Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Data Extraction
3. Results
3.1. Study Selection
3.2. Characteristics of Studies Investigating Maternal Outcomes
3.2.1. Gestational Diabetes Mellitus
3.2.2. Other Maternal Outcomes
3.3. Characteristics of Studies Investigating Neonatal Outcomes
3.3.1. Anthropometric Measures
3.3.2. Preterm Birth
3.3.3. Abnormal Embryonic Development
3.3.4. Other Neonatal Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barchitta, M.; Magnano San Lio, R.; La Rosa, M.C.; La Mastra, C.; Favara, G.; Ferrante, G.; Galvani, F.; Pappalardo, E.; Ettore, C.; Ettore, G.; et al. The Effect of Maternal Dietary Patterns on Birth Weight for Gestational Age: Findings from the MAMI-MED Cohort. Nutrients 2023, 15, 1922. [Google Scholar] [CrossRef] [PubMed]
- Montagnoli, C.; Santoro, C.B.; Buzzi, T.; Bortolus, R. Maternal periconceptional nutrition matters. A scoping review of the current literature. J. Matern. Fetal Neonatal Med. 2022, 35, 8123–8140. [Google Scholar] [CrossRef] [PubMed]
- Paknahad, Z.; Fallah, A.; Moravejolahkami, A.R. Maternal Dietary Patterns and Their Association with Pregnancy Outcomes. Clin. Nutr. Res. 2019, 8, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Grant, F.; Goldenberg, T.; Zongrone, A.; Martorell, R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. S1), 285–301. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Nagaie, S.; Tamiya, G.; Kuriyama, S.; Obara, T.; Ishikuro, M.; Tanaka, H.; Kinoshita, K.; Sugawara, J.; Yamamoto, M.; et al. Establishment of the early prediction models of low-birth-weight reveals influential genetic and environmental factors: A prospective cohort study. BMC Pregnancy Childbirth 2023, 23, 628. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Lowensohn, R.I.; Stadler, D.D.; Naze, C. Current Concepts of Maternal Nutrition. Obstet. Gynecol. Surv. 2016, 71, 413–426. [Google Scholar] [CrossRef]
- Ji, J.L.; Muyayalo, K.P.; Zhang, Y.H.; Hu, X.H.; Liao, A.H. Immunological function of vitamin D during human pregnancy. Am. J. Reprod. Immunol. 2017, 78, e12716. [Google Scholar] [CrossRef]
- Kiely, M.; Hemmingway, A.; O’Callaghan, K.M. Vitamin D in pregnancy: Current perspectives and future directions. Ther. Adv. Musculoskelet. Dis. 2017, 9, 145–154. [Google Scholar] [CrossRef]
- Talaulikar, V.S.; Arulkumaran, S. Folic acid in obstetric practice: A review. Obstet. Gynecol. Surv. 2011, 66, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Lassi, Z.S.; Salam, R.A.; Haider, B.A.; Bhutta, Z.A. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst. Rev. 2013, 2013, CD006896. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sata, F.; Kishi, R. Gene-environment interactions related to maternal exposure to environmental and lifestyle-related chemicals during pregnancy and the resulting adverse fetal growth: A review. Environ. Health Prev. Med. 2022, 27, 24. [Google Scholar] [CrossRef] [PubMed]
- Englund-Ögge, L.; Brantsæter, A.L.; Juodakis, J.; Haugen, M.; Meltzer, H.M.; Jacobsson, B.; Sengpiel, V. Associations between maternal dietary patterns and infant birth weight, small and large for gestational age in the Norwegian Mother and Child Cohort Study. Eur. J. Clin. Nutr. 2019, 73, 1270–1282. [Google Scholar] [CrossRef] [PubMed]
- Zinck, J.W.; de Groh, M.; MacFarlane, A.J. Genetic modifiers of folate, vitamin B-12, and homocysteine status in a cross-sectional study of the Canadian population. Am. J. Clin. Nutr. 2015, 101, 1295–1304. [Google Scholar] [CrossRef]
- Hobbs, C.A.; Cleves, M.A.; Karim, M.A.; Zhao, W.; MacLeod, S.L. Maternal folate-related gene environment interactions and congenital heart defects. Obstet. Gynecol. 2010, 116, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, D.D.; Patel, S.; Rajbhar, S.; Padhi, P.; Shah, S.; Nanda, R.; Mohapatra, E. Association of Methylenetetrahydrofolate Reductase Gene Polymorphism in Mothers With Adverse Clinical Outcomes in Neonates. Cureus 2023, 15, e38001. [Google Scholar] [CrossRef] [PubMed]
- Javorski, N.; Lima, C.A.D.; Silva, L.V.C.; Crovella, S.; de Azêvedo Silva, J. Vitamin D receptor (VDR) polymorphisms are associated to spontaneous preterm birth and maternal aspects. Gene 2018, 642, 58–63. [Google Scholar] [CrossRef]
- Workalemahu, T.; Badon, S.E.; Dishi-Galitzky, M.; Qiu, C.; Williams, M.A.; Sorensen, T.; Enquobahrie, D.A. Placental genetic variations in vitamin D metabolism and birthweight. Placenta 2017, 50, 78–83. [Google Scholar] [CrossRef]
- Arshad, R.; Sameen, A.; Murtaza, M.A.; Sharif, H.R.; Iahtisham-Ul-Haq; Dawood, S.; Ahmed, Z.; Nemat, A.; Manzoor, M.F. Impact of vitamin D on maternal and fetal health: A review. Food Sci. Nutr. 2022, 10, 3230–3240. [Google Scholar] [CrossRef]
- Bulloch, R.E.; Wall, C.R.; McCowan, L.M.E.; Taylor, R.S.; Roberts, C.T.; Thompson, J.M.D. The Effect of Interactions between Folic Acid Supplementation and One Carbon Metabolism Gene Variants on Small-for-Gestational-Age Births in the Screening for Pregnancy Endpoints (SCOPE) Cohort Study. Nutrients 2020, 12, 1677. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.M.; Olshan, A.F.; Siega-Riz, A.M.; Savitz, D.A.; Chanock, S.J. Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and small-for-gestational age birth. Am. J. Obstet. Gynecol. 2006, 195, 1231.e1–1231.e11. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Duan, Y.; Jiang, S.; Bi, Y.; Pang, X.; Liu, C.; Yang, Z.; Lai, J. Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China. Nutrients 2022, 14, 2108. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Popova, P.V.; Klyushina, A.A.; Vasilyeva, L.B.; Tkachuk, A.S.; Bolotko, Y.A.; Gerasimov, A.S.; Pustozerov, E.A.; Kravchuk, E.N.; Predeus, A.; Kostareva, A.A.; et al. Effect of gene-lifestyle interaction on gestational diabetes risk. Oncotarget 2017, 8, 112024–112035. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Liu, J.; Leng, J.; Li, W.; Yu, Z.; Tam, C.H.T.; Hu, G.; Ma, R.C.W.; Fang, Z.; et al. Interactions of CDKAL1 rs7747752 polymorphism and serum levels of L-carnitine and choline are related to increased risk of gestational diabetes mellitus. Genes Nutr. 2022, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Ao, D.; Zhao, Q.; Song, J.Y.; Liu, Z.; Wang, Y.; Wang, H.J.; Yang, H.X. The association of the glucokinase rs4607517 polymorphism with gestational diabetes mellitus and its interaction with sweets consumption in Chinese women. Public Health Nutr. 2021, 24, 2563–2569. [Google Scholar] [CrossRef] [PubMed]
- Barabash, A.; Valerio, J.D.; Garcia de la Torre, N.; Jimenez, I.; Del Valle, L.; Melero, V.; Assaf-Balut, C.; Fuentes, M.; Bordiu, E.; Durán, A.; et al. TCF7L2 rs7903146 polymorphism modulates the association between adherence to a Mediterranean diet and the risk of gestational diabetes mellitus. Metab. Open 2020, 8, 100069. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Shao, B.; Xin, X.; Luo, W.; Si, S.; Jiang, W.; Wang, S.; Shen, Y.; Wu, J.; Yu, Y. The Association of Gene Variants in the Vitamin D Metabolic Pathway and Its Interaction with Vitamin D on Gestational Diabetes Mellitus: A Prospective Cohort Study. Nutrients 2021, 13, 4220. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, K.; Yan, S.; Hao, J.; Zhu, P.; Chen, Y.; Ye, A.; Tao, F. VDR Variants rather than Early Pregnancy Vitamin D Concentrations Are Associated with the Risk of Gestational Diabetes: The Ma’anshan Birth Cohort (MABC) Study. J. Diabetes Res. 2019, 2019, 8313901. [Google Scholar] [CrossRef]
- Hu, T.Y.; Mayasari, N.R.; Cheng, T.M.; Bai, C.H.; Chao, J.C.; Huang, Y.L.; Wang, F.F.; Skalny, A.V.; Tinkov, A.A.; Chang, J.S. Polymorphisms of haptoglobin modify the relationship between dietary iron and the risk of gestational iron-deficiency anemia. Eur. J. Nutr. 2023, 62, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Groth, S.W.; Li, D. The Association between Obesity-Risk Genes and Gestational Weight Gain Is Modified by Dietary Intake in African American Women. J. Nutr. Metab. 2018, 2018, 5080492. [Google Scholar] [CrossRef]
- Si, S.; Mo, M.; Cheng, H.; Peng, Z.; Alifu, X.; Zhou, H.; Chi, P.; Zhuang, Y.; Yu, Y. The Association of Vitamin D and Its Pathway Genes’ Polymorphisms with Hypertensive Disorders of Pregnancy: A Prospective Cohort Study. Nutrients 2022, 14, 2355. [Google Scholar] [CrossRef]
- Ota, K.; Takahashi, T.; Han, A.; Damvaeba, S.; Mizunuma, H.; Kwak-Kim, J. Effects of MTHFR C677T polymorphism on vitamin D, homocysteine and natural killer cell cytotoxicity in women with recurrent pregnancy losses. Hum. Reprod. 2020, 35, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Sun, J. Interactive Effects of Snps Located within CD28/B7Pathway and Environment on Susceptibility to Recurrent Spontaneous Abortion. Cell. Physiol. Biochem. 2017, 43, 2185–2199. [Google Scholar] [CrossRef]
- Lee, S.S.; Ling, K.H.; Tusimin, M.; Subramaniam, R.; Rahim, K.F.; Loh, S.P. Interplay between Maternal and Neonatal Vitamin D Deficiency and Vitamin-D-Related Gene Polymorphism with Neonatal Birth Anthropometry. Nutrients 2022, 14, 564. [Google Scholar] [CrossRef]
- Chun, S.K.; Shin, S.; Kim, M.Y.; Joung, H.; Chung, J. Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvitamin D concentration on infant birth weight. Nutrition 2017, 35, 36–42. [Google Scholar] [CrossRef]
- Aji, A.S.; Lipoeto, N.I.; Yusrawati, Y.; Malik, S.G.; Kusmayanti, N.A.; Susanto, I.; Nurunniyah, S.; Alfiana, R.D.; Wahyuningsih, W.; Majidah, N.M.; et al. Impact of maternal dietary carbohydrate intake and vitamin D-related genetic risk score on birth length: The Vitamin D Pregnant Mother (VDPM) cohort study. BMC Pregnancy Childbirth 2022, 22, 690. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, L.; López-Carrillo, L.; Blanco-Muñoz, J.; Chen, J. Maternal dietary intake of folate, vitamin B12 and MTHFR 677C>T genotype: Their impact on newborn’s anthropometric parameters. Genes Nutr. 2014, 9, 429. [Google Scholar] [CrossRef]
- Aji, A.S.; Erwinda, E.; Rasyid, R.; Yusrawati, Y.; Malik, S.G.; Alathari, B.; Lovegrove, J.A.; Lipoeto, N.I.; Vimaleswaran, K.S. A genetic approach to study the relationship between maternal Vitamin D status and newborn anthropometry measurements: The Vitamin D pregnant mother (VDPM) cohort study. J. Diabetes Metab. Disord. 2020, 19, 91–103. [Google Scholar] [CrossRef]
- Wang, S.; Xin, X.; Luo, W.; Mo, M.; Si, S.; Shao, B.; Shen, Y.; Cheng, H.; Yu, Y. Association of vitamin D and gene variants in the vitamin D metabolic pathway with preterm birth. Nutrition 2021, 89, 111349. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yan, L.; Pang, Y.; Yan, H.; Zhang, L.; Liu, J.; Li, N.; Wang, B.; Zhang, Y.; Li, Z.; et al. Maternal serum level of manganese, single nucleotide polymorphisms, and risk of spontaneous preterm birth: A nested case-control study in China. Environ. Pollut. 2020, 262, 114187. [Google Scholar] [CrossRef]
- Wu, W.C.; Lin, H.C.; Liao, W.L.; Tsai, Y.Y.; Chen, A.C.; Chen, H.C.; Lin, H.Y.; Liao, L.N.; Chao, P.M. FADS Genetic Variants in Taiwanese Modify Association of DHA Intake and Its Proportions in Human Milk. Nutrients 2020, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Huang, C.; Ding, K.; Lin, J.; Gong, B. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate. DNA Cell Biol. 2010, 29, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Diao, J.; Li, J.; Luo, L.; Zhao, L.; Zhang, S.; Wang, T.; Chen, L.; Yang, T.; Zhu, P.; et al. Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int. J. Cardiol. 2021, 322, 121–128. [Google Scholar] [CrossRef] [PubMed]
- van Beynum, I.M.; Kouwenberg, M.; Kapusta, L.; den Heijer, M.; van der Linden, I.J.; Daniels, O.; Blom, H.J. MTRR 66A>G polymorphism in relation to congenital heart defects. Clin. Chem. Lab. Med. 2006, 44, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; Rozen, R.; Finnell, R.H.; Wasserman, C.R.; Lammer, E.J. Maternal vitamin use, genetic variation of infant methylenetetrahydrofolate reductase, and risk for spina bifida. Am. J. Epidemiol. 1998, 148, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.E.; Smart, M.C.; Kinnunen, L.; Harjutsalo, V.; Reinert-Hartwall, L.; Ylivinkka, I.; Surcel, H.M.; Lamberg-Allardt, C.; Hitman, G.A.; Tuomilehto, J. Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child. PLoS ONE 2017, 12, e0184942. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Wang, T.; Zhang, S.; Sun, M.; Shu, J.; Wei, J.; Diao, J.; Li, J.; Li, Y.; et al. Association of Maternal Dietary Habits and. Front. Pediatr. 2021, 9, 785440. [Google Scholar] [CrossRef]
- Luo, M.; Wang, T.; Huang, P.; Zhang, S.; Song, X.; Sun, M.; Liu, Y.; Wei, J.; Shu, J.; Zhong, T.; et al. Association and Interaction Effect of. Nutrients 2022, 14, 3094. [Google Scholar] [CrossRef]
- Mazul, A.L.; Siega-Riz, A.M.; Weinberg, C.R.; Engel, S.M.; Zou, F.; Carrier, K.S.; Basta, P.V.; Vaksman, Z.; Maris, J.M.; Diskin, S.J.; et al. A family-based study of gene variants and maternal folate and choline in neuroblastoma: A report from the Children’s Oncology Group. Cancer Causes Control 2016, 27, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.A.; Lee, E.; Kwon, S.O.; Kim, K.W.; Shin, Y.H.; Ahn, K.M.; Kim, E.J.; Lee, J.G.; Oh, S.Y.; Hong, S.J. Effect of prenatal antioxidant intake on infants’ respiratory infection is modified by a CD14 polymorphism. World J. Pediatr. 2017, 13, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Bryson, C.L.; Ioannou, G.N.; Rulyak, S.J.; Critchlow, C. Association between gestational diabetes and pregnancy-induced hypertension. Am. J. Epidemiol. 2003, 158, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Hedderson, M.M.; Ferrara, A.; Sacks, D.A. Gestational diabetes mellitus and lesser degrees of pregnancy hyperglycemia: Association with increased risk of spontaneous preterm birth. Obstet. Gynecol. 2003, 102, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Arah, O.A.; Liew, Z.; Cnattingius, S.; Olsen, J.; Sørensen, H.T.; Qin, G.; Li, J. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: Population based cohort study with 40 years of follow-up. BMJ 2019, 367, l6398. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Linder, B.; Cowie, C.C. Prevalence of gestational diabetes and subsequent Type 2 diabetes among U.S. women. Diabetes Res. Clin. Pract. 2018, 141, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Baptiste-Roberts, K.; Barone, B.B.; Gary, T.L.; Golden, S.H.; Wilson, L.M.; Bass, E.B.; Nicholson, W.K. Risk factors for type 2 diabetes among women with gestational diabetes: A systematic review. Am. J. Med. 2009, 122, 207–214.e204. [Google Scholar] [CrossRef]
- Guo, F.; Long, W.; Zhou, W.; Zhang, B.; Liu, J.; Yu, B. FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and the risk of gestational diabetes mellitus: A meta-analysis. Arch. Gynecol. Obstet. 2018, 298, 705–715. [Google Scholar] [CrossRef]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- Khan, K.S.; Wojdyla, D.; Say, L.; Gülmezoglu, A.M.; Van Look, P.F. WHO analysis of causes of maternal death: A systematic review. Lancet 2006, 367, 1066–1074. [Google Scholar] [CrossRef]
- Theilen, L.H.; Meeks, H.; Fraser, A.; Esplin, M.S.; Smith, K.R.; Varner, M.W. Long-term mortality risk and life expectancy following recurrent hypertensive disease of pregnancy. Am. J. Obstet. Gynecol. 2018, 219, 107.e101–107.e106. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y. Micronutrients in Maternal and Infant Health: Where We Are and Where We Should Go. Nutrients 2023, 15, 2192. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Tang, X.; Liu, X.; Xu, H. Association between. PeerJ 2023, 11, e15181. [Google Scholar] [CrossRef] [PubMed]
- Shankarkumar, U.; Pradhan, V.D.; Patwardhan, M.M.; Shankarkumar, A.; Ghosh, K. Autoantibody profile and other immunological parameters in recurrent spontaneous abortion patients. Niger. Med. J. 2011, 52, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Teichman, J.; Nisenbaum, R.; Lausman, A.; Sholzberg, M. Suboptimal iron deficiency screening in pregnancy and the impact of socioeconomic status in a high-resource setting. Blood Adv. 2021, 5, 4666–4673. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.Y.; Huang, S.Y.; Cheng, T.M.; Bai, C.H.; Chang, J.S. Haptoglobin phenotype influences the effectiveness of diet-induced weight loss in middle-age abdominally obese women with metabolic abnormalities. Clin. Nutr. 2020, 39, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.F.; Stødkilde, K.; Sæderup, K.L.; Kuhlee, A.; Raunser, S.; Graversen, J.H.; Moestrup, S.K. Haptoglobin. Antioxid. Redox Signal 2017, 26, 814–831. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.C.; Trujillo, J.; Farias, D.R.; Struchiner, C.J.; Kac, G. Association of the FTO (rs9939609) and MC4R (rs17782313) gene polymorphisms with maternal body weight during pregnancy. Nutrition 2016, 32, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Finken, M.J.J.; van der Steen, M.; Smeets, C.C.J.; Walenkamp, M.J.E.; de Bruin, C.; Hokken-Koelega, A.C.S.; Wit, J.M. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr. Rev. 2018, 39, 851–894. [Google Scholar] [CrossRef]
- McCowan, L.M.; Thompson, J.M.; Taylor, R.S.; Baker, P.N.; North, R.A.; Poston, L.; Roberts, C.T.; Simpson, N.A.; Walker, J.J.; Myers, J.; et al. Prediction of Small for Gestational Age Infants in Healthy Nulliparous Women Using Clinical and Ultrasound Risk Factors Combined with Early Pregnancy Biomarkers. PLoS ONE 2017, 12, e0169311. [Google Scholar] [CrossRef]
- Lage, K.; Greenway, S.C.; Rosenfeld, J.A.; Wakimoto, H.; Gorham, J.M.; Segrè, A.V.; Roberts, A.E.; Smoot, L.B.; Pu, W.T.; Pereira, A.C.; et al. Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc. Natl. Acad. Sci. USA 2012, 109, 14035–14040. [Google Scholar] [CrossRef] [PubMed]
- Kalisch-Smith, J.I.; Ved, N.; Sparrow, D.B. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a037234. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F.; Camozzi, V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes 2023, 14, 1691. [Google Scholar] [CrossRef] [PubMed]
- Finnell, R.H.; Shaw, G.M.; Lammer, E.J.; Rosenquist, T.H. Gene-nutrient interactions: Importance of folic acid and vitamin B12 during early embryogenesis. Food Nutr. Bull. 2008, 29, S86–S98; discussion S99–S100. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M.; Kagawa, Y. Genetic polymorphisms and folate status. Congenit. Anom. 2017, 57, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Amigou, A.; Rudant, J.; Orsi, L.; Goujon-Bellec, S.; Leverger, G.; Baruchel, A.; Bertrand, Y.; Nelken, B.; Plat, G.; Michel, G.; et al. Folic acid supplementation, MTHFR and MTRR polymorphisms, and the risk of childhood leukemia: The ESCALE study (SFCE). Cancer Causes Control 2012, 23, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.R.; Stabler, S.P.; Machado, A.L.; Braga, R.C.; Hirata, R.D.; Hirata, M.H.; Sampaio-Neto, L.F.; Allen, R.H.; Guerra-Shinohara, E.M. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur. J. Clin. Nutr. 2008, 62, 1010–1021. [Google Scholar] [CrossRef]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef]
- Hodgetts, V.A.; Morris, R.K.; Francis, A.; Gardosi, J.; Ismail, K.M. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: A population study, systematic review and meta-analysis. Int. J. Obstet. Gynaecol. 2015, 122, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Klai, S.; Fekih-Mrissa, N.; El Housaini, S.; Kaabechi, N.; Nsiri, B.; Rachdi, R.; Gritli, N. Association of MTHFR A1298C polymorphism (but not of MTHFR C677T) with elevated homocysteine levels and placental vasculopathies. Blood Coagul. Fibrinolysis 2011, 22, 374–378. [Google Scholar] [CrossRef]
- Hogeveen, M.; Blom, H.J.; den Heijer, M. Maternal homocysteine and small-for-gestational-age offspring: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 130–136. [Google Scholar] [CrossRef]
- Nobles, C.J.; Markenson, G.; Chasan-Taber, L. Early pregnancy vitamin D status and risk for adverse maternal and infant outcomes in a bi-ethnic cohort: The Behaviors Affecting Baby and You (B.A.B.Y.) Study. Br. J. Nutr. 2015, 114, 2116–2128. [Google Scholar] [CrossRef] [PubMed]
- Leffelaar, E.R.; Vrijkotte, T.G.; van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: Results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br. J. Nutr. 2010, 104, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Fu, L.; Hao, J.H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.Y.; Zhang, C.; Tao, F.B.; Xu, D.X. Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Malecki, E.A. Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res. Bull. 2001, 55, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxidative Med. Cell Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef]
- Martinez-Finley, E.J.; Gavin, C.E.; Aschner, M.; Gunter, T.E. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic. Biol. Med. 2013, 62, 65–75. [Google Scholar] [CrossRef]
- Zadrozna, M.; Gawlik, M.; Nowak, B.; Marcinek, A.; Mrowiec, H.; Walas, S.; Wietecha-Posłuszny, R.; Zagrodzki, P. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J. Trace Elem. Med. Biol. 2009, 23, 144–148. [Google Scholar] [CrossRef]
- Davis, J.M.; Auten, R.L. Maturation of the antioxidant system and the effects on preterm birth. Semin. Fetal Neonatal Med. 2010, 15, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhou, Q.; Wang, J.; Lu, Y.; Li, J.; Wang, L.; Meng, P.; Li, F.; Zhou, H.; Liu, C.; et al. Association between variants in vitamin D-binding protein gene and vitamin D deficiency among pregnant women in china. J. Clin. Lab. Anal. 2020, 34, e23376. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Study Design | Population Ethnicity | Population | Dietary Factor | Genetic Variant | Total SNPs | Molecular Analysis for SNP Genotyping | Sample | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Popova [25] | 2017 | Case–control | European | 278 women with GDM and 179 controls | Dietary information using ad hoc questionnaires | SNPs in MTNR1B (rs10830963 and rs1387153), GCK (rs1799884), KCNJ11 (rs5219), IGF2BP2 (rs4402960), TCF7L2 (rs7903146 and rs12255372), CDKAL1 (rs7754840), IRS1 (rs1801278) and FTO (rs9939609) | 10 | FlexiGene DNA Kit (Qiagen, Hilden, Germany) | Blood | GDM |
Wang [26] | 2022 | Case–control | Asian | 243 GDM women and their pregnant women control | Serum levels of L-carnitine, choline, and betaine | SNP (rs7747752) | 1 | Illumina Infinium® Global Screening Array (Illumina, London, UK) | Blood | GDM |
Ao [27] | 2020 | Case–control | Asian | 562 GDM cases and 453 controls | Sweets consumption using ad hoc questionnaires | GCK (rs4607517) polymorphism | 1 | Sequenom’s MassARRAY platform (Agena, San Diego, CA, USA) | Blood | GDM |
Barabash [28] | 2020 | Randomized controlled trial | Mixed | 874 pregnant women | Adherence to Mediterranean diet (MedDiet) using an ad hoc questionnaire | TCF7L2 (rs7903146) polymorphism | 1 | 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) | Blood | GDM |
Mo [29] | 2021 | Prospective cohort | Asian | 2156 pregnant women | Plasma 25(OH)D2 and 25(OH)D3 concentrations | Vitamin-D-related SNPs (CYP24A1: rs2209314, CYP3A4: rs2242480, GC: rs1155563, rs16846876, rs17467825, rs2282679, rs2298849, rs2298850, rs3755967, rs4588, rs7041, LRP2: rs10210408 and VDR: rs10783219); GDM-related SNPs (CDKAL1: rs7754840, rs7754840 IGF2BP2: rs1470579; MTNR1B: rs10830962; PRKCE: rs11682804) | 19 | Sequenom MassARRAY iPLEX Gold platform (Sequenom, San Diego, CA, USA) | Blood | GDM |
Zhu [30] | 2019 | Case–control | Asian | 654 pregnant women (274 GDM cases and 380 age-matched controls were included) | Serum 25(OH)D Level | SNPs (rs1544410 and rs731236) in the VDR; rs2282679 and rs7041 in the vitamin-D-binding protein (DBP), rs3829251 in 7-dehydrocholesterol reductase (DHCR7); rs6013897 in the cytochrome P450 family 24 subfamily A member 1 (CYP24A1); rs6599638 in chromosome 10 open reading frame 88 (C10orf88) | 7 | Improved multiple ligase detection reaction (iMLDR) | Blood | GDM |
Hu [31] | 2023 | Survey | Asian | 1430 pregnant women | Erythropoiesis-related diets [dietary intake (e.g., iron, vitamin A, and vitamin C) and prenatal supplements] and serum ferritin concentrations | Hp SNPs | 3 | Hp phenotyping was conducted using native polyacrylamide gel electrophoresis | Blood | IDA |
Meng [32] | 2018 | Prospective cohort | African American | 85 pregnant women | Dietary information using 24 h recall | SNPs of obesity-risk genes (rs5443; rs9939609; rs17782313; rs11084753; rs7498665; rs2568958; rs10938397) | 7 | Not available | Saliva | GWG |
Si [33] | 2022 | Prospective cohort | Asian | 3699 pregnant women | Plasma 25(OH)D levels | SNPs in the VitD metabolic pathway (CYP27B1: rs10877012, CYP3A4: rs2242480, rs4646437, LRP2: rs4667591, rs10210408, rs2228171, rs7600336, rs2544381, rs2544390, rs2389557, GC: rs16846876, rs12512631, rs17467825, rs2070741, rs2282679, rs3755967, rs2298850, rs4588, rs7041, rs222020, rs1155563, rs2298849, VDR: rs2228570, rs7975232, rs11568820, rs2238136, rs2853559, rs4334089, rs10783219, CYP24A1: rs6013897, rs2762934, rs2209314, rs6127118, rs2248137) | 34 | Sequenom MassARRAY iPLEX Gold platform (Sequenom, San Diego, CA, USA) | Blood | HDP |
Ota [34] | 2020 | Retrospective cross-sectional study | African American | 837 women with RPL | 25 (OH) vitamin D and total plasma homocysteine | MTHFR SNP (C677T) | 1 | Polymerase chain reaction and reverse hybridization using the MTHFR 677CT RealFastTM Assay (ViennaLab Diagnostics GmbH, Vienna, Austria) | Blood | RPL |
Wang [35] | 2017 | Retrospective study | Asian | 1320 pregnant women | Diet with questionnaires | SNPs of CD28 (rs3116496; rs3769684; rs3181098; rs3181100; rs4673259; rs10932017), B7-2 (rs1129055 rs17281995; rs1915087; rs9282641) and B7-1 (rs6804441; rs41271391; rs16829984) involved in immune system | 13 | PCR-RFLP | Blood | RSA |
Lee [36] | 2022 | Cross-sectional study | Asian | 217 mother–neonate dyads | Plasma 25(OH)D concentration was measured in maternal and umbilical cord blood | VDR SNP (rs2228570) and GC SNPs (rs4588 and rs7041) | 3 | High-resolution melting (HRM) and restriction fragment length polymorphism | Blood | Anthropometric measures at birth |
Chun [37] | 2016 | Prospective | Asian | 356 pregnant women and their infants | 25(OH)D levels in maternal and umbilical cord blood | GC SNPs (rs12512631, rs17467825, rs2282679, rs2298850, rs7041, rs1155563) | 6 | ABI PRISM SNaPShot multiplex kit (ABI, Foster City, CA, USA) | Blood | Birth weight |
Aji [38] | 2022 | Prospective cohort | Asian | 183 pregnant women and their newborns | 25(OH)D levels in maternal blood and dietary information using FFQ | DHCR7 (rs12785878), CYP2R1 (rs12794714), GC (rs2282679), CYP24A1 (rs6013897) and VDR (rs2228570 and rs7975232) | 6 | Competitive allele-specific PCR-KASP assay | Blood | Anthropometric measures at birth |
Torres-Sanchez [39] | 2014 | Prospective cohort | Hispanic | 231 pregnant women | Dietary information using FFQ | MTHFR SNPs (C677T and A1298C) | 2 | PCR-RFLP | Blood | Pregnancy maternal outcomes and anthropometric measures at birth |
Aji [40] | 2020 | Prospective cohort | Asian | 183 pregnant women | 25(OH)D serum level | DHCR7 (rs12785878), CYP2R1 (rs12794714), GC (rs2282679), CYP24A1 (rs6013897), and VDR (rs2228570 and rs7975232) | 6 | Genotyping was performed at LGC Genomics, London, UK | Blood | Pregnancy maternal outcomes and anthropometric measures at birth |
Bulloch [21] | 2020 | Prospective cohort | European | 2002 pregnant women | FAS use with questionnaire | MTHFR 677 (rs1801133), MTHFR 1298 (rs1801131), MTHFD1 1958 (rs2236225), MTR 2756 (rs1805087), MTRR 66 (rs1801394), TCN2 776 (rs1801198) | 6 | Multiplex genotyping using the Sequenom Mass Array System | Blood | SGA |
Wang [41] | 2021 | Prospective cohort | Asian | 3465 pregnant women | 25(OH)D concentration | GC (rs16846876, rs17467825, rs2282679, rs3755967, rs2298850, rs4588, rs7041, rs1155563, rs2298849), CYP24A1 (rs2209314, rs6127118, rs2248137), CYP27B1 (rs10877012), LRP2 (rs10210408, rs2228171), and VDR (rs10783219) | 16 | Sequenom MassARRAY iPLEX Gold platform (Sequenom, San Diego, CA, USA). | Blood | PTB and gestational week |
Hao [42] | 2020 | Nested case–control study | Asian | 528 pregnant women (147 cases of SPB and 381 controls) | Maternal serum concentration of manganese level | SOD2 (rs2758352), SOD3 (rs699473), CAT (rs769214) | 3 | Not available | Blood | SPB |
Gatica-Dominguez [43] | 2020 | Prospective cohort | Hispanic | 181 mother–child dyads | Maternal plasma folate and vitamin B12 | MTHFR SNP (C677T) | 1 | PCR | Blood | Child neuropsychological development |
Guo [44] | 2010 | Case–control | Asian | Not available | Maternal multivitamin use | TGFβ3 neonatal SNPs (C641A and G15572) | 2 | Not available | Not available | CL/P |
Li [45] | 2020 | Case–control | Asian | 464 mothers with CHD infants and 504 control mothers | Maternal dietary intake | CBS SNPs (rs12613, rs234783, rs234784, rs2851391, rs2298759, rs234785, rs234713, rs234714 and rs1051319) | 9 | Not available | Blood | CHD |
van Beynum [46] | 2011 | Case–control | European | 169 CHD patients and 213 child controls, and 159 mothers with a CHD-affected child and 245 female controls | Plasma methylmalonic acid concentrations | MTRR SNP (MTRR 66A > G) | 1 | Not available | Blood | CHD |
Shaw [47] | 1998 | Case–control | Mixed | 214 liveborn case infants with spina bifida and 503 control infants | Maternal periconceptional use of supplements containing folic acid with questionnaire | Infant MTHFR SNP (C677T) | 1 | PCR | Newborn blood | Spina bifida |
Miettinen [48] | 2017 | Case–control | European | 474 mothers of type 1 diabetic children and 348 mothers of non-diabetic children | Serum 25(OH)D concentration during pregnancy | SNPs in NADSYN1/DHCR7 (rs4945008), VDR (rs154410, rs4516035, rs10783219), GC (rs12512631, rs4588), and CYP27A1 (rs17470271) genes | 7 | TaqMan (Applied Biosystems, Paisley, UK) | Saliva | Type 1 diabetes |
Song [49] | 2022 | Case–control | Asian | 360 mothers of VSD cases and 504 mothers of healthy infants | Dietary information using questionnaire | MTHFD1 SNPs (rs1950902, rs2236225, and rs2236222) | 3 | MassARRAY system (Agena iPLEX assay, San Diego, CA, USA). | Blood | VSD |
Luo [50] | 2022 | Case–control | Asian | 426 mothers of VSD children and 740 control mothers | Maternal dietary habits using FFQ | BHMT SNPs (rs3733890, rs1316753, rs567754, and rs1915706) | 4 | MassARRAY system (Agena iPLEX assay, San Diego, CA, USA | Blood | VSD |
Mazul [51] | 2016 | Case–control | American | 563 affected children and their parents | Pre-pregnancy supplementation and usual maternal dietary intake of folate, choline and folic acid with questionnaires | 693 SNPs in 38 folate-related and 302 SNPs in 19 choline-related genes | 958 | GoldenGate Assay with the Illumina BeadStation 500GX Genetic Analysis System (Illumina, London, UK). | Saliva | Neuroblastoma |
Hong [52] | 2017 | Prospective cohort | Asian | 550 infants at 12 ages | Prenatal maternal diet with FFQ | CD14 (rs2569190), TLR4 (rs1927911), and GSDMB (rs4794820) | 3 | TaqMan method | Infant cord blood | RTI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favara, G.; Maugeri, A.; Magnano San Lio, R.; Barchitta, M.; Agodi, A. Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies. Nutrients 2024, 16, 994. https://doi.org/10.3390/nu16070994
Favara G, Maugeri A, Magnano San Lio R, Barchitta M, Agodi A. Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies. Nutrients. 2024; 16(7):994. https://doi.org/10.3390/nu16070994
Chicago/Turabian StyleFavara, Giuliana, Andrea Maugeri, Roberta Magnano San Lio, Martina Barchitta, and Antonella Agodi. 2024. "Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies" Nutrients 16, no. 7: 994. https://doi.org/10.3390/nu16070994
APA StyleFavara, G., Maugeri, A., Magnano San Lio, R., Barchitta, M., & Agodi, A. (2024). Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies. Nutrients, 16(7), 994. https://doi.org/10.3390/nu16070994