Preterm Infants’ Airway Microbiome: A Scoping Review of the Current Evidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Airway Microbiome Differences between Term and Preterm Infants
3.2. Airway Microbiome Temporal and Anatomical Modification
3.3. Airway Microbiome and the Immune System
3.4. Airway Microbiome and Perinatal Factors
3.5. Airway Microbiome Functionality
3.6. Airway Microbiome and BPD
4. Studies Excluded after Full-Text Screening
5. Discussion
6. Limitations, Knowledge Gaps, and Directions for Future Research
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lohmann, P.; Luna, R.A.; Hollister, E.B.; Devaraj, S.; Mistretta, T.-A.; Welty, S.E.; Versalovic, J. The Airway Microbiome of Intubated Premature Infants: Characteristics and Changes That Predict the Development of Bronchopulmonary Dysplasia. Pediatr. Res. 2014, 76, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M.; Lal, C.V.; Wagner, B.D.; Mourani, P.M.; Lohmann, P.; Luna, R.A.; Sisson, A.; Shivanna, B.; Hollister, E.B.; Abman, S.H.; et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J. Pediatr. 2019, 204, 126–133.e2. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.R.; Maffei, D.; Cerise, J.; Ahn, S.; DeVoti, J.; Codipilly, C.; Lee, A.; Weinberger, B. Determinants of the Lung Microbiome in Intubated Premature Infants at Risk for Bronchopulmonary Dysplasia. J. Matern. Fetal Neonatal Med. 2021, 34, 3220–3226. [Google Scholar] [CrossRef]
- Gallacher, D.J.; Kotecha, S. Respiratory Microbiome of New-Born Infants. Front. Pediatr. 2016, 4, 10. [Google Scholar] [CrossRef]
- Perez-Muñoz, M.E.; Arrieta, M.-C.; Ramer-Tait, A.E.; Walter, J. A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome 2017, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, V.; Aly, H. Microbiota and Chronic Lung Disease in Preterm Infants. Where Is the Truth? J. Perinatol. 2020, 40, 983–984. [Google Scholar] [CrossRef]
- Althouse, M.H.; Lingappan, K.; Jiang, W.; Stewart, C.; Moorthy, B. Role of Gut Microbiota in Neonatal Lung Injury: Implications for Bronchopulmonary Dysplasia. Pediatrics 2019, 144, 682. [Google Scholar] [CrossRef]
- Tirone, C.; Pezza, L.; Paladini, A.; Tana, M.; Aurilia, C.; Lio, A.; D’ippolito, S.; Tersigni, C.; Posteraro, B.; Sanguinett, M.; et al. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front. Immunol. 2019, 10, 2910. [Google Scholar] [CrossRef]
- Cortez, R.V.; Fernandes, A.; Sparvoli, L.G.; Padilha, M.; Feferbaum, R.; Neto, C.M.; Taddei, C.R. Impact of Oropharyngeal Administration of Colostrum in Preterm Newborns’ Oral Microbiome. Nutrients 2021, 13, 4224. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.-S.; Jung, Y.H.; Choi, K.Y.; Shin, S.H.; Kim, E.-K.; Choi, J.-H. Oropharyngeal Colostrum Administration in Extremely Premature Infants: An RCT. Pediatrics 2015, 135, e357–e366. [Google Scholar] [CrossRef]
- Panchal, H.; Athalye-Jape, G.; Patole, S. Oropharyngeal Colostrum for Preterm Infants: A Systematic Review and Meta-Analysis. Adv. Nutr. Bethesda Md 2019, 10, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Følsgaard, N.V.; Schjørring, S.; Chawes, B.L.; Rasmussen, M.A.; Krogfelt, K.A.; Brix, S.; Bisgaard, H. Pathogenic Bacteria Colonizing the Airways in Asymptomatic Neonates Stimulates Topical Inflammatory Mediator Release. Am. J. Respir. Crit. Care Med. 2013, 187, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Permall, D.L.; Pasha, A.B.; Chen, X.Q.; Lu, H.Y. The Lung Microbiome in Neonates. Turk. J. Pediatr. 2019, 61, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping Studies: Advancing the Methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- dos Anjos Borges, L.G.; Pastuschek, J.; Heimann, Y.; Dawczynski, K.; Schleußner, E.; Pieper, D.H.; Zöllkau, J. Vaginal and Neonatal Microbiota in Pregnant Women with Preterm Premature Rupture of Membranes and Consecutive Early Onset Neonatal Sepsis. Neonatol. Today 2023, 18, 204–205. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, D.; Mitchell, E.; Alber, D.; Wach, R.; Klein, N.; Marchesi, J.R.; Kotecha, S. Dissimilarity of the Gut-Lung Axis and Dysbiosis of the Lower Airways in Ventilated Preterm Infants. Eur. Respir. J. 2020, 55, 1901909. [Google Scholar] [CrossRef]
- Grier, A.; McDavid, A.; Wang, B.; Qiu, X.; Java, J.; Bandyopadhyay, S.; Yang, H.; Holden-Wiltse, J.; Kessler, H.A.; Gill, A.L.; et al. Neonatal Gut and Respiratory Microbiota: Coordinated Development through Time and Space. Microbiome 2018, 6, 193. [Google Scholar] [CrossRef]
- Lal, C.V.; Travers, C.; Aghai, Z.H.; Eipers, P.; Jilling, T.; Halloran, B.; Carlo, W.A.; Keeley, J.; Rezonzew, G.; Kumar, R.; et al. The Airway Microbiome at Birth. Sci. Rep. 2016, 6, 31023. [Google Scholar] [CrossRef]
- McDavid, A.; Laniewski, N.; Grier, A.; Gill, A.L.; Kessler, H.A.; Huyck, H.; Carbonell, E.; Holden-Wiltse, J.; Bandyopadhyay, S.; Carnahan, J.; et al. Aberrant Newborn T Cell and Microbiota Developmental Trajectories Predict Respiratory Compromise during Infancy. iScience 2022, 25, 104007. [Google Scholar] [CrossRef]
- Mourani, P.M.; Harris, J.; Sontag, M.K.; Robertson, C.E.; Abman, S.H. Molecular Identification of Bacteria in Tracheal Aspirate Fluid from Mechanically Ventilated Preterm Infants. PLoS ONE 2011, 6, e25959. [Google Scholar] [CrossRef]
- Pattaroni, C.; Watzenboeck, M.L.; Schneidegger, S.; Kieser, S.; Wong, N.C.; Bernasconi, E.; Pernot, J.; Mercier, L.; Knapp, S.; Nicod, L.P.; et al. Early-Life Formation of the Microbial and Immunological Environment of the Human Airways. Cell Host Microbe 2018, 24, 857–865.e4. [Google Scholar] [CrossRef]
- Payne, M.S.; Goss, K.C.W.; Connett, G.J.; Kollamparambil, T.; Legg, J.P.; Thwaites, R.; Ashton, M.; Puddy, V.; Peacock, J.L.; Bruce, K.D. Molecular Microbiological Characterization of Preterm Neonates at Risk of Bronchopulmonary Dysplasia. Pediatr. Res. 2010, 67, 412–418. [Google Scholar] [CrossRef]
- Rosenboom, I.; Pust, M.-M.; Pirr, S.; Bakker, A.; Willers, M.; Davenport, C.F.; Wiehlmann, L.; Viemann, D.; Tummler, B. Longitudinal Development of the Airway Metagenome of Preterm Very Low Birth Weight Infants during the First Two Years of Life. ISME Commun. 2023, 3, 75. [Google Scholar] [CrossRef]
- Selway, C.A.; Collins, C.T.; Makrides, M.; Sullivan, T.R.; Weyrich, L.S.; N3RO Steering Committee. Variable Preterm Oral Microbiome Stabilizes and Reflects a Full-Term Infant Profile within Three Months. Pediatr. Res. 2023. [Google Scholar] [CrossRef]
- Stressmann, F.A.; Connett, G.J.; Goss, K.; Kollamparambil, T.G.; Patel, N.; Payne, M.S.; Puddy, V.; Legg, J.; Bruce, K.D.; Rogers, G.B. The Use of Culture-Independent Tools to Characterize Bacteria in Endo-Tracheal Aspirates from Pre-Term Infants at Risk of Bronchopulmonary Dysplasia. J. Perinat. Med. 2010, 38, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Tirone, C.; Paladini, A.; De Maio, F.; Tersigni, C.; D’Ippolito, S.; Di Simone, N.; Monzo, F.R.; Santarelli, G.; Bianco, D.M.; Tana, M.; et al. The Relationship Between Maternal and Neonatal Microbiota in Spontaneous Preterm Birth: A Pilot Study. Front. Pediatr. 2022, 10, 909962. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yu, J.; Liu, D.; Tan, Q.; He, Y. The Airway Microbiome and Metabolome in Preterm Infants: Potential Biomarkers of Bronchopulmonary Dysplasia. Front. Pediatr. 2022, 10, 862157. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huang, Y.; Shen, Z.; Shi, L. The Nasal Microbiome of Predicting Bronchopulmonary Dysplasia in Preterm Infants. Sci. Rep. 2022, 12, 7727. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Qiao, L.; Shi, J.; Xie, L.; Liu, Y.; Xiong, Y.; Liu, H. Clinical Study of Correlation for the Intestinal and Pharyngeal Microbiota in the Premature Neonates. Front. Pediatr. 2021, 9, 632573. [Google Scholar] [CrossRef]
- Yao, J.; Ai, T.; Zhang, L.; Tang, W.; Chen, Z.; Huang, Y.; Fan, Y. Bacterial Colonization in the Airways and Intestines of Twin and Singleton Preterm Neonates: A Single-Center Study. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 2973605. [Google Scholar] [CrossRef]
- Young, G.R.; van der Gast, C.J.; Smith, D.L.; Berrington, J.E.; Embleton, N.D.; Lanyon, C. Acquisition and Development of the Extremely Preterm Infant Microbiota Across Multiple Anatomical Sites. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 12–19. [Google Scholar] [CrossRef]
- Wagner, B.D.; Sontag, M.K.; Harris, J.K.; Miller, J.I.; Morrow, L.; Robertson, C.E.; Stephens, M.; Poindexter, B.B.; Abman, S.H.; Mourani, P.M. Airway Microbial Community Turnover Differs by BPD Severity in Ventilated Preterm Infants. PLoS ONE 2017, 12, e0170120. [Google Scholar] [CrossRef]
- Wagner, B.D.; Sontag, M.K.; Harris, J.K.; Miller, J.I.; Morrow, L.; Robertson, C.E.; Stephens, M.J.; Poindexter, B.B.; Abman, S.H.; Mourani, P.M. Prenatal Complications Are Associated with the Postnatal Airway Host Response and Microbiota in Intubated Preterm Infants. J. Matern. Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2019, 32, 1499–1506. [Google Scholar] [CrossRef]
- Abele-Horn, M.; Genzel-Boroviczény, O.; Uhlig, T.; Zimmermann, A.; Peters, J.; Scholz, M. Ureaplasma Urealyticum Colonization and Bronchopulmonary Dysplasia: A Comparative Prospective Multicentre Study. Eur. J. Pediatr. 1998, 157, 1004–1011. [Google Scholar] [CrossRef]
- Viscardi, R.M.; Hasday, J.D. Role of Ureaplasma Species in Neonatal Chronic Lung Disease: Epidemiologic and Experimental Evidence. Pediatr. Res. 2009, 65, 84R–90R. [Google Scholar] [CrossRef] [PubMed]
- Colaizy, T.T.; Morris, C.D.; Lapidus, J.; Sklar, R.S.; Pillers, D.-A.M. Detection of Ureaplasma DNA in Endotracheal Samples Is Associated with Bronchopulmonary Dysplasia after Adjustment for Multiple Risk Factors. Pediatr. Res. 2007, 61, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Inatomi, T.; Oue, S.; Ogihara, T.; Hira, S.; Hasegawa, M.; Yamaoka, S.; Yasui, M.; Tamai, H. Antenatal Exposure to Ureaplasma Species Exacerbates Bronchopulmonary Dysplasia Synergistically with Subsequent Prolonged Mechanical Ventilation in Preterm Infants. Pediatr. Res. 2012, 71, 267–273. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S rRNA Marker Gene Sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Sato, M.; Go, H.; Ogasawara, K.; Kanai, Y.; Maeda, H.; Chishiki, M.; Shimizu, H.; Mashiyama, F.; Goto, A.; et al. The Microbiome of the Lower Respiratory Tract in Premature Infants with and without Severe Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 34, 80–87. [Google Scholar] [CrossRef]
- Bourgeois-Nicolaos, N.; Raynor, A.; Shankar-Aguilera, S.; Schwartz, E.; Doucet-Populaire, F.; De Luca, D. Breast Milk in Neonate Oral Care: Oropharyngeal Effects in Extremely Preterm Infants. Eur. J. Pediatr. 2023, 182, 385–392. [Google Scholar] [CrossRef]
- Lauer, T.; Behnke, J.; Oehmke, F.; Baecker, J.; Gentil, K.; Chakraborty, T.; Schloter, M.; Gertheiss, J.; Ehrhardt, H. Bacterial Colonization within the First Six Weeks of Life and Pulmonary Outcome in Preterm Infants <1000 g. J. Clin. Med. 2020, 9, 2240. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, D.; Alber, D.; Logan, G.; Klein, N.; Marchesi, J.; Kotecha, S. Early Life Lung Microbiome in Preterm Infants. Eur. Respir. J. 2018, 52, PA4657. [Google Scholar] [CrossRef]
- Deshpande, G.; Bhaskaracharya, A. Probiotics for Preterm Neonates—A Prospective Observational Study (Pop-Study). J. Paediatr. Child Health 2019, 55, 17. [Google Scholar] [CrossRef]
- Gorlanova, O.; Nissen-Kratzert, A.; Mostacci, N.; Künstle, N.; Marten, A.; Gisler, A.; Bacher, K.; Salem, Y.; Usemann, J.; Korten, I.; et al. Comparison of nasal microbiota between term and preterm infants at mean post-menstrual age of 45 weeks. Klin. Pädiatr. 2022, 234, P55. [Google Scholar] [CrossRef]
- Rajar, P.; Dhariwal, A.; Salvadori, G.; Junges, R.; Amdal, H.A.; Berild, D.; Fugelseth, D.; Saugstad, O.D.; Lausten-Thomsen, U.; Greisen, G.; et al. Image_3_Microbial DNA Extraction of High-Host Content and Low Biomass Samples: Optimized Protocol for Nasopharynx Metagenomic Studies. Front. Microbiol. 2022, 13, 1038120. [Google Scholar] [CrossRef]
- Rofael, S.A.D.; McHugh, T.D.; Troughton, R.; Beckmann, J.; Spratt, D.; Marlow, N.; Hurst, J.R. Airway Microbiome in Adult Survivors of Extremely Preterm Birth: The EPICure Study. Eur. Respir. J. 2019, 53, 1801225. [Google Scholar] [CrossRef]
- Perez, G.F.; Pérez-Losada, M.; Isaza, N.; Rose, M.C.; Colberg-Poley, A.M.; Nino, G. Nasopharyngeal Microbiome in Premature Infants and Stability during Rhinovirus Infection. J. Investig. Med. 2017, 65, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Koerner, R.; Prescott, S.; Alman, A.; Duffy, A.; Groer, M. The Oral Microbiome Throughout Pregnancy: A Scoping Review. MCN. Am. J. Matern. Child Nurs. 2023, 48, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Warnken, S.; Pérez-Losada, M.; Freishtat, R.J.; Crandall, K.A. Microbial Diversity within the Airway Microbiome in Chronic Pediatric Lung Diseases. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2018, 63, 316–325. [Google Scholar] [CrossRef]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef]
- Casado, F.; Morty, R.E. The Emergence of Preclinical Studies on the Role of the Microbiome in Lung Development and Experimental Animal Models of Bronchopulmonary Dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 318, L402–L404. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.E.; Willis, K.A.; Qiao, L.; Abdelgawad, A.S.; Halloran, B.; Rezonzew, G.; Nizami, Z.; Wenger, N.; Gaggar, A.; Ambalavanan, N.; et al. Microbial-Induced Redox Imbalance in the Neonatal Lung Is Ameliorated by Live Biotherapeutics. Am. J. Respir. Cell Mol. Biol. 2023, 68, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Hilton, S.K.; Castro-Nallar, E.; Pérez-Losada, M.; Toma, I.; McCaffrey, T.A.; Hoffman, E.P.; Siegel, M.O.; Simon, G.L.; Johnson, W.E.; Crandall, K.A. Metataxonomic and Metagenomic Approaches vs. Culture-Based Techniques for Clinical Pathology. Front. Microbiol. 2016, 7, 484. [Google Scholar] [CrossRef]
- Castro-Nallar, E.; Shen, Y.; Freishtat, R.J.; Pérez-Losada, M.; Manimaran, S.; Liu, G.; Johnson, W.E.; Crandall, K.A. Integrating Microbial and Host Transcriptomics to Characterize Asthma-Associated Microbial Communities. BMC Med. Genomics 2015, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Grady, N.G.; Petrof, E.O.; Claud, E.C. Microbial Therapeutic Interventions. Semin. Fetal. Neonatal Med. 2016, 21, 418–423. [Google Scholar] [CrossRef]
- Johnson, C.L.; Versalovic, J. The Human Microbiome and Its Potential Importance to Pediatrics. Pediatrics 2012, 129, 950–960. [Google Scholar] [CrossRef]
- Xiao, Y.; Bi, M.; Guo, H.; Li, M. Multi-Omics Approaches for Biomarker Discovery in Early Ovarian Cancer Diagnosis. eBioMedicine 2022, 79, 104001. [Google Scholar] [CrossRef]
Study | Country | Population | N° of Neonates | Microbiome Site | Aim |
---|---|---|---|---|---|
Brewer 2021 [3] | USA | GA ≤ 32 weeks, birth weight (BW) < 2000 g and intubated for respiratory distress syndrome | 42 | Tracheal aspirates (TA) on days 3–7, oral aspirate DOL 3 | Oral vs tracheal microbiota during the first week of life, effects of OPC administration on microbial diversity or leukocyte inflammatory activity in the lung |
dos Anjos Borges 2023 [17] | Germany | GA ≤ 34 weeks born from mothers with preterm premature rupture of membranes (PPROM) | 89 | vaginal swab—umbilical cord blood (UC), rectal swabs (RE), and pharyngeal swabs (PH) at delivery-meconium sample prior to 48 h of life | Correlation between vaginal PPROM mothers’ microbiome and pharyngeal/umbilical cord/meconium/rectal neonatal microbiota |
Gallacher 2020 [18] | UK | GA ≤ 32 weeks and intubated | 55 | TAF, BAL, and NPA daily during the first week then twice weekly or until extubation, stool weekly until 28 DOL | Temporal modification of bacterial communities, gut–lung axis. Association between the bacterial communities and lung inflammation. |
Grier 2018 [19] | USA | Preterm and full-term infants | 82 | Rectal, nasal, throat swabs weekly during admission, monthly after discharge until 1 year of corrected age (CA) | Temporal modifications of the early microbiota and associations of microbiota across body sites. Differences between term and preterm infants’ microbiota. |
Lal 2016 [20] | USA | ELBW preterm infants, full-term infants | 51 | TA at intubation and at clinically indicated tracheal suctioning | Differences in preterm and FT infants’ airway microbiota and association with risk of developing BPD |
Lohman 2014 [1] | Texas, USA | GA ≤ 32 weeks and intubated in the first 24 h | 25 | TA at intubation and 3, 7, and 28 DOL | BPD |
McDavid 2022 [21] | USA | GA 23–42 weeks | 267 | Nasal swab or rectal swab weekly or monthly in the first year of life | Correlation between immune system, microbiota and respiratory morbidity |
Mourani 2011 [22] | Colorado, USA | GA ≤ 34 weeks, BW 500–1250 g, mechanical ventilation (MV) for at least 21 days | 10 | TA within 72 h of birth and 7, 14, and 21 DOL | BPD |
Pattaroni 2018 [23] | Switzerland and New Zealand | GA 23–41 weeks with endotracheal intubation for elective surgery or respiratory support | 52 | TA at postnatal age 1 day–1 year | To identify the early-life bacterial colonization pattern of the lower airways in relation to the maturating immune system during the first year of life. |
Payne 2010 [24] | UK | BW < 1300 g requiring MV for at least 24 h | 55 | Gastric fluid aspirate, Endo-TA (ETA) within 24 h of life | BPD |
Rosenboom 2023 [25] | Germany | GA 24–33 weeks, full-term infants | 24 | Oropharyngeal swabs at week 1 of life, 1–9–15 months of life | Longitudinal development of the airway metagenome of preterm infants during the first 2 YOL. |
Selway 2023 [26] | Australia | Preterm infants, full-term infants, adult | 64 and 16 adults | Buccal swab 2–12 DOL and 36 weeks GA, TA at intubation | Compare preterm–term infant–adult microbiome and BPD/sepsis |
Stressman 2010 [27] | UK | GA ≤ 31 weeks, intubated at birth and received surfactant therapy | 8 | ETA in the first week of life | to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions |
Tirone 2022 [28] | Italy | GA ≤ 30 weeks intubated in the first 24 h of life and their mothers | 29 and 26 mothers | Mothers’ vaginal swab, newborns’ BAL fluid at 1–3–7 DOL and meconium specimen | Relationship between maternal vaginal microbiota and neonatal lung and intestinal microbiota; association between neonatal lung/meconium microbiota and BPD |
Xu 2022a [29] | China | GA < 34 weeks and intubated in the first 24 h | 28 | TA day 1 and 7 | Mild, moderate, severe BPD and no BPD |
Xu 2022b [30] | China | GA ≤ 30 weeks | 28 | Nasal swab 5–7 DOL and 15–21 DOL | BPD |
Yang 2021 [31] | China | GA 26–32 weeks | 13 | Stool samples and pharyngeal swabs 1–28 DOL | Gut–lung axis |
Yao 2023 [32] | China | GA 32–35 weeks | 40 | Endotracheal suction at birth and stool specimen from the first fetal stool | Diversity and community structure in the bacterial microbiome of the airways and intestines of preterm twin and singleton neonates |
Young 2020 [33] | UK | GA < 26 weeks | 7 | Oral and endotracheal secretions, stool, and breast milk over the first 60 days of life | Characterize the development of microbiota |
Wagner 2017 [34] | USA | GA ≤ 34 weeks and BW 500–1250 g and MV | 152 | TA at enrollment, 7, 14, and 21 DOL (±48 h) | BPD |
Wagner 2019 [35] | USA | GA ≤ 34 weeks and BW 500–1250 g and MV | 71 | TA at 7 ± 48 h DOL | Relationship between prenatal events, postnatal airway host response and microbiota, and clinical outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, S.F.G.; Nava, C.; Castoldi, F.; Fabiano, V.; Meneghin, F.; Lista, G.; Cavigioli, F. Preterm Infants’ Airway Microbiome: A Scoping Review of the Current Evidence. Nutrients 2024, 16, 465. https://doi.org/10.3390/nu16040465
Colombo SFG, Nava C, Castoldi F, Fabiano V, Meneghin F, Lista G, Cavigioli F. Preterm Infants’ Airway Microbiome: A Scoping Review of the Current Evidence. Nutrients. 2024; 16(4):465. https://doi.org/10.3390/nu16040465
Chicago/Turabian StyleColombo, Sofia Fatima Giuseppina, Chiara Nava, Francesca Castoldi, Valentina Fabiano, Fabio Meneghin, Gianluca Lista, and Francesco Cavigioli. 2024. "Preterm Infants’ Airway Microbiome: A Scoping Review of the Current Evidence" Nutrients 16, no. 4: 465. https://doi.org/10.3390/nu16040465
APA StyleColombo, S. F. G., Nava, C., Castoldi, F., Fabiano, V., Meneghin, F., Lista, G., & Cavigioli, F. (2024). Preterm Infants’ Airway Microbiome: A Scoping Review of the Current Evidence. Nutrients, 16(4), 465. https://doi.org/10.3390/nu16040465