Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Functional Food Material
2.3. Study Participants
2.4. Intervention and Outcomes
2.5. Cognitrax Test
2.6. QOL Questionnaires
2.7. Sample Size
2.8. Selection, Randomization, and Blinding
2.9. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Cognitrax
3.3. OSA-MA Sleep Questionnaire
3.4. POMS-2 Questionnaire
3.5. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Bureau of Japan. The Elderly Population. 2023. Available online: https://www.stat.go.jp/data/topics/topi1321.html (accessed on 1 March 2023).
- UN. Department of Economic and Social Affairs. World Social Report 2023: Leaving No One behind in an Ageing World. Available online: https://digitallibrary.un.org/record/4000104?v=pdf (accessed on 18 March 2023).
- Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Dibello, V.; Di Lena, L.; D’Urso, F.; Stallone, R.; Petruzzi, M.; Giannelli, G.; et al. Different Cognitive Frailty Models and Health-and Cognitive-Related Outcomes in Older Age: From Epidemiology to Prevention. J. Alzheimer’s Dis. 2018, 62, 993–1012. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare, Japan. Fiscal 2009 Measures for the Aging Society. 2009. Available online: https://www8.cao.go.jp/kourei/whitepaper/w-2017/html/gaiyou/s1_2_3.html (accessed on 1 March 2023).
- World Health Organization. Dementia. 2023. Available online: https://www.who.int/en/news-room/fact-sheets/detail/dementia (accessed on 1 March 2023).
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a Central Mechanism in Alzheimer’s Disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and Cellular Mechanisms Underlying the Pathogenesis of Alzheimer’s Disease. Mol. Neurodegener. 2020, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthi, S.; Qin, L.; Reddy, P.H. Common Neurodegenerative Pathways in Obesity, Diabetes, and Alzheimer’s Disease. Biochim. Biophys. Acta—Mol. Basis Dis. 2017, 1863, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Więckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western Diet as a Trigger of Alzheimer’s Disease: From Metabolic Syndrome and Systemic Inflammation to Neuroinflammation and Neurodegeneration. Ageing Res. Rev. 2021, 70, 101397. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021, 13, 4080. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Barbagallo, M. Nutritional Prevention of Cognitive Decline and Dementia. Acta Biomed. 2018, 89, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Galland, L. The Gut Microbiome and the Brain. J. Med. Food 2014, 17, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef]
- Evrensel, A.; Ceylan, M.E. The Gut-Brain Axis: The Missing Link in Depression. Clin. Psychopharmacol. Neurosci. 2015, 13, 239–244. [Google Scholar] [CrossRef]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106–1126. [Google Scholar] [CrossRef] [PubMed]
- Jameson, K.G.; Olson, C.A.; Kazmi, S.A.; Hsiao, E.Y. Toward Understanding Microbiome-Neuronal Signaling. Mol. Cell 2020, 78, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Den, H.; Dong, X.; Chen, M.; Zou, Z. Efficacy of Probiotics on Cognition, and Biomarkers of Inflammation. Aging 2020, 12, 4010–4039. [Google Scholar] [CrossRef] [PubMed]
- Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The Role of Prebiotics in Cognition, Anxiety, and Depression. Eur. Neuropsychopharmacol. 2020, 34, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra E Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid. Med. Cell. Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; et al. Effect of Probiotic Bifidobacterium Breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2022, 88, 75–95. [Google Scholar] [CrossRef]
- Chunchai, T.; Thunapong, W.; Yasom, S.; Wanchai, K.; Eaimworawuthikul, S.; Metzler, G.; Lungkaphin, A.; Pongchaidecha, A.; Sirilun, S.; Chaiyasut, C.; et al. Decreased Microglial Activation Through Gut-Brain Axis by Prebiotics, Probiotics, or Synbiotics Effectively Restored Cognitive Function in Obese-Insulin Resistant Rats. J. Neuroinflamm. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain–Gut–Microbiome Axis. Biomolecules 2021, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Irwin, C.; McCartney, D.; Desbrow, B.; Khalesi, S. Effects of Probiotics and Paraprobiotics on Subjective and Objective Sleep Metrics: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2020, 74, 1536–1549. [Google Scholar] [CrossRef]
- Colombo, J.; Carlson, S.E.; Algarín, C.; Reyes, S.; Chichlowski, M.; Harris, C.L.; Wampler, J.L.; Peirano, P.; Berseth, C.L. Developmental Effects on Sleep–Wake Patterns in Infants Receiving a Cow’s Milk-Based Infant Formula with an Added Prebiotic Blend: A Randomized Controlled Trial. Pediatr. Res. 2021, 89, 1222–1231. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Mock, M.G.; Trexler, E.T.; Hirsch, K.R.; Blue, M.N.M. Influence of a Multistrain Probiotic on Body Composition and Mood in Female Occupational Shift Workers. Appl. Physiol. Nutr. Metab. 2019, 44, 765–773. [Google Scholar] [CrossRef]
- Yoon, S.J.; Chu, D.C.; Juneja, L.R. Chemical and Physical Properties, Safety and Application of Partially Hydrolized Guar Gum as Dietary Fiber. J. Clin. Biochem. Nutr. 2008, 42, 1–7. [Google Scholar] [CrossRef]
- Pylkas, A.M.; Juneja, L.R.; Slavin, J.L. Comparison of Different Fibers for In Vitro Production of Short Chain Fatty Acids by Intestinal Microflora. J. Med. Food 2005, 8, 113–116. [Google Scholar] [CrossRef]
- Velázquez, M.; Davies, C.; Marett, R.; Slavin, J.L.; Feirtag, J.M. Effect of Oligosaccharides and Fibre Substitutes on Short-Chain Fatty Acid Production by Human Faecal Microflora. Anaerobe 2000, 6, 87–92. [Google Scholar] [CrossRef]
- Van Hung, T.; Suzuki, T. Dietary Fermentable Fiber Reduces Intestinal Barrier Defects and Inflammation in Colitic Mice. J. Nutr. 2016, 146, 1970–1979. [Google Scholar] [CrossRef]
- Kajiwara-Kubtota, M.; Uchiyama, K.; Asaeda, K.; Kobayashi, R.; Hashimoto, H.; Yasuda, T.; Sugino, S.; Sugaya, T.; Hirai, Y.; Mizushima, K.; et al. Partially Hydrolyzed Guar Gum Increased Colonic Mucus Layer in Mice via Succinate-Mediated MUC2 Production. NPJ Sci. Food 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Sugita, M.; Fukuzawa, Y.; Okubo, T. Impact of Partially Hydrolyzed Guar Gum (PHGG) on Constipation Prevention: A Systematic Review and Meta-Analysis. J. Funct. Foods 2017, 33, 52–66. [Google Scholar] [CrossRef]
- Russo, L.; Andreozzi, P.; Zito, F.P.; Vozzella, L.; Savino, I.G.; Sarnelli, G.; Cuomo, R. Partially Hydrolyzed Guar Gum in the Treatment of Irritable Bowel Syndrome with Constipation: Effects of Gender, Age, and Body Mass Index. Saudi J. Gastroenterol. 2015, 21, 104–110. [Google Scholar] [CrossRef]
- Alam, N.H.; Ashraf, H.; Kamruzzaman, M.; Ahmed, T.; Islam, S.; Olesen, M.K.; Gyr, N.; Meier, R. Efficacy of Partially Hydrolyzed Guar Gum (PHGG) Supplemented Modified Oral Rehydration Solution in the Treatment of Severely Malnourished Children with Watery Diarrhoea: A Randomised Double-Blind Controlled Trial. J. Health Popul. Nutr. 2015, 34, 3. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Koido, M.; Kawaguchi, M.; Timm, D.; Ozeki, M.; Yamada, M.; Mitsuya, T.; Okubo, T. Lifestyle Related Changes with Partially Hydrolyzed Guar Gum Dietary Fiber in Healthy Athlete Individuals—A Randomized, Double-Blind, Crossover, Placebo-Controlled Gut Microbiome Clinical Study. J. Funct. Foods 2020, 72, 104067. [Google Scholar] [CrossRef]
- Abe, A.; Morishima, S.; Kapoor, M.P.; Inoue, R.; Tsukahara, T.; Naito, Y.; Ozeki, M. Partially Hydrolyzed Guar Gum Is Associated with Improvement in Gut Health, Sleep, and Motivation among Healthy Subjects. J. Clin. Biochem. Nutr. 2023, 72, 189–197. [Google Scholar] [CrossRef]
- Ideno, Y.; Takayama, M.; Hayashi, K.; Takagi, H.; Sugai, Y. Evaluation of a Japanese Version of the Mini-Mental State Examination in Elderly Persons. Geriatr. Gerontol. Int. 2012, 12, 310–316. [Google Scholar] [CrossRef]
- Trial, P.; Shi, S.; Zhang, Q.; Sang, Y.; Ge, S.; Wang, Q.; Wang, R.; He, J. Probiotic Bifidobacterium Longum BB68S Improves Cognitive. Nutrients 2023, 15, 51. [Google Scholar]
- Health Solution, Inc. Cognitrax. Measure and Monitor Brain Performance. Available online: http://www.cognitrax.jp (accessed on 1 March 2023).
- CNS Vital Signs LLC. CNS Vital Signs® Interpretation Guide. 2019. Available online: https://www.cnsvs.com/WhitePapers/CNSVS-BriefInterpretationGuide.pdf (accessed on 1 March 2023).
- Yamamoto, Y.; Tanaka, H.; Takase, H.; Shirakawa, M. Standardization of Revised Version of OSA Sleep Inventory for Middle Age and Aged. Brain Sci. Ment. Disord. 1999, 10, 401–409. [Google Scholar]
- Heuchert, J.; Douglas, M.; McNair, P.D. POMS 2®—Profile of Mood States Second Edition®|Multi Health Systems (MHS Inc.). Available online: https://storefront.mhs.com/collections/poms-2 (accessed on 1 March 2023).
- Ohashi, Y.; Sumitani, K.; Tokunaga, M.; Ishihara, N.; Okubo, T.; Fujisawa, T. Consumption of Partially Hydrolysed Guar Gum Stimulates Bifidobacteria and Butyrate-Producing Bacteria in the Human Large Intestine. Benef. Microbes 2015, 6, 451–455. [Google Scholar] [CrossRef]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- Sakai, S.; Kamada, Y.; Takano, H.; Ichikawa, M.; Kurimoto, M.; Katsuyama, H.K.; Nishihara, J.; Sasai, M. Continuous Partially Hydrolyzed Guar Gum Intake Reduces Cold-like Symptoms: A Randomized, Placebo-Controlled, Double-Blinded Trial in Healthy Adults. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5154–5163. [Google Scholar] [CrossRef]
- Chan, T.C.; Yu, V.M.W.; Luk, J.K.H.; Chu, L.W.; Yuen, J.K.Y.; Chan, F.H.W. Effectiveness of Partially Hydrolyzed Guar Gum in Reducing Constipation in Long Term Care Facility Residents: A Randomized Single-Blinded Placebo-Controlled Trial. J. Nutr. Health Aging 2022, 26, 247–251. [Google Scholar] [CrossRef]
- Polymeros, D.; Beintaris, I.; Gaglia, A.; Karamanolis, G.; Papanikolaou, I.S.; Dimitriadis, G.; Triantafyllou, K. Partially Hydrolyzed Guar Gum Accelerates Colonic Transit Time and Improves Symptoms in Adults with Chronic Constipation. Dig. Dis. Sci. 2014, 59, 2207–2214. [Google Scholar] [CrossRef]
- Rushdi, T.A.; Pichard, C.; Khater, Y.H. Control of Diarrhea by Fiber-Enriched Diet in ICU Patients on Enteral Nutrition: A Prospective Randomized Controlled Trial. Clin. Nutr. 2004, 23, 1344–1352. [Google Scholar] [CrossRef]
- Miyoshi, M.; Kadoguchi, H.; Usami, M.; Hori, Y. Synbiotics Improved Stool Form via Changes in the Microbiota and Short-Chain Fatty Acids in Hemodialysis Patients. Kobe J. Med. Sci 2021, 67, 112–118. [Google Scholar]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The Role of Short-Chain Fatty Acids in Microbiota–Gut–Brain Communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 121, ISBN 9780128001004. [Google Scholar]
- Zheng, J.; Xie, Y.; Ren, L.; Qi, L.; Wu, L.; Pan, X.; Zhou, J.; Chen, Z.; Liu, L. GLP-1 Improves the Supportive Ability of Astrocytes to Neurons by Promoting Aerobic Glycolysis in Alzheimer’s Disease. Mol. Metab. 2021, 47, 101180. [Google Scholar] [CrossRef]
- Skibicka, K.P.; Dickson, S.L. Enteroendocrine Hormones—Central Effects on Behavior. Curr. Opin. Pharmacol. 2013, 13, 977–982. [Google Scholar] [CrossRef]
- Van Hung, T.; Suzuki, T. Dietary Fermentable Fibers Attenuate Chronic Kidney Disease in Mice by Protecting the Intestinal Barrier. J. Nutr. 2018, 148, 552–561. [Google Scholar] [CrossRef]
- Takayama, S.; Katada, K.; Takagi, T.; Iida, T.; Ueda, T.; Mizushima, K.; Higashimura, Y.; Morita, M.; Okayama, T.; Kamada, K.; et al. Partially Hydrolyzed Guar Gum Attenuates Non-Alcoholic Fatty Liver Disease in Mice through the Gut-Liver Axis. World J. Gastroenterol. 2021, 27, 2160–2176. [Google Scholar] [CrossRef]
- Sakakida, T.; Ishikawa, T.; Doi, T.; Morita, R.; Endo, Y.; Matsumura, S.; Ota, T.; Yoshida, J.; Hirai, Y.; Mizushima, K.; et al. Water-soluble Dietary Fiber Alleviates Cancer-induced Muscle Wasting through Changes in Gut Microenvironment in Mice. Cancer Sci. 2022, 113, 1789–1800. [Google Scholar] [CrossRef]
- Okamura, T.; Hamaguchi, M.; Mori, J.; Yamaguchi, M.; Mizushima, K.; Abe, A.; Ozeki, M.; Sasano, R.; Naito, Y.; Fukui, M. Partially Hydrolyzed Guar Gum Suppresses the Development of Sarcopenic Obesity. Nutrients 2022, 14, 1157. [Google Scholar] [CrossRef]
- Kono, G.; Yoshida, K.; Kokubo, E.; Ikeda, M.; Matsubara, T.; Koyama, T.; Iwamoto, H.; Miyaji, K. Fermentation Supernatant of Elderly Feces with Inulin and Partially Hydrolyzed Guar Gum Maintains the Barrier of Inflammation-Induced Caco-2/HT29-MTX-E12 Co-Cultured Cells. J. Agric. Food Chem. 2023, 71, 1510–1517. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, M.; Zhong, Y.; Gao, T.; Zhang, Y.; Yan, F.; Huang, D. Partially Hydrolyzed Guar Gum Modulates Gut Microbiota, Regulates the Levels of Neurotransmitters, and Prevents CUMS-Induced Depressive-like Behavior in Mice. Mol. Nutr. Food Res. 2021, 65, e2100146. [Google Scholar] [CrossRef]
- Liu, X.; Wu, C.; Han, D.; Liu, J.; Liu, H.; Jiang, Z. Partially Hydrolyzed Guar Gum Attenuates D-Galactose-Induced Oxidative Stress and Restores Gut Microbiota in Rats. Int. J. Mol. Sci. 2019, 20, 4861. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- González-Burgos, I.; Feria-Velasco, A. Serotonin/Dopamine Interaction in Memory Formation. Prog. Brain Res. 2008, 172, 603–623. [Google Scholar] [CrossRef]
- Monti, J.M.; Jantos, H. The Roles of Dopamine and Serotonin, and of Their Receptors, in Regulating Sleep and Waking. Prog. Brain Res. 2008, 172, 625–646. [Google Scholar] [CrossRef]
- Westbrook, A.; Braver, T.S. Dopamine Does Double Duty in Motivating Cognitive Effort. Neuron 2016, 89, 695–710. [Google Scholar] [CrossRef]
- Bromberg-Martin, E.S.; Matsumoto, M.; Hikosaka, O. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron 2010, 68, 815–834. [Google Scholar] [CrossRef]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef]
- Oda, Y. Choline Acetyltransferase: The Structure, Distribution and Pathologic Changes in the Central Nervous System. Pathol. Int. 1999, 49, 921–937. [Google Scholar] [CrossRef] [PubMed]
Placebo | PHGG | p-Value | |
---|---|---|---|
(n = 31) | (n = 30) | ||
Gender (Male/Female) | 16/15 | 15/15 | >0.999 |
Age (years) | 68.1 ± 7.2 | 66.8 ± 6.1 | 0.453 |
Height (cm) | 163.2 ± 8.4 | 160.5 ± 9.0 | 0.231 |
Weight (kg) | 62.1 ± 14.1 | 59.5 ± 11.7 | 0.452 |
Body fat (%) | 26.1 ± 8.1 | 26.6 ± 7.4 | 0.778 |
Body Mass Index (kg/m2) | 23.1 ± 4.1 | 22.9 ± 3.1 | 0.832 |
Systolic blood pressure (mmHg) | 132.2 ± 17.3 | 132.8 ± 17.2 | 0.892 |
Diastolic blood pressure (mmHg) | 83.1 ± 11.7 | 83.4 ± 11.5 | 0.910 |
MMSE score | 28.7 ± 1.4 | 28.9 ± 1.2 | 0.575 |
Baseline | Week 8 | Week 12 | Change from Baseline | |||
---|---|---|---|---|---|---|
Week 8 | Week 12 | |||||
Neurpcognition index (NCI) | Placebo (n = 31) | 89.5 ± 16.5 | 93.8 ± 17.9 # | 100.9 ± 11.1 ## | 4.3 ± 12.7 | 11.3 ± 12.4 |
PHGG (n = 30) | 98.1 ± 16.4 | 103.4 ± 11.5 ## | 105.4 ± 11.2 ## | 5.3 ± 8.9 | 7.4 ± 10.0 | |
p-value | 0.048 * | 0.131 | 0.878 | 0.131 | 0.878 | |
Composite memory | Placebo (n = 31) | 87.6 ± 21.4 | 93.6 ± 18.3 | 96.5 ± 17.4 ## | 6.0 ± 18.4 | 8.8 ± 20.0 |
PHGG (n = 30) | 94.3 ± 19.9 | 97.9 ± 17.0 | 102.9 ± 16.9 ## | 3.6 ± 15.0 | 8.6 ± 15.2 | |
p-value | 0.211 | 0.835 | 0.369 | 0.835 | 0.369 | |
Verbal memory | Placebo (n = 31) | 86.5 ± 23.9 | 95.1 ± 22.8 # | 103.5 ± 19.0 ## | 8.5 ± 23.6 | 17.0 ± 25.4 |
PHGG (n = 30) | 94.4 ± 23.2 | 98.8 ± 20.7 | 105.8 ± 19.0 ## | 4.5 ± 16.8 | 11.4 ± 16.3 | |
p-value | 0.198 | 0.903 | 0.826 | 0.903 | 0.826 | |
Visual memory | Placebo (n = 31) | 93.1 ± 17.9 | 95.0 ± 13.4 | 90.5 ± 15.4 | 1.9 ± 16.3 | −2.7 ± 17.3 |
PHGG (n = 30) | 96.5 ± 13.7 | 98.1 ± 13.1 | 99.6 ± 15.8 | 1.6 ± 13.9 | 3.1± 16.7 | |
p-value | 0.417 | 0.597 | 0.023 * | 0.597 | 0.023 * | |
Psychomotor speed | Placebo (n = 31) | 87.1 ± 32.9 | 96.5 ±24.1 # | 105.1 ± 17.1 ## | 9.4 ± 28.1 | 18.0 ± 27.8 |
PHGG (n = 30) | 101.4 ± 23.9 | 107.9 ± 16.9 # | 109.6 ± 15.1 # | 6.5 ± 21.2 | 8.2 ± 17.7 | |
p-value | 0.057 | 0.159 | 0.970 | 0.159 | 0.970 | |
Reaction time | Placebo (n = 31) | 101.8 ± 28.9 | 95.8 ± 22.5 | 100.7 ± 21.4 | −6.0 ± 24.8 | −1.1 ± 18.4 |
PHGG (n = 30) | 96.3 ± 16.5 | 101.4 ± 20.6 | 104.5 ± 18.7 # | 5.1 ± 16.0 | 8.2 ± 20.8 | |
p-value | 0.364 | 0.056 | 0.133 | 0.056 | 0.133 | |
Complex attention | Placebo (n = 31) | 81.5 ± 40.4 | 85.4 ± 52.8 | 100.1 ± 23.4 # | 3.9 ± 48.4 | 18.6 ± 27.6 |
PHGG (n = 30) | 99.5± 26.5 | 106.6 ± 13.7 | 105.2 ± 24.4 | 7.0 ± 23.3 | 5.7 ± 26.8 | |
p-value | 0.043 * | 0.117 | 0.729 | 0.117 | 0.729 | |
Cognitive flexibility | Placebo (n = 31) | 89.9 ± 16.8 | 97.9 ± 15.6 ## | 101.9 ± 13.8 ## | 8.0 ± 17.3 | 12.0 ± 16.9 |
PHGG (n = 30) | 98.6 ± 18.2 | 103.2 ± 14.2 # | 104.8 ± 14.8 ## | 4.6 ± 11.6 | 6.1 ± 11.6 | |
p-value | 0.057 | 0.769 | 0.654 | 0.769 | 0.654 | |
Processing speed | Placebo (n = 31) | 106.7 ± 14.2 | 107.6 ± 14.5 | 112.0 ± 11.9 ## | 0.9 ± 8.7 | 5.3 ± 9.1 |
PHGG (n = 30) | 111.3 ± 12.3 | 111.9 ± 15.5 | 115.9 ± 14.0 ## | 0.6 ± 8.7 | 4.6 ± 7.5 | |
p-value | 0.185 | 0.986 | 0.874 | 0.986 | 0.874 | |
Executive function | Placebo (n = 31) | 91.7 ± 15.7 | 98.3 ± 14.2 # | 102.8 ± 12.3 ## | 6.5 ± 16.2 | 11.1 ± 15.8 |
PHGG (n = 30) | 98.2 ± 18.3 | 103.0 ± 14.5 ## | 104.4 ± 15.2 ## | 4.9 ± 11.2 | 6.3 ± 11.4 | |
p-value | 0.147 | 0.619 | 0.579 | 0.619 | 0.579 | |
Social acuity | Placebo (n = 31) | 79.3 ± 26.4 | 88.5 ± 19.1 # | 89.7 ± 22.0 # | 9.3 ± 28.0 | 10.5 ± 25.5 |
PHGG (n = 30) | 91.0 ± 23.7 | 92.0 ± 21.5 | 91.6 ± 20.3 | 1.0 ± 21.7 | 0.6 ± 22.2 | |
p-value | 0.073 | 0.939 | 0.571 | 0.939 | 0.571 | |
Reasoning | Placebo (n = 31) | 91.6 ± 14.4 | 100.6 ± 12.2 ## | 97.7 ± 15.7 | 9.0 ± 15.9 | 6.1 ± 22.1 |
PHGG (n = 30) | 99.7±15.4 | 98.5 ± 16.8 | 97.4 ± 18.9 | −1.2 ± 19.3 | −2.3 ± 19.0 | |
p-value | 0.038 * | 0.293 | 0.624 | 0.293 | 0.624 | |
Working memory | Placebo (n = 31) | 103.8 ± 13.4 | 102.8 ± 17.2 | 106.3 ± 15.6 | −0.9 ± 18.1 | 2.5 ± 13.6 |
PHGG (n = 30) | 108.9 ± 11.5 | 110.6 ± 13.7 | 107.9 ± 12.7 | 1.8 ± 10.0 | −0.9 ± 12.4 | |
p-value | 0.117 | 0.159 | 0.674 | 0.159 | 0.674 | |
Sustained attention | Placebo (n = 31) | 100.2 ± 20.7 | 100.0 ± 21.8 | 105.8 ± 20.9 | −0.2 ± 17.2 | 5.6 ± 18.6 |
PHGG (n = 30) | 109.9 ± 17.0 | 109.9 ± 15.9 | 110.5 ± 10.3 | 0.1 ± 16.4 | 0.6 ± 17.0 | |
p-value | 0.051 | 0.316 | 0.907 | 0.316 | 0.907 | |
Simple attention | Placebo (n = 31) | 38.0 ± 170.2 | 14.6 ± 230.2 | 76.9 ± 88.7 | −23.4 ± 269.0 | 38.9 ± 152.5 |
PHGG (n = 30) | 84.8 ± 100.9 | 99.7 ± 16.5 | 88.2 ± 68.6 | 14.8 ± 97.9 | 3.4 ± 122.9 | |
p-value | 0.196 | 0.020 * | 0.923 | 0.020 * | 0.923 | |
Motor speed | Placebo (n = 31) | 78.6 ± 39.9 | 90.3 ± 26.4 # | 99.3 ± 17.6 ## | 11.7 ± 37.4 | 20.6 ± 37.6 |
PHGG (n = 30) | 94.5 ± 27.9 | 103.0 ± 15.7 # | 102.3 ± 15.0 | 8.5 ± 27.5 | 7.7 ± 22.7 | |
p-value | 0.076 | 0.064 | 0.960 | 0.064 | 0.960 |
Baseline | Week 8 | Week 12 | Change from Baseline | |||
---|---|---|---|---|---|---|
Week 8 | Week 12 | |||||
Sleepiness on rising | Placebo (n = 30) | 20.2 ± 6.7 | 19.6 ± 6.0 | 19.9 ± 6.6 | −0.6 ± 3.9 | −0.3 ± 4.1 |
PHGG (n = 31) | 18.4 ± 4.6 | 20.1 ± 4.4 ## | 20.0 ± 4.2 ## | 1.8 ± 3.6 | 1.7 ± 3.5 | |
p-value | 0.204 | 0.043 * | 0.096 | 0.043 * | 0.096 | |
Initiation and maintenance of sleep | Placebo (n = 30) | 17.9 ± 6.0 | 17.5 ± 5.8 | 18.6 ± 5.4 | −0.4 ± 5.0 | 0.7 ± 4.2 |
PHGG (n = 31) | 17.0 ± 5.3 | 18.6 ± 4.9 # | 19.2 ± 5.1 ## | 1.6 ± 4.2 | 2.2 ± 5.0 | |
p-value | 0.518 | 0.124 | 0.286 | 0.124 | 0.286 | |
Frequent dreaming | Placebo (n = 30) | 23.1 ± 7.0 | 21.8 ± 6.2 | 22.8 ± 5.9 | −1.2 ± 4.3 | −0.3 ± 5.5 |
PHGG (n = 31) | 22.3 ± 6.1 | 22.8 ± 5.4 | 22.7 ± 6.0 | 0.5 ± 5.3 | 0.4 ± 4.6 | |
p-value | 0.644 | 0.194 | 0.761 | 0.194 | 0.761 | |
Refreshing | Placebo (n = 30) | 20.6 ± 6.6 | 21.6 ± 6.4 | 20.9 ± 6.6 | 1.0 ± 5.3 | 0.3 ± 5.3 |
PHGG (n = 31) | 19.7 ± 5.2 | 20.3 ± 4.9 | 20.9 ± 4.8 | 0.7 ± 3.7 | 1.2 ± 4.5 | |
p-value | 0.547 | 0.551 | 0.646 | 0.551 | 0.646 | |
Sleep length | Placebo (n = 30) | 20.7 ± 5.9 | 19.0 ± 6.4 | 18.8 ± 6.4 | −1.7 ± 5.8 | −2.0 ± 6.5 |
PHGG (n = 31) | 19.8 ± 4.4 | 19.7 ± 4.0 | 20.0 ± 4.6 | −0.1 ± 4.2 | 0.3 ± 4.5 | |
p-value | 0.474 | 0.339 | 0.169 | 0.339 | 0.169 |
Baseline | Week 8 | Week 12 | Change from Baseline | |||
---|---|---|---|---|---|---|
Week 8 | Week 12 | |||||
Total Mood Disturbance | Placebo (n = 31) | 42.8 ± 6.2 | 43.2 ± 7.0 | 43.4 ± 7.0 | 0.4 ± 3.6 | 0.6 ± 3.2 |
PHGG (n = 30) | 43.3 ± 6.7 | 42.6 ± 6.0 | 42.4 ± 7.2 | −0.8 ± 3.4 | −0.9 ± 4.1 | |
p-value | 0.737 | 0.226 | 0.099 | 0.226 | 0.099 | |
Anger-Hostility | Placebo (n = 31) | 44.5 ± 6.3 | 44.6 ± 6.8 | 44.8 ± 6.8 | 0.1 ± 4.5 | 0.3 ± 4.2 |
PHGG (n = 30) | 43.2 ± 4.8 | 43.2 ± 4.8 | 42.8 ± 6.0 | 0.1 ± 3.4 | −0.3 ± 4.6 | |
p-value | 0.351 | 0.792 | 0.459 | 0.792 | 0.459 | |
Confusion-Bewilderment | Placebo (n = 31) | 45.6 ± 7.2 | 46.1 ± 7.8 | 45.5 ± 7.6 | 0.4 ± 5.0 | −0.2 ± 4.1 |
PHGG (n = 30) | 47.4 ± 8.3 | 45.7 ± 7.0 | 45.2 ± 7.7 # | −1.8 ± 5.1 | −2.3 ± 5.1 | |
p-value | 0.370 | 0.142 | 0.141 | 0.142 | 0.141 | |
Depression-Dejection | Placebo (n = 31) | 45.7 ± 5.4 | 45.3 ± 5.1 | 45.7 ± 5.2 | −0.4 ± 3.1 | 0.0 ± 3.0 |
PHGG (n = 30) | 45.0 ± 4.4 | 44.8 ± 4.1 | 44.5 ± 4.5 | −0.3 ± 3.7 | −0.6 ± 3.1 | |
p-value | 0.611 | 0.959 | 0.368 | 0.959 | 0.368 | |
Fatigue-Inertia | Placebo (n = 31) | 41.4 ± 5.0 | 42.5 ± 6.5 | 42.7 ± 6.4 | 1.1 ± 5.2 | 1.3 ± 5.0 |
PHGG (n = 30) | 43.2 ± 7.7 | 43.2 ± 6.2 | 42.4 ± 7.8 | 0.1 ± 4.9 | −0.8 ± 4.6 | |
p-value | 0.301 | 0.725 | 0.134 | 0.725 | 0.134 | |
Tension-Anxiety | Placebo (n = 31) | 44.2 ± 6.1 | 44.7 ± 6.9 | 44.9 ± 7.9 | 0.5 ± 4.4 | 0.7 ± 4.5 |
PHGG (n = 30) | 43.7 ± 7.3 | 44.1 ± 7.4 | 43.9 ± 7.9 | 0.4 ± 5.0 | 0.2 ± 5.3 | |
p-value | 0.777 | 0.825 | 0.654 | 0.825 | 0.654 | |
Vigor-Activity | Placebo (n = 31) | 57.1 ± 9.9 | 56.4 ± 9.6 | 56.4 ± 9.0 | −0.8 ± 6.4 | −0.7 ± 5.2 |
PHGG (n = 30) | 54.7 ± 10.7 | 57.1 ± 9.8 # | 55.3 ± 10.4 | 2.4 ± 6.2 | 0.6 ± 6.4 | |
p-value | 0.369 | 0.080 | 0.569 | 0.080 | 0.569 | |
Friendship | Placebo (n = 31) | 59.7 ± 8.6 | 59.8 ± 9.6 | 59.3 ± 8.6 | 0.1 ± 7.1 | −0.5 ± 6.5 |
PHGG (n = 30) | 57.8 ± 9.5 | 58.1 ± 8.5 | 58.0 ± 10.0 | 0.3 ± 6.6 | 0.2 ± 8.6 | |
p-value | 0.415 | 0.827 | 0.999 | 0.827 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, A.; Kapoor, M.P.; Morishima, S.; Ozeki, M.; Sato, N.; Takara, T.; Naito, Y. Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients 2024, 16, 1211. https://doi.org/10.3390/nu16081211
Abe A, Kapoor MP, Morishima S, Ozeki M, Sato N, Takara T, Naito Y. Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients. 2024; 16(8):1211. https://doi.org/10.3390/nu16081211
Chicago/Turabian StyleAbe, Aya, Mahendra Parkash Kapoor, So Morishima, Makoto Ozeki, Norio Sato, Tsuyoshi Takara, and Yuji Naito. 2024. "Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study" Nutrients 16, no. 8: 1211. https://doi.org/10.3390/nu16081211
APA StyleAbe, A., Kapoor, M. P., Morishima, S., Ozeki, M., Sato, N., Takara, T., & Naito, Y. (2024). Effectiveness of Partially Hydrolyzed Guar Gum on Cognitive Function and Sleep Efficiency in Healthy Elderly Subjects in a Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients, 16(8), 1211. https://doi.org/10.3390/nu16081211