Dietary Patterns, Food Intake and Health: New Evidence from Epidemiological and Genetic Studies
1. Dietary Patterns
2. Human Genetics
3. Obesity
Conflicts of Interest
References
- Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Montoya-Lozano, J.M.; Abenza-Cano, L. Differences in Kinanthropometric Variables and Physical Fitness of Adolescents with Different Adherence to the Mediterranean Diet and Weight Status: “Fat but Healthy Diet” Paradigm. Nutrients 2023, 15, 1152. [Google Scholar] [CrossRef]
- Hu, J.; Li, L.; Wan, N.; Liu, B.; Liu, Y.; Ma, Y.; Qiao, C.; Liu, C.; Wen, D. Associations of Dietary Patterns during Pregnancy with Gestational Hypertension: The “Born in Shenyang” Cohort Study. Nutrients 2022, 14, 4342. [Google Scholar] [CrossRef]
- Marinoni, M.; Giordani, E.; Mosconi, C.; Rosolen, V.; Concina, F.; Fiori, F.; Carletti, C.; Knowles, A.; Pani, P.; Bin, M.; et al. Are Dietary Patterns Related to Cognitive Performance in 7-Year-Old Children? Evidence from a Birth Cohort in Friuli Venezia Giulia, Italy. Nutrients 2022, 14, 4168. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yau, C.Y.; Loh, C.Y.L.; Lim, W.S.; Teoh, S.E.; Yau, C.E.; Ong, C.; Thumboo, J.; Namasivayam, V.S.O.; Ng, Q.X. Examining the Association between Coffee Intake and the Risk of Developing Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 4745. [Google Scholar] [CrossRef]
- Lee, S.H.; Zhao, L.; Park, S.; Moore, L.V.; Hamner, H.C.; Galuska, D.A.; Blanck, H.M. High Added Sugars Intake among US Adults: Characteristics, Eating Occasions, and Top Sources, 2015–2018. Nutrients 2023, 15, 265. [Google Scholar] [CrossRef]
- Ma, L.; Hu, Y.; Alperet, D.J.; Liu, G.; Malik, V.; Manson, J.E.; Rimm, E.B.; Hu, F.B.; Sun, Q. Beverage consumption and mortality among adults with type 2 diabetes: Prospective cohort study. BMJ 2023, 381, e073406. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Li, Q.; Zhao, Y.; Chen, Q.; Sun, X.; Liu, Y.; Li, H.; Wang, T.; Chen, X.; Zhou, Q.; et al. Sugar and artificially sweetened beverages and risk of obesity, type 2 diabetes mellitus, hypertension, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2020, 35, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, C.; Medina, I. Thermodynamic Analysis to Evaluate the Effect of Diet on Brain Glucose Metabolism: The Case of F. Nutrients 2024, 16, 631. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B. Commentary: Mendelian Randomization, 18 years on. Int. J. Epidemiol. 2004, 33, 10–11. [Google Scholar] [CrossRef]
- Davey Smith, G.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef]
- Sugimoto, M.; Tabata, H.; Kaga, H.; Someya, Y.; Kakehi, S.; Abudurezake, A.; Naito, H.; Ito, N.; Shi, H.; Otsuka, H.; et al. Association of ALDH2 Genotypes and Alcohol Intake with Dietary Patterns: The Bunkyo Health Study. Nutrients 2022, 14, 4830. [Google Scholar] [CrossRef]
- Chen, L.; Smith, G.D.; Harbord, R.M.; Lewis, S.J. Alcohol intake and blood pressure: A systematic review implementing a Mendelian randomization approach. PLoS Med. 2008, 5, e52. [Google Scholar] [CrossRef]
- Diemer, E.W.; Labrecque, J.A.; Neumann, A.; Tiemeier, H.; Swanson, S.A. Mendelian randomisation approaches to the study of prenatal exposures: A systematic review. Paediatr. Perinat. Epidemiol. 2021, 35, 130–142. [Google Scholar] [CrossRef]
- Cho, Y.; Shin, S.Y.; Won, S.; Relton, C.L.; Davey Smith, G.; Shin, M.J. Alcohol intake and cardiovascular risk factors: A Mendelian randomisation study. Sci. Rep. 2015, 5, 18422. [Google Scholar] [CrossRef]
- Kafyra, M.; Kalafati, I.P.; Gavra, I.; Siest, S.; Dedoussis, G.V. Associations of VEGF-A-Related Variants with Adolescent Cardiometabolic and Dietary Parameters. Nutrients 2023, 15, 1884. [Google Scholar] [CrossRef]
- Yang, Q.; Millard, L.A.C.; Davey Smith, G. Proxy gene-by-environment Mendelian randomization study confirms a causal effect of maternal smoking on offspring birthweight, but little evidence of long-term influences on offspring health. Int. J. Epidemiol. 2020, 49, 1207–1218. [Google Scholar] [CrossRef]
- Feng, Q.; Grant, A.J.; Yang, Q.; Burgess, S.; Bešević, J.; Conroy, M.; Omiyale, W.; Sun, Y.; Allen, N.; Lacey, B. Genetically Predicted Vegetable Intake and Cardiovascular Diseases and Risk Factors: An Investigation with Mendelian Randomization. Nutrients 2023, 15, 3682. [Google Scholar] [CrossRef]
- Evershed, R.P.; Davey Smith, G.; Roffet-Salque, M.; Timpson, A.; Diekmann, Y.; Lyon, M.S.; Cramp, L.J.E.; Casanova, E.; Smyth, J.; Whelton, H.L.; et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature 2022, 608, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.T.; Dimou, N.; Langenberg, C.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, X.; Li, H.; Xu, J.; Xiang, M. Association between Sedentary Behavior during Leisure Time and Excessive Weight in Chinese Children, Adolescents, and Adults. Nutrients 2023, 15, 424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Clayton, G.L.; Hansen, S.N.; Olsen, A.; Lawlor, D.A.; Dahm, C.C. Maternal Pre-Pregnancy BMI, Offspring Adiposity in Late Childhood, and Age of Weaning: A Causal Mediation Analysis. Nutrients 2023, 15, 2970. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.C.; Clayton, G.L.; Freathy, R.M.; Felix, J.F.; Fernández-Sanlés, A.; Soares, A.G.; Kilpi, F.; Yang, Q.; McEachan, R.R.C.; Richmond, R.C.; et al. Integrating multiple lines of evidence to assess the effects of maternal BMI on pregnancy and perinatal outcomes. BMC Med. 2024, 22, 32. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Relton, C.; Sattar, N.; Nelson, S.M. Maternal adiposity—A determinant of perinatal and offspring outcomes? Nat. Rev. Endocrinol. 2012, 8, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Tilling, K.; Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 2016, 45, 1866–1886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Sun, Y. Dietary Patterns, Food Intake and Health: New Evidence from Epidemiological and Genetic Studies. Nutrients 2024, 16, 919. https://doi.org/10.3390/nu16070919
Yang Q, Sun Y. Dietary Patterns, Food Intake and Health: New Evidence from Epidemiological and Genetic Studies. Nutrients. 2024; 16(7):919. https://doi.org/10.3390/nu16070919
Chicago/Turabian StyleYang, Qian, and Yangbo Sun. 2024. "Dietary Patterns, Food Intake and Health: New Evidence from Epidemiological and Genetic Studies" Nutrients 16, no. 7: 919. https://doi.org/10.3390/nu16070919
APA StyleYang, Q., & Sun, Y. (2024). Dietary Patterns, Food Intake and Health: New Evidence from Epidemiological and Genetic Studies. Nutrients, 16(7), 919. https://doi.org/10.3390/nu16070919