In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.2.1. Dietary Supplements
2.2.2. Reconstructed Diet Duplicates
2.3. Two-Phase Enzymatic Model of In Vitro Digestion
2.4. Analytical Determination of Cr
2.5. Calculation of the Relative Bioavailability Value
2.6. Statistical Analysis
3. Results
3.1. Bioavailability of Cr under the Influence of Various Diets
3.2. Influence of Diet and Chemical Form on the Bioavailability of Cr
3.3. Influence of the Pharmaceutical Form on the Bioavailability of Cr
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary Pattern Analysis and Biomarkers of Low-Grade Inflammation: A Systematic Literature Review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Michalak, M.; Agellon, L.B. Importance of Nutrients and Nutrient Metabolism on Human Health. Yale J. Biol. Med. 2018, 91, 95–103. [Google Scholar] [PubMed]
- Puścion-Jakubik, A.; Bartosiewicz, N.; Socha, K. Is the Magnesium Content in Food Supplements Consistent with the Manufacturers’ Declarations? Nutrients 2021, 13, 3416. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.G.; Vidovic, B.; Saraiva, N.; do Céu Costa, M.; Del Favero, G.; Marko, D.; Oliveira, N.G.; Fernandes, A.S. Contaminants: A Dark Side of Food Supplements? Free Radic. Res. 2019, 53, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Moscoso-Pérez, C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Bermejo-Barrera, P.; Prada-Rodríguez, D. In-Vivo and in-Vitro Testing to Assess the Bioaccessibility and the Bioavailability of Arsenic, Selenium and Mercury Species in Food Samples. TrAC Trends Anal. Chem. 2011, 30, 324–345. [Google Scholar] [CrossRef]
- Ruby, M.V.; Schoof, R.; Brattin, W.; Goldade, M.; Post, G.; Harnois, M.; Mosby, D.E.; Casteel, S.W.; Berti, W.; Carpenter, M.; et al. Advances in Evaluating the Oral Bioavailability of Inorganics in Soil for Use in Human Health Risk Assessment. Environ. Sci. Technol. 1999, 33, 3697–3705. [Google Scholar] [CrossRef]
- Oomen, A.; Rompelberg, C.J.M.; Bruil, M.A.; Dobbe, C.J.G.; Pereboom, D.P.K.H.; Sips, A. Development of an In Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Arch. Environ. Contam. Toxicol. 2003, 44, 281–287. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Herbello-Hermelo, P.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Bioavailability Assessment of Essential and Toxic Metals in Edible Nuts and Seeds. Food Chem. 2016, 205, 146–154. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domínguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Bermejo-Barrera, P. Trace Metals in Marine Foodstuff: Bioavailability Estimation and Effect of Major Food Constituents. Food Chem. 2012, 134, 339–345. [Google Scholar] [CrossRef]
- Singhato, A.; Judprasong, K.; Sridonpai, P.; Laitip, N.; Ornthai, N.; Yafa, C.; Chimkerd, C. In Vitro Bioaccessibility of Selenium from Commonly Consumed Fish in Thailand. Foods 2022, 11, 3312. [Google Scholar] [CrossRef]
- Ziegler, E.E.; Edwards, B.B.; Jensen, R.L.; Mahaffey, K.R.; Fomon, S.J. Absorption and Retention of Lead by Infants. Pediatr. Res. 1978, 12, 29–34. [Google Scholar] [CrossRef] [PubMed]
- De Boever, P.; Deplancke, B.; Verstraete, W. Fermentation by Gut Microbiota Cultured in a Simulator of the Human Intestinal Microbial Ecosystem Is Improved by Supplementing a Soygerm Powder. J. Nutr. 2000, 130, 2599–2606. [Google Scholar] [CrossRef]
- Van de Wiele, T.R.; Oomen, A.G.; Wragg, J.; Cave, M.; Minekus, M.; Hack, A.; Cornelis, C.; Rompelberg, C.J.M.; De Zwart, L.L.; Klinck, B.; et al. Comparison of Five in Vitro Digestion Models to in Vivo Experimental Results: Lead Bioaccessibility in the Human Gastrointestinal Tract. J. Environ. Sci. Health A Toxic. Hazard. Subst. Environ. Eng. 2007, 42, 1203–1211. [Google Scholar] [CrossRef]
- Shiowatana, J.; Kitthikhun, W.; Sottimai, U.; Promchan, J.; Kunajiraporn, K. Dynamic Continuous-Flow Dialysis Method to Simulate Intestinal Digestion for in Vitro Estimation of Mineral Bioavailability of Food. Talanta 2006, 68, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C. A Physiological Approach for Preparing and Conducting Intestinal Bioavailability Studies Using Experimental Systems. Food Chem. 2002, 76, 225–230. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. In-Vitro Testing for Assessing Oral Bioaccessibility of Trace Metals in Soil and Food Samples. TrAC Trends Anal. Chem. 2006, 25, 876–886. [Google Scholar] [CrossRef]
- Moskwa, J.; Naliwajko, S.K.; Puścion-Jakubik, A.; Soroczyńska, J.; Socha, K.; Koch, W.; Markiewicz-Żukowska, R. In Vitro Assessment of the Bioaccessibility of Zn, Ca, Mg, and Se from Various Types of Nuts. Foods 2023, 12, 4453. [Google Scholar] [CrossRef]
- Vincent, J.B. New Evidence against Chromium as an Essential Trace Element. J. Nutr. 2017, 147, 2212–2219. [Google Scholar] [CrossRef]
- Vincent, J.B. Comment on Purification and Characterization of Chromium-Binding Substances from High-Chromium Yeast. J. Agric. Food Chem. 2013, 61, 9280–9281. [Google Scholar] [CrossRef]
- Garcia, V.; Furuya, K.; Carr, A.M. Identification and Functional Analysis of TopBP1 and Its Homologs. DNA Repair 2005, 4, 1227–1239. [Google Scholar] [CrossRef]
- Roussel, A.-M.; Andriollo-Sanchez, M.; Ferry, M.; Bryden, N.A.; Anderson, R.A. Food Chromium Content, Dietary Chromium Intake and Related Biological Variables in French Free-Living Elderly. Br. J. Nutr. 2007, 98, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Marzec, Z. Alimentary Chromium, Nickel, and Selenium Intake of Adults in Poland Estimated by Analysis and Calculations Using the Duplicate Portion Technique. Nahrung 2004, 48, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Taghizadeh, M.; Aghabagheri, E.; Asemi, Z.; Jafarnejad, S. A Meta-Analysis of the Effect of Chromium Supplementation on Anthropometric Indices of Subjects with Overweight or Obesity. Clin. Obes. 2019, 9, e12313. [Google Scholar] [CrossRef]
- Frauchiger, M.T.; Wenk, C.; Colombani, P.C. Effects of Acute Chromium Supplementation on Postprandial Metabolism in Healthy Young Men. J. Am. Coll. Nutr. 2004, 23, 351–357. [Google Scholar] [CrossRef]
- Docherty, J.P.; Sack, D.A.; Roffman, M.; Finch, M.; Komorowski, J.R. A Double-Blind, Placebo-Controlled, Exploratory Trial of Chromium Picolinate in Atypical Depression: Effect on Carbohydrate Craving. J. Psychiatr. Pract. 2005, 11, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Kang, J.; Ratamess, N.A.; Jennings, P.F.; Mangine, G.; Faigenbaum, A.D. Thermogenic Effect from Nutritionally Enriched Coffee Consumption. J. Int. Soc. Sports Nutr. 2006, 3, 35–41. [Google Scholar] [CrossRef]
- Principles of Human Nutrition, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003; Available online: https://www.wiley.com/en-us/Principles+of+Human+Nutrition%2C+2nd+Edition-p-9780632058112 (accessed on 12 January 2023).
- Gertig, H.; Przysławski, J. Bromatologia: Zarys Nauki o Żywnos’ci i Żywieniu; wyd. 1; PZWL: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Ciborowska, H.; Rudnicka, A. Dietetyka: Żywienie Zdrowego i Chorego Człowieka; wyd. 4; PZWL: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Bawiec, P.; Sawicki, J.; Łasińska-Pracuta, P.; Czop, M.; Sowa, I.; Iłowiecka, K.; Koch, W. In Vitro Evaluation of Bioavailability of Se from Daily Food Rations and Dietary Supplements. Nutrients 2023, 15, 1511. [Google Scholar] [CrossRef] [PubMed]
- Nadolna, I.; Kunachowicz, H.; Iwanow, K. Dishes, Composition and Nutritional Value; National Food and Nutrition Institute: Warsaw, Poland, 1994. (In Polish) [Google Scholar]
- Koch, W.; Karim, M.R.; Marzec, Z.; Miyataka, H.; Himeno, S.; Asakawa, Y. Dietary Intake of Metals by the Young Adult Population of Eastern Poland: Results from a Market Basket Study. J. Trace Elem. Med. Biol. 2016, 35, 36–42. [Google Scholar] [CrossRef]
- Koch, W.; Czop, M.; Nawrocka, A.; Wiącek, D. Contribution of Major Groups of Food Products to the Daily Intake of Selected Elements-Results from Analytical Determinations Supported by Chemometric Analysis. Nutrients 2020, 12, 3412. [Google Scholar] [CrossRef]
- Koch, W.; Czop, M.; Iłowiecka, K.; Nawrocka, A.; Wiącek, D. Dietary Intake of Toxic Heavy Metals with Major Groups of Food Products—Results of Analytical Determinations. Nutrients 2022, 14, 1626. [Google Scholar] [CrossRef]
- Miller, D.D.; Schricker, B.R.; Rasmussen, R.R.; Van Campen, D. An in Vitro Method for Estimation of Iron Availability from Meals. Am. J. Clin. Nutr. 1981, 34, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Zagórska, J.; Pietrzak, K.; Kukula-Koch, W.; Czop, M.; Laszuk, J.; Koch, W. Influence of Diet on the Bioavailability of Active Components from Zingiber Officinale Using an In Vitro Digestion Model. Foods 2023, 12, 3897. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Kukula-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of Chromatographic and Spectroscopic Methods towards the Quality Assessment of Ginger (Zingiber officinale) Rhizomes from Ecological Plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A. Chromium as an Essential Nutrient for Humans. Regul. Toxicol. Pharmacol. 1997, 26, S35–S41. [Google Scholar] [CrossRef] [PubMed]
- Di Bona, K.R.; Love, S.; Rhodes, N.R.; McAdory, D.; Sinha, S.H.; Kern, N.; Kent, J.; Strickland, J.; Wilson, A.; Beaird, J.; et al. Chromium Is Not an Essential Trace Element for Mammals: Effects of a “Low-Chromium” Diet. J. Biol. Inorg. Chem. 2011, 16, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Jankar, J.S. A Comparative Study of Chromium: Therapeutic Uses and Toxicological Effects on Human Health. J. Pharmacol. Pharmacother. 2022, 13, 239–245. [Google Scholar] [CrossRef]
- Jain, S.K.; Rains, J.L.; Croad, J.L. Effect of Chromium Niacinate and Chromium Picolinate Supplementation on Lipid Peroxidation, TNF-Alpha, IL-6, CRP, Glycated Hemoglobin, Triglycerides, and Cholesterol Levels in Blood of Streptozotocin-Treated Diabetic Rats. Free Radic. Biol. Med. 2007, 43, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Krzysik, M.; Grajeta, H. The role of chromium in the etiopathogenesis of selected diseases. Bromat. Chem. Toksykol. 2010, 3, 428–435. (In Polish) [Google Scholar]
- Preuss, H.G.; Echard, B.; Perricone, N.V.; Bagchi, D.; Yasmin, T.; Stohs, S.J. Comparing Metabolic Effects of Six Different Commercial Trivalent Chromium Compounds. J. Inorg. Biochem. 2008, 102, 1986–1990. [Google Scholar] [CrossRef]
- Guallar, E.; Jiménez, F.J.; van’t Veer, P.; Bode, P.; Riemersma, R.A.; Gómez-Aracena, J.; Kark, J.D.; Arab, L.; Kok, F.J.; Martín-Moreno, J.M.; et al. Low Toenail Chromium Concentration and Increased Risk of Nonfatal Myocardial Infarction. Am. J. Epidemiol. 2005, 162, 157–164. [Google Scholar] [CrossRef]
- Avenue, 677 Huntington; Boston; Ma 02115 Chromium. Available online: https://www.hsph.harvard.edu/nutritionsource/chromium/ (accessed on 16 February 2024).
- Anderson, R.; Kozlovsky, A. Chromium Intake, Absorption and Excretion of Subjects Consuming Self-Selected Diets. Am. J. Clin. Nutr. 1985, 41, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.B. Recent Advances in the Nutritional Biochemistry of Trivalent Chromium. Proc. Nutr. Soc. 2004, 63, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Doisy, R.J.; Streeten, D.H.P.; Freiberg, J.M.; Schneider, A.J. 29—Chromium Metabolism in Man and Biochemical Effects. In Essential and Toxic Element; Prasad, A.S., Ed.; Academic Press: Cambridge, MA, USA, 1976; pp. 79–104. ISBN 978-0-12-564202-6. [Google Scholar]
- Offenbacher, E.G. Chromium in the Elderly. Biol. Trace Elem. Res. 1992, 32, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Fairweather-Tait, S.; Hurrell, R.F. Bioavailability of Minerals and Trace Elements. Nutr. Res. Rev. 1996, 9, 295–324. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Bhattacharya, B.; Mukherjee, B.; Manna, B.; Sinha, M.; Chowdhury, J.; Chowdhury, S. Role of Chromium Supplementation in Indians with Type 2 Diabetes Mellitus. J. Nutr. Biochem. 2002, 13, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Clodfelder, B.J.; Upchurch, R.G.; Vincent, J.B. A Comparison of the Insulin-Sensitive Transport of Chromium in Healthy and Model Diabetic Rats. J. Inorg. Biochem. 2004, 98, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Krejpcio, Z. Essentiality of Chromium for Human Nutrition and Health. Pol. J. Environ. Stud. 2001, 10, 399–404. [Google Scholar]
- Hambidge, M. Biomarkers of Trace Mineral Intake and Status. J. Nutr. 2003, 133, 948S–955S. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T.; Hu, F.B. Role of Chromium in Human Health and in Diabetes. Diabetes Care 2004, 27, 2741–2751. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Chromium. Available online: https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/ (accessed on 31 January 2024).
- Tian, H.; Guo, X.; Wang, X.; He, Z.; Sun, R.; Ge, S.; Zhang, Z. Chromium Picolinate Supplementation for Overweight or Obese Adults. Cochrane Database Syst. Rev. 2013, 2013, CD010063. [Google Scholar] [CrossRef]
- Maleki, V.; Izadi, A.; Farsad-Naeimi, A.; Alizadeh, M. Chromium Supplementation Does Not Improve Weight Loss or Metabolic and Hormonal Variables in Patients with Polycystic Ovary Syndrome: A Systematic Review. Nutr. Res. 2018, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.; Posadzki, P.; Ernst, E. Chromium Supplementation in Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Obes. Rev. 2013, 14, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.B. The Potential Value and Toxicity of Chromium Picolinate as a Nutritional Supplement, Weight Loss Agent and Muscle Development Agent. Sports Med. 2003, 33, 213–230. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes—2010. Diabetes Care 2010, 33, S11–S61. [Google Scholar] [CrossRef] [PubMed]
- Nutrition, C. for F.S. and A. Labeling & Nutrition—Qualified Health Claims: Letter of Enforcement Discretion—Chromium Picolinate and Insulin Resistance (Docket No. 2004Q-0144). Available online: http://wayback.archive-it.org/7993/20171114183739/https://www.fda.gov/Food/IngredientsPackagingLabeling/LabelingNutrition/ucm073017.htm (accessed on 8 February 2024).
- Cefalu, W.T.; Bell-Farrow, A.D.; Stegner, J.; Wang, Z.Q.; King, T.; Morgan, T.; Terry, J.G. Effect of Chromium Picolinate on Insulin Sensitivity in Vivo. J. Trace Elem. Exp. Med. 1999, 12, 71–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, M.; Shang, Y.; Dou, M.; Gao, S.; Yang, H.; Zhang, F. Effects of Co-Supplementation of Chromium and Magnesium on Metabolic Profiles, Inflammation, and Oxidative Stress in Impaired Glucose Tolerance. Diabetes Vasc. Dis. Res. 2024, 21, 14791641241228156. [Google Scholar] [CrossRef] [PubMed]
- Bodarski, R.; Kinal, S.; Król, B.; Mońka, M.; Słupczyńska, M.; Tronina, W. Bioavailability of organic and inorganic sources of chromium in broiler chicken feeds. J. Elem. 2017, 22, 283–294. [Google Scholar] [CrossRef]
- Laschinsky, N.; Kottwitz, K.; Freund, B.; Dresow, B.; Fischer, R.; Nielsen, P. Bioavailability of Chromium(III)-Supplements in Rats and Humans. Biometals 2012, 25, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, N.R.; McAdory, D.; Love, S.; Di Bona, K.R.; Chen, Y.; Ansorge, K.; Hira, J.; Kern, N.; Kent, J.; Lara, P.; et al. Urinary Chromium Loss Associated with Diabetes Is Offset by Increases in Absorption. J. Inorg. Biochem. 2010, 104, 790–797. [Google Scholar] [CrossRef]
- Clancy, S.P.; Clarkson, P.M.; DeCheke, M.E.; Nosaka, K.; Freedson, P.S.; Cunningham, J.J.; Valentine, B. Effects of Chromium Picolinate Supplementation on Body Composition, Strength, and Urinary Chromium Loss in Football Players. Int. J. Sport. Nutr. 1994, 4, 142–153. [Google Scholar] [CrossRef]
- Stearns, D.M.; Belbruno, J.J.; Wetterhahn, K.E. A Prediction of Chromium(III) Accumulation in Humans from Chromium Dietary Supplements. FASEB J. 1995, 9, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- DiSilvestro, R.A.; Dy, E. Comparison of Acute Absorption of Commercially Available Chromium Supplements. J. Trace Elem. Med. Biol. 2007, 21, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Emamverdian, A.; Pehlivan, N.; Zargar, M.; Razavi, S.M.; Chen, M. Nano-enabled agrochemicals: Mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J. Nanobiotechnol. 2024, 22, 91. [Google Scholar] [CrossRef] [PubMed]
Cr | |||
---|---|---|---|
Product No | Chemical Form | Supplement Type | Pharmaceutical Form |
1 | chromium picolinate | vitamin–mineral | coated tablets |
2 | chromium picolinate | vitamin–mineral | lozenges |
3 | organic chromium yeast | single-mineral | tablets |
4 | chromium chloride 1 | vitamin–mineral | tablets |
5 | chromium picolinate | single-mineral | tablets |
6 | chromium chloride 1 | vitamin–mineral 2 | tablets |
Parameter | Cr (GF-AAS) | Cr (ICP-OES) |
---|---|---|
Reference value (mg/kg) | 0.15 | 0.15 |
Determined value (mg/kg) | 0.15 | 0.16 |
0.14 | 0.17 | |
0.15 | 0.18 | |
0.17 | 0.14 | |
0.17 | 0.18 | |
0.16 | 0.17 | |
Average | 0.16 | 0.17 |
SD | 0.012 | 0.015 |
RSD (%) | 7.50 | 8.82 |
Recovery (%) | 106.7 | 113.3 |
LOD (µg/kg) | 0.57 | 1.20 |
LOQ (µg/kg) | 2.20 | 4.30 |
Dietary Supplement No | Chemical Form | Diet | M | Me | Min | Max | IQR | SD | One-Way ANOVA | Tukey’s Post Hoc Test Results | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | Group 1 | Group 2 | p | |||||||||
Without (%) | --- | Standard | 2.97 | 2.91 | 2.46 | 3.55 | 0.40 | 0.36 | 6.06 | <0.01 | Standard | Basic | <0.01 |
Basic | 3.70 | 3.81 | 3.02 | 4.77 | 0.88 | 0.59 | Standard | High residue | >0.05 | ||||
High residue | 3.22 | 3.16 | 2.73 | 3.80 | 0.19 | 0.36 | Basic | High residue | >0.05 | ||||
1 | chromium picolinate | Standard | 8.08 | 8.03 | 6.58 | 9.98 | 0.79 | 0.96 | 42.06 | <0.001 | Standard | Basic | <0.001 |
Basic | 5.61 | 5.69 | 5.12 | 6.09 | 0.51 | 0.35 | Standard | High residue | <0.001 | ||||
High residue | 6.04 | 5.95 | 5.74 | 6.43 | 0.42 | 0.27 | Basic | High residue | >0.05 | ||||
2 | chromium picolinate | Standard | 6.08 | 6.18 | 5.54 | 6.29 | 0.27 | 0.27 | 5.44 | <0.05 | Standard | Basic | >0.05 |
Basic | 6.44 | 6.29 | 5.99 | 7.05 | 0.75 | 0.41 | Standard | High residue | >0.05 | ||||
High residue | 5.97 | 5.97 | 5.65 | 6.43 | 0.21 | 0.24 | Basic | High residue | <0.05 | ||||
3 | organic chromium yeast | Standard | 2.14 | 2.09 | 1.58 | 2.69 | 0.43 | 0.33 | 26.73 | <0.001 | Standard | Basic | <0.001 |
Basic | 2.78 | 2.79 | 2.59 | 2.91 | 0.20 | 0.12 | Standard | High residue | <0.001 | ||||
High residue | 2.83 | 2.78 | 2.64 | 3.09 | 0.26 | 0.16 | Basic | High residue | >0.05 | ||||
4 | chromium (III) chloride | Standard | 0.96 | 0.95 | 0.91 | 1.03 | 0.05 | 0.05 | 7.68 | <0.01 | Standard | Basic | >0.05 |
Basic | 0.96 | 0.95 | 0.74 | 1.18 | 0.31 | 0.17 | Standard | High residue | <0.01 | ||||
High residue | 0.79 | 0.79 | 0.74 | 0.84 | 0.08 | 0.04 | Basic | High residue | <0.01 | ||||
5 | chromium picolinate | Standard | 3.72 | 3.71 | 3.27 | 4.18 | 0.39 | 0.29 | 189.03 | <0.001 | Standard | Basic | <0.001 |
Basic | 6.31 | 6.41 | 5.81 | 7.05 | 0.50 | 0.40 | Standard | High residue | <0.001 | ||||
High residue | 6.45 | 6.45 | 6.10 | 6.85 | 0.55 | 0.30 | Basic | High residue | >0.05 | ||||
6 | chromium (III) chloride | Standard | 1.02 | 1.02 | 0.96 | 1.08 | 0.05 | 0.04 | 146.51 | <0.001 | Standard | Basic | <0.001 |
Basic | 1.78 | 1.73 | 1.65 | 1.95 | 0.18 | 0.11 | Standard | High residue | <0.001 | ||||
High residue | 1.37 | 1.37 | 1.20 | 1.53 | 0.16 | 0.12 | Basic | High residue | <0.001 |
Chemical Form | Diet | M | Me | Min | Max | IQR | SD | One-Way ANOVA | Tukey’s Post Hoc Test Results | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | Group 1 | Group 2 | p | ||||||||
chromium picolinate(%) | Standard | 5.96 | 6.18 | 3.27 | 9.98 | 3.83 | 1.91 | 0.22 | >0.05 | Standard | Basic | >0.05 |
Basic | 6.12 | 6.09 | 5.12 | 7.05 | 0.70 | 0.53 | Standard | High residue | >0.05 | |||
High residue | 6.15 | 6.11 | 5.65 | 6.85 | 0.52 | 0.34 | Basic | High residue | >0.05 | |||
chromium (III) chloride (%) | Standard | 0.99 | 0.99 | 0.91 | 1.08 | 0.08 | 0.05 | 7.17 | <0.01 | Standard | Basic | <0.01 |
Basic | 1.37 | 1.42 | 0.74 | 1.95 | 0.78 | 0.45 | Standard | High residue | >0.05 | |||
High residue | 1.08 | 1.02 | 0.74 | 1.53 | 0.58 | 0.31 | Basic | High residue | <0.05 | |||
organic chromium yeast (%) | Standard | 2.14 | 2.09 | 1.58 | 2.69 | 0.43 | 0.33 | 26.73 | <0.001 | Standard | Basic | <0.001 |
Basic | 2.78 | 2.79 | 2.59 | 2.91 | 0.20 | 0.12 | Standard | High residue | <0.001 | |||
High residue | 2.83 | 2.78 | 2.64 | 3.09 | 0.26 | 0.16 | Basic | High residue | >0.05 |
Pharmaceutical Form | M | Me | Min | Max | IQR | SD | Kruskal–Wallis ANOVA | |
---|---|---|---|---|---|---|---|---|
H | p | |||||||
Diet (%) | 3.29 | 3.15 | 2.46 | 4.77 | 0.84 | 0.53 | 84.82 | <0.001 |
Coated tablets (%) | 6.58 | 6.09 | 5.12 | 9.98 | 2.00 | 1.25 | ||
Losenges (%) | 6.16 | 6.13 | 5.54 | 7.05 | 0.32 | 0.37 | ||
Tablets (%) | 2.59 | 1.91 | 0.74 | 7.05 | 2.16 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawiec, P.; Sawicki, J.; Łasińska-Pracuta, P.; Czop, M.; Sowa, I.; Helon, P.; Pietrzak, K.; Koch, W. In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market. Nutrients 2024, 16, 1022. https://doi.org/10.3390/nu16071022
Bawiec P, Sawicki J, Łasińska-Pracuta P, Czop M, Sowa I, Helon P, Pietrzak K, Koch W. In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market. Nutrients. 2024; 16(7):1022. https://doi.org/10.3390/nu16071022
Chicago/Turabian StyleBawiec, Piotr, Jan Sawicki, Paulina Łasińska-Pracuta, Marcin Czop, Ireneusz Sowa, Paweł Helon, Karolina Pietrzak, and Wojciech Koch. 2024. "In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market" Nutrients 16, no. 7: 1022. https://doi.org/10.3390/nu16071022
APA StyleBawiec, P., Sawicki, J., Łasińska-Pracuta, P., Czop, M., Sowa, I., Helon, P., Pietrzak, K., & Koch, W. (2024). In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market. Nutrients, 16(7), 1022. https://doi.org/10.3390/nu16071022