The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function
Abstract
1. Introduction
2. Methods
2.1. Study Population and Data Collection
2.2. Instruments
2.2.1. The Satisfaction with Life Scale (SWLS)
2.2.2. The Positive and Negative Affect Schedule (PANAS)
2.2.3. The Zung Self-Rating Depression Scale (ZSDS)
2.2.4. The Rapid Cognitive Screen (RCS)
2.2.5. The Munich Chronotype Questionnaire (MCTQ)
2.2.6. The Pittsburgh Sleep Quality Index (PSQI)
2.2.7. FMT Consumption
- How often have you consumed these foods in the past month? Answer options [conversion factor for estimating frequency of consumption per day]: never (0), 1–2 times a month (0.05), 3–4 times a month (0.12), 2–3 times a week (0.36), 4–6 times a week (0.71), 1–2 times a day (1.5), 3–4 times a day (3.5), and more than 4 times a day (5).
- How many servings of these foods did you consume in one meal (this question was accompanied by a picture indicating the size of one serving and the product’s weight in grams)? Answer options: 0.5, 1, 2, 3, 4, or 5 servings.
- What percentage of the foods above was eaten during dinner? The response options were 0, 25, 50, 75, or 100%.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bai, X.; Soh, K.G.; Dev, R.D.O.; Talib, O.; Xiao, W.; Cai, H. Effect of brisk walking on health-related physical fitness balance and life satisfaction among the elderly: A systematic review. Front. Public Health 2021, 9, 829367. [Google Scholar] [CrossRef]
- Cheng, A.; Leung, Y.; Brodaty, H. A systematic review of the associations, mediators and moderators of life satisfaction, positive affect and happiness in near-centenarians and centenarians. Aging Ment. Health 2022, 26, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Zhi, T.F.; Sun, X.M.; Li, S.J.; Wang, Q.S.; Cai, J.; Li, L.Z.; Xu, M.J.; Wang, Y.; Chu, X.F.; Wang, Z.D.; et al. Associations of sleep duration and sleep quality with life satisfaction in elderly Chinese: The mediating role of depression. Arch. Gerontol. Geriatr. 2016, 65, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Boro, B. Analysing the role of sleep quality, functional limitation and depressive symptoms in determining life satisfaction among the older Population in India: A moderated mediation approach. BMC Public Health 2022, 22, 1933. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Yang, L.; Li, J.; Wei, X.; Ren, Y.; Wang, W.; Hou, J.; Fang, X. Relationship between social participation and life satisfaction in community-dwelling older adults: Multiple mediating roles of depression and cognitive function. Arch. Gerontol. Geriatr. 2023, 117, 105233. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ko, H. The impact of self-compassion on mental health, sleep, quality of life and life satisfaction among older adults. Geriatr. Nurs. 2018, 39, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Touitou, Y.; Reinberg, A.; Touitou, D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017, 173, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Kumar, C.J.; Merrow, M. The human circadian clock entrains to sun time. Curr. Biol. 2007, 17, R44–R45. [Google Scholar] [CrossRef]
- Borisenkov, M.F. Human chronotypes in the North. Hum. Physiol. 2010, 36, 348–352. [Google Scholar] [CrossRef]
- Kantermann, T.; Juda, M.; Merrow, M.; Roenneberg, T. The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr. Biol. 2007, 17, 1996–2000. [Google Scholar] [CrossRef]
- Roenneberg, T.; Pilz, L.K.; Zerbini, G.; Winnebeck, E.C. Chronotype and social jetlag: A (self-) critical review. Biology 2019, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Haus, E.L.; Smolensky, M.H. Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 2013, 17, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Grajewski, B.; Nguyen, M.M.; Whelan, E.A.; Cole, R.J.; Hein, M.J. Measuring and identifying large-study metrics for circadian rhythm disruption in female flight attendants. Scand. J. Work. Environ. Health 2003, 29, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social jetlag: Misalignment of biological and social time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Levandovski, R.; Dantas, G.; Fernandes, L.C.; Caumo, W.; Torres, I.; Roenneberg, T.; Hidalgo, M.P.; Allebrandt, K.V. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol. Int. 2011, 28, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Panev, A.S.; Tserne, T.A.; Polugrudov, A.S.; Bakutova, L.A.; Petrova, N.B.; Tatarinova, O.V.; Kolosova, O.N.; Borisenkov, M.F. Association of chronotype and social jetlag with human non-verbal intelligence. Chronobiol. Int. 2017, 34, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social jetlag and obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Maemura, K. Circadian clock and cardiovascular disease. J. Cardiol. 2011, 57, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wulff, K.; Gatti, S.; Wettstein, J.G.; Foster, R.G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 2010, 11, 589–599. [Google Scholar] [CrossRef]
- Stevens, R.G. Light-at-night, circadian disruption and breast cancer: Assessment of existing evidence. Int. J. Epidemiol. 2009, 38, 963–970. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Vinogradova, I.A.; Panchenko, A.V.; Popovich, I.G.; Zabezhinski, M.A. Light-at-night-induced circadian disruption, cancer and aging. Curr. Aging Sci. 2012, 5, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Cornélissen, G.; Halberg, F.; Prikryl, P.; Danková, E.; Siegelová, J.; Dusek, J. Prophylactic aspirin treatment: The merits of timing. International Womb-to-Tomb Chronome Study Group. JAMA 1991, 266, 3128–3129. [Google Scholar] [CrossRef]
- Terman, M.; Terman, J.S. Light therapy for seasonal and nonseasonal depression: Efficacy, protocol, safety, and side effects. CNS Spectr. 2005, 10, 647–663. [Google Scholar] [CrossRef]
- Lévim, F. Circadian chronotherapy for human cancers. Lancet Oncol. 2001, 2, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Zerón-Rugerio, M.F.; Hernáez, Á.; Porras-Loaiza, A.P.; Cambras, T.; Izquierdo-Pulido, M. Eating jet lag: A marker of the variability in meal timing and its association with body mass index. Nutrients 2019, 11, 2980. [Google Scholar] [CrossRef]
- Borisenkov, M.F.; Tserne, T.A.; Popov, S.V.; Smirnov, V.V.; Dorogina, O.I.; Pecherkina, A.A.; Symaniuk, E.E. Association of chrononutrition indices with anthropometric parameters, academic performance, and psychoemotional state of adolescents: A cross-sectional study. Nutrients 2023, 15, 4521. [Google Scholar] [CrossRef]
- Arendt, J.; Skene, D.J. Melatonin as a chronobiotic. Sleep. Med. Rev. 2005, 9, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Wada, K.; Yamakawa, M.; Nakashima, Y.; Koda, S.; Uji, T.; Onuma, S.; Oba, S.; Maruyama, Y.; Hattori, A. Associations between dietary melatonin intake and total and cause-specific mortality among Japanese adults in the Takayama Study. Am. J. Epidemiol. 2021, 190, 2639–2646. [Google Scholar] [CrossRef]
- Borisenkov, M.F.; Popov, S.V.; Smirnov, V.V.; Martinson, E.A.; Solovieva, S.V.; Danilova, L.A.; Gubin, D.G. The association of melatonin-containing foods consumption with students’ sleep–wake rhythm, psychoemotional, and anthropometric characteristics: A semi-quantitative analysis and hypothetical application. Nutrients 2023, 15, 3302. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Voss, V.B.; Cruz-Oliver, D.M.; Cummings-Vaughn, L.A.; Tumosa, N.; Grossberg, G.T.; Morley, J.E. The Rapid Cognitive Screen (RCS): A Point-of-Care Screening for Dementia and Mild Cognitive Impairment. J. Nutr. Health Aging 2015, 19, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythms. 2003, 18, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Osin, E.N.; Leontiev, D.A. Brief Russian-language instruments to measure subjective well-being: Psychometric properties and comparative analysis. Monit. Public Opin. Econ. Soc. Chang. 2020, 1, 117–142. (In Russian) [Google Scholar] [CrossRef]
- Osin, E.N. Measuring Positive and Negative Affect: Development of a Russian-language Analogue of PANAS. Psychol. J. High Sch. Econ. 2012, 9, 91–110. Available online: https://psy-journal.hse.ru/en/2012-9-4/68136111.html (accessed on 1 March 2024). (In Russian).
- Zung, W.W. The depression status inventory: An adjunct to the self-rating depression scale. J. Clin. Psychol. 1972, 28, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Passik, S.D.; Lundberg, J.C.; Rosenfeld, B.; Kirsh, K.L.; Donaghy, K.; Theobald, D.; Lundberg, E.; Dugan, W. Factor analysis of the Zung Self-Rating Depression Scale in a large ambulatory oncology sample. Psychosomatics 2000, 41, 121–127. [Google Scholar] [CrossRef]
- Gorelik, S.G.; Ilnitsky, A.N.; Proschaev, K.I.; Pavlenko EVStartseva, O.N.; Krivtsunov, A.N. Questionnaires and Scales in Gerontology and Geriatrics; Belgorod State University: Belgorod, Russia, 2020. (In Russian) [Google Scholar]
- Borisenkov, M.F.; Petrova, N.B.; Timonin, V.D.; Fradkova, L.I.; Kolomeichuk, S.N.; Kosova, A.L.; Kasyanova, O.N. Sleep characteristics, chronotype and winter depression in 10-20-year-olds in northern European Russia. J. Sleep. Res. 2015, 24, 288–295. [Google Scholar] [CrossRef]
- Semenova, E.A.; Danilenko, K.V. Russian Version of Pittsburg Sleep Quality Index. 2009. Available online: https://newpsyhelp.ru/wp-content/uploads/2021/01/PSQI-rus.pdf (accessed on 25 July 2023).
- Anisimov, V.N.; Popovich, I.G.; Zabezhinski, M.A.; Anisimov, S.V.; Vesnushkin, G.M.; Vinogradova, I.A. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim. Biophys. Acta 2006, 1757, 573–589. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin in healthy aging and longevity. In Hormones in Ageing and Longevity; Rattan, S., Sharma, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 209–242. [Google Scholar]
- Tengattini, S.; Reiter, R.J.; Tan, D.X.; Terron, M.P.; Rodella, L.F.; Rezzani, R. Cardiovascular diseases: Protective effects of melatonin. J. Pineal Res. 2008, 44, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Pandi-Perumal, S.R.; BaHammam, A.S.; Brown, G.M.; Spence, D.W.; Bharti, V.K.; Kaur, C.; Hardeland, R.; Cardinali, D.P. Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox. Res. 2013, 23, 267–300. [Google Scholar] [CrossRef]
- He, H.; Dong, W.; Huang, F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr. Neuropharmacol. 2010, 8, 211–217. [Google Scholar] [CrossRef]
- Matsubara, E.; Bryant-Thomas, T.; Pacheco Quinto, J.; Henry, T.L.; Poeggeler, B.; Herbert, D.; Cruz-Sanchez, F.; Chyan, Y.J.; Smith, M.A.; Perry, G.; et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem. 2003, 85, 1101–1108. [Google Scholar] [CrossRef]
- Quinn, J.; Montine, T.; Morrow, J.; Woodward, W.R.; Kulhanek, D.; Eckenstein, F. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer’s disease. J. Neuroimmunol. 2003, 137, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Furio, A.M.; Brusco, L.I.; Cardinali, D.P. Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study. J. Pineal Res. 2007, 43, 404–409. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Vigo, D.E.; Olivar, N.; Vidal, M.F.; Furio, A.M.; Brusco, L.I. Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis. 2012, 1, 280–291. [Google Scholar] [PubMed]
- Ma, Z.; He, J.; Sun, S.; Lu, T. Patterns and stability of food preferences among a national representative sample of young, middle-aged, and elderly adults in China: A latent transition analysis. Food Qual. Prefer. 2021, 94, 104322. [Google Scholar] [CrossRef]
- Lewy, A.J. Circadian misalignment in mood disturbances. Curr. Psychiatry Rep. 2009, 11, 459–465. [Google Scholar] [CrossRef]
- Kessler, R.C.; Birnbaum, H.; Bromet, E.; Hwang, I.; Sampson, N.; Shahly, V. Age differences in major depression: Results from the National Comorbidity Survey Replication (NCS-R). Psychol. Med. 2010, 40, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Touitou, Y. Human aging and melatonin. Clinical relevance. Exp. Gerontol. 2001, 36, 1083–1100. [Google Scholar] [CrossRef] [PubMed]
- Karasek, M. Melatonin, human aging, and age-related diseases. Exp. Gerontol. 2004, 39, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Singh, S.; Rizvi, S.I. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp. Gerontol. 2023, 172, 112076. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Rosenberg, I. Nutrition and aging: Changes in the regulation of energy metabolism with aging. Physiol. Rev. 2006, 86, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J.; Ham, S.A.; Prohaska, T.R. Behavioral risk factors associated with overweight and obesity among older adults: The 2005 National Health Interview Survey. Prev. Chronic. Dis. 2009, 6, A14. [Google Scholar]
- Davis, R.E.; Couper, M.P.; Janz, N.K.; Caldwell, C.H.; Resnicow, K. Interviewer effects in public health surveys. Health Educ. Res. 2010, 25, 14–26. [Google Scholar] [CrossRef]
Variables | Gradations | N | % | F, % | M, % | χ2 | p | φ |
---|---|---|---|---|---|---|---|---|
Sex | F | 440 | 79 | 100 | - | |||
M | 117 | 21 | - | 100 | ||||
Education | Lower secondary | 15 | 2.69 | 2.73 | 2.56 | |||
Compete secondary | 57 | 10.23 | 11.36 | 5.98 | ||||
Primary special | 279 | 50.09 | 49.09 | 53.85 | ||||
Secondary special | 14 | 2.51 | 2.27 | 3.42 | ||||
Higher | 176 | 31.60 | 32.73 | 27.35 | ||||
Postgraduate | 16 | 2.87 | 1.82 | 6.84 | 12.48 | 0.05 | 0.15 | |
Occupation | Retired | 342 | 61.73 | 65.67 | 47.00 | |||
Retired + work | 110 | 19.86 | 18.54 | 24.79 | ||||
Work | 102 | 18.41 | 15.79 | 28.21 | 14.75 | 0.001 | 0.16 | |
BMI categories | Underweight | 7 | 1.26 | 0.68 | 3.45 | |||
Normal weight | 168 | 30.22 | 30.00 | 31.03 | ||||
Overweight | 199 | 35.79 | 38.41 | 25.86 | ||||
Obesity | 182 | 32.73 | 30.91 | 39.66 | 11.80 | 0.01 | 0.15 | |
Visceral obesity (WHtR ≥ 0.5) | 0 | 167 | 30.93 | 31.07 | 30.36 | |||
1 | 373 | 69.07 | 68.93 | 69.64 | 0.02 | n.s. | 0.01 | |
Social jetlag (SJL ≥ 1 h) | 0 | 457 | 82.04 | 78.18 | 64.96 | |||
1 | 100 | 17.96 | 21.82 | 35.04 | 8.72 | 0.005 | 0.13 | |
Sleep duration categories | ≤6 h | 105 | 18.85 | 20.91 | 11.11 | |||
7–8 h | 287 | 51.53 | 50.91 | 53.85 | ||||
≥9 h | 165 | 29.62 | 28.18 | 35.04 | 6.33 | 0.05 | 0.11 | |
PSQIc categories | 0 (good) | 254 | 45.36 | 41.82 | 58.97 | |||
1 (bad) | 306 | 54.64 | 58.18 | 41.03 | 10.97 | 0.001 | 0.14 | |
ZSDSIc categories | 0 | 493 | 88.51 | 86.82 | 94.87 | |||
1 | 64 | 11.49 | 13.18 | 5.13 | 5.89 | 0.025 | 0.10 | |
RCS (logical thinking test) | 0 | 89 | 18.02 | 18.69 | 15.31 | |||
categories | 1 | 405 | 81.98 | 81.31 | 84.69 | 0.61 | n.s. | 0.04 |
# | Dependent Variable | Predictors | B | β | R2 | ∆R2 | p | VIF |
---|---|---|---|---|---|---|---|---|
1 | SWLS | FMTdinner | 0.762 | 0.107 | 0.011 | 0.011 | 0.020 | 1.000 |
2 | ZSDSI | Age | 0.016 | 0.164 | 0.029 | 0.029 | 0.000 | 1.015 |
Sex | 0.204 | 0.111 | 0.041 | 0.012 | 0.008 | 1.013 | ||
FMTday | −0.113 | −0.124 | 0.056 | 0.015 | 0.003 | 1.002 | ||
3 | PA | Age | −0.081 | 0.026 | 0.016 | 0.016 | 0.002 | 1.013 |
FMTday | 0.458 | 0.169 | 0.031 | 0.015 | 0.007 | 1.013 | ||
4 | PA | Age | −0.078 | −0.136 | 0.019 | 0.019 | 0.003 | 1.000 |
FMTdinner | 0.386 | 0.136 | 0.038 | 0.019 | 0.003 | 1.000 |
# | Dependent Variables | Predictors | B | OR | 95% CI | & p | Omnibus Test | Hosmer-Lemeshov Test | |||
---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | ||||||||
1 | ZSDSIc | Sex | 0.930 | 2.533 | 1.049 | 6.118 | 0.039 | 32.27 | 0.000 | 3.84 | 0.871 |
FMTday | −0.488 | 0.614 | 0.436 | 0.864 | 0.005 | ||||||
2 | ZSDSIc | Sex | 0.884 | 2.421 | 1.001 | 5.857 | 0.050 | 29.64 | 0.000 | 13.12 | 0.108 |
FMTdinner | −0.400 | 0.671 | 0.476 | 0.945 | 0.023 | ||||||
3 | RCS Logic | FMTday | 0.726 | 2.066 | 1.131 | 2.204 | 0.013 | 8.10 | 0.004 | 0.01 | 0.945 |
4 | RCS Logic | FMTdinner | 0.635 | 1.887 | 1.183 | 2.138 | 0.033 | 9.79 | 0.002 | 0.44 | 0.510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisenkov, M.F.; Dorogina, O.I.; Popov, S.V.; Smirnov, V.V.; Pecherkina, A.A.; Symaniuk, E.E. The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function. Nutrients 2024, 16, 1064. https://doi.org/10.3390/nu16071064
Borisenkov MF, Dorogina OI, Popov SV, Smirnov VV, Pecherkina AA, Symaniuk EE. The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function. Nutrients. 2024; 16(7):1064. https://doi.org/10.3390/nu16071064
Chicago/Turabian StyleBorisenkov, Mikhail F., Olga I. Dorogina, Sergey V. Popov, Vasily V. Smirnov, Anna A. Pecherkina, and Elvira E. Symaniuk. 2024. "The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function" Nutrients 16, no. 7: 1064. https://doi.org/10.3390/nu16071064
APA StyleBorisenkov, M. F., Dorogina, O. I., Popov, S. V., Smirnov, V. V., Pecherkina, A. A., & Symaniuk, E. E. (2024). The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function. Nutrients, 16(7), 1064. https://doi.org/10.3390/nu16071064