramakrishnan, L.; Yadav, C.P.; Pandey, R.M. Status of Serum Vitamin D and Calcium Levels in Women of Reproductive Age in National Capital Territory of India. Indian J. Endocrinol. Metab. 2017, 21, 731. [Google Scholar] [CrossRef] [PubMed]
- Ginde, A.A.; Sullivan, A.F.; Mansbach, J.M.; Camargo, C.A. Vitamin D Insufficiency in Pregnant and Nonpregnant Women of Childbearing Age in the United States. Am. J. Obstet. Gynecol. 2010, 202, 436.e1–436.e8. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, L.; Brembeck, P.; Olausson, H. Determinants of Vitamin D Status in Fair-Skinned Women of Childbearing Age at Northern Latitudes. PLoS ONE 2013, 8, e60864. [Google Scholar] [CrossRef] [PubMed]
- Saeedian Kia, A.; Amani, R.; Cheraghian, B. The Association between the Risk of Premenstrual Syndrome and Vitamin D, Calcium, and Magnesium Status among University Students: A Case Control Study. Health Promot. Perspect. 2015, 5, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Osmancevic, A.; Jansson, N.; Hulthén, L.; Holmäng, A.; Larsson, I. Increased Vitamin D-Binding Protein and Decreased Free 25(OH)D in Obese Women of Reproductive Age. Eur. J. Nutr. 2014, 53, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Halfon, M.; Phan, O.; Teta, D. Vitamin D: A Review on Its Effects on Muscle Strength, the Risk of Fall, and Frailty. BioMed. Res. Int. 2015, 2015, 953241. [Google Scholar] [CrossRef]
- Nimitphong, H.; Holick, M.F.; Fried, S.K.; Lee, M.-J. 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 Promote the Differentiation of Human Subcutaneous Preadipocytes. PLoS ONE 2012, 7, e52171. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, Y.; Kong, J. VDR Regulates Energy Metabolism by Modulating Remodeling in Adipose Tissue. Eur. J. Pharmacol. 2019, 865, 172761. [Google Scholar] [CrossRef]
- Ceglia, L.; da Silva Morais, M.; Park, L.K.; Morris, E.; Harris, S.S.; Bischoff-Ferrari, H.A.; Fielding, R.A.; Dawson-Hughes, B. Multi-Step Immunofluorescent Analysis of Vitamin D Receptor Loci and Myosin Heavy Chain Isoforms in Human Skeletal Muscle. J. Mol. Histol. 2010, 41, 137–142. [Google Scholar] [CrossRef]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.-F. Vitamin D and Obesity/Adiposity-A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Somma, C.D.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex Differences of Vitamin D Status across BMI Classes: An Observational Prospective Cohort Study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [PubMed]
- Leiu, K.H.; Chin, Y.S.; Mohd Shariff, Z.; Arumugam, M.; Chan, Y.M. High Body Fat Percentage and Low Consumption of Dairy Products Were Associated with Vitamin D Inadequacy among Older Women in Malaysia. PLoS ONE 2020, 15, e0228803. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25 Hydroxyvitamin D Levels Are Negatively and Independently Associated with Fat Mass in a Cohort of Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Jeppesen, P.B. Body Mass Index, Vitamin D, and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Al Hayek, S.; Matar Bou Mosleh, J.; Ghadieh, R.; El Hayek Fares, J. Vitamin D Status and Body Composition: A Cross-Sectional Study among Employees at a Private University in Lebanon. BMC Nutr. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Delle Monache, S.; Di Fulvio, P.; Iannetti, E.; Valerii, L.; Capone, L.; Nespoli, M.G.; Bologna, M.; Angelucci, A. Body Mass Index Represents a Good Predictor of Vitamin D Status in Women Independently from Age. Clin. Nutr. Edinb. Scotl. 2019, 38, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.E.; Salmon, O.F.; Smith, C.M.; Duarte-Gardea, M.O.; Cramer, J.T. Influences of Vitamin D and Iron Status on Skeletal Muscle Health: A Narrative Review. Nutrients 2022, 14, 2717. [Google Scholar] [CrossRef]
- Fernando, M.; Ellery, S.J.; Marquina, C.; Lim, S.; Naderpoor, N.; Mousa, A. Vitamin D-Binding Protein in Pregnancy and Reproductive Health. Nutrients 2020, 12, 1489. [Google Scholar] [CrossRef]
- Pilz, S.; Zittermann, A.; Obeid, R.; Hahn, A.; Pludowski, P.; Trummer, C.; Lerchbaum, E.; Pérez-López, F.R.; Karras, S.N.; März, W. The Role of Vitamin D in Fertility and during Pregnancy and Lactation: A Review of Clinical Data. Int. J. Environ. Res. Public. Health 2018, 15, 2241. [Google Scholar] [CrossRef] [PubMed]
- Lucchetta, R.C.; Lemos, I.H.; Gini, A.L.R.; Cavicchioli, S.d.A.; Forgerini, M.; Varallo, F.R.; de Nadai, M.N.; Fernandez-Llimos, F.; Mastroianni, P. de C. Deficiency and Insufficiency of Vitamin D in Women of Childbearing Age: A Systematic Review and Meta-Analysis. Rev. Bras. Ginecol. E Obstet. Rev. Fed. Bras. Soc. Ginecol. E Obstet. 2022, 44, 409–424. [Google Scholar] [CrossRef]
- Dorsey, J.G. Introduction to Modern Liquid Chromatography, 3rd ed. J. Am. Chem. Soc. 2010, 132, 9220. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; ISBN 978-0-87322-121-4. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Jelliffe, D.B. ; WHO. The Assessment of the Nutritional Status of the Community (with Special Reference to Field Surveys in Developing Regions of the World; World Health Organization: Geneva, Switzerland, 1966; ISBN 978-92-4-140053-4. [Google Scholar]
- Frisancho, A.R. Triceps Skin Fold and Upper Arm Muscle Size Norms for Assessment of Nutrition Status. Am. J. Clin. Nutr. 1974, 27, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.M.; Jelliffe, D.B. Arm Anthropometry in Nutritional Assessment: Nomogram for Rapid Calculation of Muscle Circumference and Cross-Sectional Muscle and Fat Areas. Am. J. Clin. Nutr. 1973, 26, 912–915. [Google Scholar] [CrossRef] [PubMed]
- WHO. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-150149-1. [Google Scholar]
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. J. Clin. Epidemiol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Ashwell, M.; Lejeune, S.; McPherson, K. Ratio of Waist Circumference to Height May Be Better Indicator of Need for Weight Management. BMJ 1996, 312, 377. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical Usefulness of a New Equation for Estimating Body Fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Belarmino, G.; Torrinhas, R.S.; Sala, P.; Horie, L.M.; Damiani, L.; Lopes, N.C.; Heymsfield, S.B.; Waitzberg, D.L. A New Anthropometric Index for Body Fat Estimation in Patients with Severe Obesity. BMC Obes. 2018, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Kyle, U.U.G.; Pichard, C. Fat-Free Mass Index and Fat Mass Index Percentiles in Caucasians Aged 18-98 y. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2002, 26, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, H.J.; Chen, S.; Chen, L.; Wang, X.; Zhang, L.Y.; Pan, L.; Wang, L.; Feng, K.; Wang, K.; et al. Fat-to-Muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomed. Environ. Sci. BES 2018, 31, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of Sarcopenia among the Elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, P.M.; Peters, K.W.; Shardell, M.D.; McLean, R.R.; Dam, T.-T.L.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Cutpoints for Low Appendicular Lean Mass That Identify Older Adults with Clinically Significant Weakness. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Lindroos, A.K.; Nälsén, C.; Warensjö Lemming, E.; Öhrvik, V. Dietary Habits, Nutrient Intake and Biomarkers for Folate, Vitamin D, Iodine and Iron Status among Women of Childbearing Age in Sweden. Ups. J. Med. Sci. 2016, 121, 271–275. [Google Scholar] [CrossRef]
- Burke, N.L.; Harville, E.W.; Wickliffe, J.K.; Shankar, A.; Lichtveld, M.Y.; McCaskill, M.L. Determinants of Vitamin D Status among Black and White Low-Income Pregnant and Non-Pregnant Reproductive-Aged Women from Southeast Louisiana. BMC Pregnancy Childbirth 2019, 19, 111. [Google Scholar] [CrossRef]
- Lopes, V.M.; Lopes, J.R.C.; Brasileiro, J.P.B.; Oliveira, I.d.; Lacerda, R.P.; Andrade, M.R.D.; Tierno, N.I.Z.; Souza, R.C.C.d.; Motta, L.A.C.R. da Highly Prevalence of Vitamin D Deficiency among Brazilian Women of Reproductive Age. Arch. Endocrinol. Metab. 2017, 61, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Kilic, C.; Ilhan, B.; Karan, M.A.; Cruz-Jentoft, A. Association of Different Bioimpedanciometry Estimations of Muscle Mass with Functional Measures. Geriatr. Gerontol. Int. 2019, 19, 593–597. [Google Scholar] [CrossRef]
- Arazi, H.; Eghbali, E. 25-Hydroxyvitamin D Levels and Its Relation to Muscle Strength, Maximal Oxygen Consumption, and Body Mass Index in Young and Middle Adulthood Women. Int. J. Womens Health 2019, 11, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Shantavasinkul, P.C.; Phanachet, P.; Puchaiwattananon, O.; Chailurkit, L.; Lepananon, T.; Chanprasertyotin, S.; Ongphiphadhanakul, B.; Warodomwichit, D. Vitamin D Status Is a Determinant of Skeletal Muscle Mass in Obesity According to Body Fat Percentage. Nutrition 2015, 31, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Lila, D.; Susana, Z.; Ricardo, B. Induction of a Calbindin-D9K-like Protein in Avian Muscle Cells by 1,25-Dihydroxy-Vitamin D3. Biochem. Mol. Biol. Int. 1994, 32, 859–867. [Google Scholar] [PubMed]
- Girgis, C.M.; Clifton-Bligh, R.J.; Hamrick, M.W.; Holick, M.F.; Gunton, J.E. The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocr. Rev. 2013, 34, 33–83. [Google Scholar] [CrossRef]
- Domingues-Faria, C.; Boirie, Y.; Walrand, S. Vitamin D and Muscle Trophicity. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.A.; King, K.K.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)2vitamin D3 Stimulates Myogenic Differentiation by Inhibiting Cell Proliferation and Modulating the Expression of Promyogenic Growth Factors and Myostatin in C2C12 Skeletal Muscle Cells. Endocrinology 2011, 152, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.A.; Ferrini, M.G.; Norris, K.C.; Artaza, J.N. 1,25(OH)(2)Vitamin D(3) Enhances Myogenic Differentiation by Modulating the Expression of Key Angiogenic Growth Factors and Angiogenic Inhibitors in C(2)C(12) Skeletal Muscle Cells. J. Steroid Biochem. Mol. Biol. 2013, 133, 1–11. [Google Scholar] [CrossRef]
- Braga, M.; Simmons, Z.; Norris, K.C.; Ferrini, M.G.; Artaza, J.N. Vitamin D Induces Myogenic Differentiation in Skeletal Muscle Derived Stem Cells. Endocr. Connect. 2017, 6, 139–150. [Google Scholar] [CrossRef]
- Ryan, Z.C.; Craig, T.A.; Folmes, C.D.; Wang, X.; Lanza, I.R.; Schaible, N.S.; Salisbury, J.L.; Nair, K.S.; Terzic, A.; Sieck, G.C.; et al. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J. Biol. Chem. 2016, 291, 1514–1528. [Google Scholar] [CrossRef] [PubMed]
- Chang, E. 1,25-Dihydroxyvitamin D Decreases Tertiary Butyl-Hydrogen Peroxide-Induced Oxidative Stress and Increases AMPK/SIRT1 Activation in C2C12 Muscle Cells. Molecules 2019, 24, 3903. [Google Scholar] [CrossRef] [PubMed]
- Dzik, K.P.; Kaczor, J.J. Mechanisms of Vitamin D on Skeletal Muscle Function: Oxidative Stress, Energy Metabolism and Anabolic State. Eur. J. Appl. Physiol. 2019, 119, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naderpoor, N.; de Courten, M.P.J.; Scragg, R.; de Courten, B. 25-Hydroxyvitamin D Is Associated with Adiposity and Cardiometabolic Risk Factors in a Predominantly Vitamin D-Deficient and Overweight/Obese but Otherwise Healthy Cohort. J. Steroid Biochem. Mol. Biol. 2017, 173, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.G.; Boyanov, M.A.; Tsakova, A.D. Correlations of serum vitamin D with metabolic parameters in adult outpatients with different degrees of overweight/obesity coming from an urban community. Acta Endocrinol. 2018, 14, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Patriota, P.; Rezzi, S.; Guessous, I.; Marques-Vidal, P. Association between Anthropometric Markers of Adiposity, Adipokines and Vitamin D Levels. Sci. Rep. 2022, 12, 15435. [Google Scholar] [CrossRef] [PubMed]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Beckman, L.M.; Earthman, C.P.; Thomas, W.; Compher, C.W.; Muniz, J.; Horst, R.L.; Ikramuddin, S.; Kellogg, T.A.; Sibley, S.D. Serum 25(OH) Vitamin D Concentration Changes after Roux-En-Y Gastric Bypass Surgery. Obesity 2013, 21, E599–E606. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Eagon, J.C.; Trujillo, M.E.; Scherer, P.E.; Klein, S. Visceral Fat Adipokine Secretion Is Associated with Systemic Inflammation in Obese Humans. Diabetes 2007, 56, 1010–1013. [Google Scholar] [CrossRef]
- Wronska, A.; Kmiec, Z. Structural and Biochemical Characteristics of Various White Adipose Tissue Depots. Acta Physiol. 2012, 205, 194–208. [Google Scholar] [CrossRef]
- Le Jemtel, T.H.; Samson, R.; Milligan, G.; Jaiswal, A.; Oparil, S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Curr. Hypertens. Rep. 2018, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Matsha, T.E.; Ismail, S.; Speelman, A.; Hon, G.M.; Davids, S.; Erasmus, R.T.; Kengne, A.P. Visceral and Subcutaneous Adipose Tissue Association with Metabolic Syndrome and Its Components in a South African Population. Clin. Nutr. ESPEN 2019, 32, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Sato, F.; Maeda, N.; Yamada, T.; Namazui, H.; Fukuda, S.; Natsukawa, T.; Nagao, H.; Murai, J.; Masuda, S.; Tanaka, Y.; et al. Association of Epicardial, Visceral, and Subcutaneous Fat with Cardiometabolic Diseases. Circ. J. 2018, 82, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Turer, A.T.; Ayers, C.R.; Powell-Wiley, T.M.; Vega, G.L.; Farzaneh-Far, R.; Grundy, S.M.; Khera, A.; McGuire, D.K.; de Lemos, J.A. Dysfunctional Adiposity and the Risk of Prediabetes and Type 2 Diabetes in Obese Adults. JAMA 2012, 308, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.-Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal Visceral and Subcutaneous Adipose Tissue Compartments: Association with Metabolic Risk Factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Recker, R.R.; Grote, J.; Horst, R.L.; Armas, L.A.G. Vitamin D(3) Is More Potent than Vitamin D(2) in Humans. J. Clin. Endocrinol. Metab. 2011, 96, E447–E452. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, D.A.; van Beek, J.; Ferwerda, H.; Brugman, A.M.; van der Klis, F.R.; van der Heiden, H.J.; Muskiet, F.A. Rat Adipose Tissue Rapidly Accumulates and Slowly Releases an Orally-Administered High Vitamin D Dose. Br. J. Nutr. 1998, 79, 527–532. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.G.; Van Diest, E.E.; Heaney, R.P. Volumetric Dilution, Rather than Sequestration Best Explains the Low Vitamin D Status of Obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef]
- Walsh, J.S.; Bowles, S.; Evans, A.L. Vitamin D in Obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Roizen, J.D.; Long, C.; Casella, A.; O’Lear, L.; Caplan, I.; Lai, M.; Sasson, I.; Singh, R.; Makowski, A.J.; Simmons, R.; et al. Obesity Decreases Hepatic 25-Hydroxylase Activity Causing Low Serum 25-Hydroxyvitamin D. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2019, 34, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Mutt, S.J.; Hyppönen, E.; Saarnio, J.; Järvelin, M.-R.; Herzig, K.-H. Vitamin D and Adipose Tissue-More than Storage. Front. Physiol. 2014, 5, 228. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.E.; Kong, J.; Zhang, W.; Szeto, F.L.; Ye, H.; Deb, D.K.; Brady, M.J.; Li, Y.C. Targeted Expression of Human Vitamin D Receptor in Adipocytes Decreases Energy Expenditure and Induces Obesity in Mice. J. Biol. Chem. 2011, 286, 33804–33810. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Norman, A.W.; Okamura, W.H.; Sen, A.; Zemel, M.B. 1alpha,25-Dihydroxyvitamin D3 Modulates Human Adipocyte Metabolism via Nongenomic Action. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2001, 15, 2751–2753. [Google Scholar] [CrossRef]
- Ionica, M.; Aburel, O.M.; Vaduva, A.; Petrus, A.; Rațiu, S.; Olariu, S.; Sturza, A.; Muntean, D.M. Vitamin D Alleviates Oxidative Stress in Adipose Tissue and Mesenteric Vessels from Obese Patients with Subclinical Inflammation. Can. J. Physiol. Pharmacol. 2020, 98, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Park, C.Y.; Kim, T.Y.; Yoo, J.S.; Seo, Y.; Pae, M.; Han, S.N. Effects of 1,25-Dihydroxyvitamin D3 on the Inflammatory Responses of Stromal Vascular Cells and Adipocytes from Lean and Obese Mice. Nutrients 2020, 12, 364. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. Role of Uncoupling Protein 2 (UCP2) Expression and 1alpha, 25-Dihydroxyvitamin D3 in Modulating Adipocyte Apoptosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2004, 18, 1430–1432. [Google Scholar] [CrossRef]
- Sergeev, I.N.; Song, Q. High Vitamin D and Calcium Intakes Reduce Diet-Induced Obesity in Mice by Increasing Adipose Tissue Apoptosis. Mol. Nutr. Food Res. 2014, 58, 1342–1348. [Google Scholar] [CrossRef]
Index | Formula | Reference |
---|---|---|
Body mass index (BMI) | BMI (kg/m2) = | WHO, 2000 [26] |
Waist-to-hip ratio (WHR) | WHO, 2008 [30] | |
Waist-to-height ratio (WHtR) | Ashwell; Lejeune; Mcpherson, 1996 [32] | |
Conicity index (CI) | CI = | Valdez, 1991 [31] |
Body adiposity index (BAI) | BAI (%) = | Bergman et al., 2011 [34] |
A body shape index (ABSI) | ABSI (m11/6 kg−2/3) = | Krakauer; Krakauer, 2012 [35] |
Clínica Universidad de Navarra—Body Adiposity Estimator (CUN-BAE) | CUN-BAE (%) = −44.988 + (0.503 × age (years)) + (10.689 × sex) + (3172 × BMI (kg/m2)) − (0.026 × BMI (kg/m2) 2) + (0.181 × BMI (kg/m2) × sex) − (0.02 × BMI (kg/m2) × age (years)) − (0.005 × BMI (kg/m2) 2 × sex) + (0.00021 × BMI (kg/m2) 2 × age (years)) Sex: female = 1 | Gómez-Ambrosi et al., 2012 [36] |
Belarmino–Waitzberg index (BeW) | Woman BeW (%) = −48.8 + 0.087 × WC (cm) + 1.147 × HC (cm) − 0.003 × HC (cm) 2 | Belarmino et al., 2018 [37] |
Visceral adiposity index (VAI) | Amato et al., 2010 [33] | |
Fat mass index (FMI) | FMI (kg/m2) = | Schutz; Kyle; Pichard, 2002 [38] |
Fat-to-muscle ratio (FMR) | Xu et al., 2018 [39] |
Index | Formula | Reference |
---|---|---|
Arm muscle circumference (AMC) | AMC (cm) = AC (cm) − (DCT (mm) × 0.3142) | Frisancho, 1974 [28] |
Arm muscle area (AMA) | AMA (cm2) = | Gurney; Jelliffe, 1973 [29] |
Fat-free mass index (FFMI) | Schutz; Kyle; Pichard, 2002 [38] | |
Muscle mass index adjusted by height2 (SMI height) | Baumgartner et al., 1998 [40] | |
Muscle mass index adjusted by weight (SMI weight) | Janssen; Heymsfield; Ross, 2002 [41] | |
Muscle mass index adjusted by BMI (SMI BMI) | Cawthon et al., 2014 [42] |
Vitamin D (25(OH)D) | Vitamin D (25(OH)D) | ||||||
---|---|---|---|---|---|---|---|
Sufficient (n = 45) | Insufficient (n = 55) | Deficient (n = 24) | p a | Adequate (n = 45) | Inadequate (n = 79) | p | |
25(OH)D (ng/mL) | 40.07 ± 8.24 b,c | 24.56 ± 2.68 b,d | 17.55 ± 1.60 c,d | <0.001 | 40.07 ± 8.24 | 22.43 ± 4.03 | <0.001 |
Age (years) | 33.78 ± 7.54 | 33.33 ± 6.50 | 36.33 ± 7.55 | 0.200 | 33.78 ± 7.54 | 34.24 ± 6.93 | 0.660 |
Weight (kg) | 63.07 ± 7.87 | 66.62 ± 13.47 | 65.36 ± 9.87 | 0.496 | 63.07 ± 7.87 | 66.24 ± 12.44 | 0.239 |
WC (cm) | 78.83 ± 7.02 | 81.89 ± 10.49 | 82.46 ± 8.88 | 0.249 | 78.83 ± 7.02 | 82.06 ± 9.97 | 0.114 |
HC (cm) | 99.63 ± 6.14 | 102.67 ± 9.45 | 101.52 ± 8.08 | 0.382 | 99.63 ± 6.14 | 102.31 ± 9.01 | 0.181 |
AC (cm) | 27.57 ± 2.43 | 27.32 ± 3.05 | 27.98 ± 2.67 | 0.607 | 27.56 ± 2.43 | 27.54 ± 2.93 | 0.900 |
TSF (mm) | 26.75 ± 6.71 | 27.45 ± 7.67 | 27.68 ± 6.99 | 0.918 | 26.75 ± 6.71 | 27.53 ± 7.39 | 0.680 |
AMC (cm) | 19.16 ± 1.22 | 18.70 ± 1.80 | 19.29 ± 1.48 | 0.166 | 19.16 ± 1.22 | 18.89 ± 1.71 | 0.256 |
AMA (cm2) | 29.34 ± 3.78 | 28.09 ± 5.54 | 29.78 ± 4.62 | 0.166 | 29.34 ± 3.78 | 28.65 ± 5.28 | 0.256 |
BMI (kg/m2) | 23.45 ± 2.85 | 24.80 ± 4.02 | 24.24 ± 3.03 | 0.284 | 23.44 ± 2.85 | 24.63 ± 3.73 | 0.115 |
WHR | 0.79 ± 0.05 | 0.80 ± 0.06 | 0.81 ± 0.06 | 0.307 | 0.79 ± 0.05 | 0.80 ± 0.06 | 0.302 |
CI | 1.17 ± 0.06 | 1.18 ± 0.07 | 1.20 ± 0.08 | 0.144 | 1.17 ± 0.58 | 1.19 ± 0.73 | 0.116 |
WHtR | 0.48 ± 0.05 b,c | 0.50 ± 0.06 b | 0.50 ± 0.05 c | 0.062 | 0.48 ± 0.05 | 0.50 ± 0.05 | 0.021 |
VAI | 1.26 ± 0.88 | 1.00 ± 0.46 | 1.50 ± 1.12 | 0.291 | 1.26 ± 0.88 | 1.14 ± 0.74 | 0.688 |
BAI (%) | 29.49 ± 3.44 b | 31.24 ± 3.86 b | 30.26 ± 3.60 | 0.034 | 29.49 ± 3.44 | 30.97 ± 3.78 | 0.019 |
ABSI (m11/6 kg−2/3) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.434 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.514 |
CUN-BAE (%) | 32.12 ± 4.36 | 33.95 ± 5.79 | 33.68 ± 4.68 | 0.192 | 32.12 ± 4.36 | 33.87 ± 5.45 | 0.074 |
BeW (%) | 42.45 ± 3.80 | 44.21 ± 5.72 | 43.71 ± 4.88 | 0.378 | 42.45 ± 3.80 | 44.06 ± 5.45 | 0.166 |
BF (kg) | 19.51 ± 6.13 | 22.31 ± 9.36 | 22.21 ± 6.59 | 0.336 | 19.51 ± 6.13 | 22.29 ± 8.58 | 0.202 |
FFM (kg) | 42.98 ± 4.31 | 43.12 ± 6.07 | 42.66 ± 4.73 | 0.984 | 42.98 ± 4.31 | 42.99 ± 5.67 | 0.958 |
SMM (kg) | 23.45 ± 2.55 | 23.30 ± 4.14 | 23.16 ± 2.77 | 0.974 | 23.45 ± 2.55 | 23.25 ± 3.77 | 0.890 |
% BF (%) | 30.73 ± 6.37 | 33.00 ± 7.53 | 33.69 ± 6.51 | 0.203 | 30.73 ± 6.37 | 33.20 ± 7.20 | 0.094 |
FMI (kg/m2) | 7.27 ± 2.34 | 8.33 ± 3.24 | 8.21 ± 2.45 | 0.270 | 7.27 ± 2.34 | 8.39 ± 3.01 | 0.132 |
FFMI (kg/m2) | 15.98 ± 1.25 | 16.17 ± 1.47 | 15.75 ± 1.16 | 0.511 | 15.98 ± 1.25 | 16.04 ± 1.39 | 0.692 |
FMR | 0.84 ± 0.26 | 0.95 ± 0.32 | 0.96 ± 0.28 | 0.166 | 0.84 ± 0.26 | 0.95 ± 0.30 | 0.065 |
SMI height (kg/m2) | 8.72 ± 0.76 | 8.73 ± 1.20 | 8.55 ± 0.71 | 0.522 | 8.72 ± 0.76 | 8.68 ± 1.08 | 0.846 |
SMI weight (%) | 37.78 ± 3.56 | 36.02 ± 4.69 | 35.97 ± 3.69 | 0.141 | 37.78 ± 3.56 | 36.01 ± 4.39 | 0.051 |
SMI BMI | 1.02 ± 0.13 b | 0.96 ± 0.15 b | 0.97 ± 0.12 | 0.106 | 1.02 ± 0.13 | 0.96 ± 0.14 | 0.039 |
Adequate Vitamin D | Inadequate Vitamin D | p * | |||
---|---|---|---|---|---|
BMI Normal Weight (n = 35) | BMI Overweight (n = 10) | BMI Normal Weight (n = 48) | BMI Overweight (n = 31) | ||
25(OH)D (ng/mL) | 40.89 ± 8.12 c,e | 37.17 ± 8.41 d,f | 22.66 ± 4.16 c,f | 22.08 ± 3.87 d,e | <0.001 |
Age (years) | 33.14 ± 7.52 | 36.00 ± 7.59 | 34.63 ± 6.62 | 33.65 ± 7.45 | 0.619 |
Weight (kg) | 60.79 ± 6.52 a,e | 71.03 ± 7.18 a,d,f | 58.60 ± 7.27 b,f | 78.07 ± 9.01 b,d,e | <0.001 |
WC (cm) | 76.03 ± 4.96 a,e | 88.65 ± 3.16 a,f | 76.33 ± 6.20 b,f | 90.94 ± 8.03 b,e | <0.001 |
HC (cm) | 97.77 ± 5.20 a,e | 106.15 ± 4.66 a,d,f | 96.59 ± 5.24 b,f | 111.00 ± 6.08 b,d,e | <0.001 |
AC (cm) | 26.79 ± 1.92 a,e | 30.56 ± 1.83 a,f | 26.23 ± 2.17 b,f | 30.76 ± 1.86 b,e | <0.001 |
TSF (mm) | 25.34 ± 6.37 a,e | 32.22 ± 5.24 a,f | 24.62 ± 6.02 b,f | 34.74 ± 5.27 b,e | <0.001 |
AMC (cm) | 18.83 ± 1.01 a,e | 20.44 ± 1.18 a,f | 18.50 ± 1.62 b,f | 19.86 ± 1.59 b,e | <0.001 |
AMA (cm2) | 28.30 ± 3.02 a,e | 33.35 ± 3.88 a,f | 27.47 ± 4.95 b,f | 31.58 ± 5.03 b,e | <0.001 |
BMI (kg/m2) | 22.20 ± 1.37 a,e | 27.80 ± 2.36 a,f | 22.15 ± 1.59 b,f | 28.46 ± 2.70 b,e | <0.001 |
WHR | 0.78 ± 0.05 a,e | 0.84 ± 0.04 a,f | 0.79 ± 0.05 b | 0.82 ± 0.06 b,e | 0.001 |
CI | 1.15 ± 0.05 a,e | 1.22 ± 0.05 a,f | 1.17 ± 0.06 b,f | 1.22 ± 0.08 b,e | <0.001 |
WHtR | 0.46 ± 0.03 a,c,e | 0.56 ± 0.03 a,f | 0.47 ± 0.03 b,c,f | 0.55 ± 0.05 b,e | <0.001 |
VAI | 1.08 ± 0.55 | 1.83 ± 1.41 | 1.02 ± 0.61 | 1.30 ± 0.86 | 0.142 |
BAI (%) | 28.04 ± 1.95 a,e | 34.58 ± 2.55 a,f | 28.86 ± 2.44 b,f | 34.17 ± 3.17 b,e | <0.001 |
ABSI (m11/6kg−2/3) | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.530 |
CUN-BAE (%) | 30.23 ± 2.27 a,e | 38.75 ± 3.30 a,f | 30.33 ± 2.93 b,f | 39.34 ± 3.59 b,e | <0.001 |
BeW (%) | 41.20 ± 3.15 a,e | 46.80 ± 2.44 a,d,f | 40.56 ± 3.34 b,f | 49.36 ± 3.29 b,d,e | <0.001 |
FM (kg) | 1768 ± 4.41 a,e | 27.10 ± 6.73 a,f | 17.33 ± 4.23 b,f | 31.72 ± 6.59 b,e | <0.001 |
AMC (kg) | 42.74 ± 4.55 e | 43.96 ± 3.18 | 41.33 ± 5.37 b | 46.15 ± 4.92 b,e | 0.005 |
SMM (kg) | 23.28 ± 2.68 e | 24.16 ± 1.91 | 22.14 ± 3.69b | 25.38 ± 2.96 b,e | 0.003 |
% BF (%) | 29.02 ± 5.39 a,e | 37.77 ± 5.40 a,f | 29.39 ± 5.18 b,f | 40.47 ± 4.32 b,e | <0.001 |
FMI (kg/m2) | 6.48 ± 1.49 a,e | 10.55 ± 2.44 a,f | 6.53 ± 1.40 b,f | 11.66 ± 2.28 b,e | <0.001 |
FFMI (kg/m2) | 15.70 ± 1.12 a,e | 17.15 ± 1.15 a,f | 15.58 ± 1.25 b,f | 16.94 ± 1.21 b,e | <0.001 |
FMR | 0.77 ± 0.21 a,e | 1.12 ± 0.25 a,f | 0.80 ± 0.20 b,f | 1.25 ± 0.23 b,e | <0.001 |
SMI height (kg/m2) | 8.55 ± 0.68 a,e | 9.42 ± 0.72 a,f | 8.35 ± 1.08 b,f | 9.31 ± 0.77 b,e | <0.001 |
SMI weight (%) | 38.64 ± 3.13 a,e | 34.19 ± 3.06 a,f | 37.74 ± 4.22 b,f | 32.71 ± 2.40 b,e | <0.001 |
SMI BMI | 1.05 ± 0.11 a,e | 0.88 ± 0.08 a,f | 1.00 ± 0.15 b,f | 0.89 ± 0.09 b,e | <0.001 |
Correlation (r) | p | |
---|---|---|
Age (years) | −0.068 | 0.451 |
Weight (kg) | −0.111 | 0.221 |
WC (cm) | −0.194 | 0.031 |
HC (cm) | −0.123 | 0.174 |
AC (cm) | −0.073 | 0.451 |
TSF (mm) | −0.132 | 0.170 |
AMC (cm) | 0.063 | 0.514 |
AMA (cm2) | 0.050 | 0.605 |
BMI (kg/m2) | −0.151 | 0.094 |
WHR | −0.175 | 0.053 |
CI | −0.207 | 0.021 |
WHtR | −0.218 | 0.015 |
VAI | −0.024 | 0.802 |
BAI (%) | −0.172 | 0.057 |
ABSI (m11/6 kg−2/3) | −0.093 | 0.304 |
CUN-BAE (%) | −0.161 | 0.073 |
BeW (%) | −0.132 | 0.145 |
FM (kg) | −0.189 | 0.063 |
FFM (kg) | 0.050 | 0.627 |
SMM (kg) | −0.044 | 0.666 |
% BF (%) | −0.214 | 0.035 |
FMI (kg/m2) | −0.210 | 0.039 |
FFMI (kg/m2) | −0.008 | 0.940 |
FMR | −0.226 | 0.026 |
SMI height (kg/m2) | −0.003 | 0.980 |
SMI weight (%) | 0.199 | 0.051 |
SMI BMI | 0.219 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, P.M.; Cruz, S.P.d.; Carneiro, O.A.; Teixeira, M.T.; Ramalho, A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients 2024, 16, 1267. https://doi.org/10.3390/nu16091267
Magalhães PM, Cruz SPd, Carneiro OA, Teixeira MT, Ramalho A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients. 2024; 16(9):1267. https://doi.org/10.3390/nu16091267
Chicago/Turabian StyleMagalhães, Paula Moreira, Sabrina Pereira da Cruz, Orion Araújo Carneiro, Michelle Teixeira Teixeira, and Andréa Ramalho. 2024. "Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age" Nutrients 16, no. 9: 1267. https://doi.org/10.3390/nu16091267
APA StyleMagalhães, P. M., Cruz, S. P. d., Carneiro, O. A., Teixeira, M. T., & Ramalho, A. (2024). Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients, 16(9), 1267. https://doi.org/10.3390/nu16091267