The Mediating Role of Oxidative Stress on the Association Between Oxidative Balance Score and Cancer-Related Cognitive Impairment in Lung Cancer Patients: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Sample Size
2.3. Assessment of Cognitive Function
2.4. Physical Activity Assessment
2.5. Dietary Intake Assessment
2.6. OBS Calculation
2.7. Oxidative Stress Biomarkers Determination
2.8. Statistical Analyses
3. Results
3.1. Participants’ Characteristics
3.2. OBS Components
3.3. Association Between OBS and CRCI
3.4. Plasma Oxidative Stress Biomarkers
3.5. Associations Between Plasma Oxidative Stress Biomarkers and CRCI
3.6. Association Between OBS and Plasma Oxidative Stress Biomarkers
3.7. Association Between OBS and CRCI with Oxidative Stress Biomarkers as Mediators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Polanski, J.; Jankowska-Polanska, B.; Rosinczuk, J.; Chabowski, M.; Szymanska-Chabowska, A. Quality of life of patients with lung cancer. Onco. Targets Ther. 2016, 9, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.H.; So, T.W.; Fan, C.L.; Chung, Y.T.; Lin, C.C. Prevalence and assessment tools of cancer-related cognitive impairment in lung cancer survivors: A systematic review and proportional meta-analysis. Support. Care Cancer 2024, 32, 209. [Google Scholar] [CrossRef]
- Országhová, Z.; Mego, M.; Chovanec, M. Long-Term Cognitive Dysfunction in Cancer Survivors. Front. Mol. Biosci. 2021, 8, 770413. [Google Scholar] [CrossRef] [PubMed]
- Cerulla Torrente, N.; Navarro Pastor, J.B.; de la Osa Chaparro, N. Systematic review of cognitive sequelae of non-central nervous system cancer and cancer therapy. J. Cancer Surviv. 2020, 14, 464–482. [Google Scholar] [CrossRef]
- van Deudekom, F.J.; Klop, H.G.; Hartgrink, H.H.; Boonstra, J.J.; Lips, I.M.; Slingerland, M.; Mooijaart, S.P. Functional and cognitive impairment, social functioning, frailty and adverse health outcomes in older patients with esophageal cancer, a systematic review. J. Geriatr. Oncol. 2018, 9, 560–568. [Google Scholar] [CrossRef]
- Ferrat, E.; Audureau, E.; Paillaud, E.; Liuu, E.; Tournigand, C.; Lagrange, J.L.; Canoui-Poitrine, F.; Caillet, P.; Bastuji-Garin, S. Four Distinct Health Profiles in Older Patients with Cancer: Latent Class Analysis of the Prospective ELCAPA Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1653–1660. [Google Scholar] [CrossRef]
- Zuniga, K.E.; Mackenzie, M.J.; Roberts, S.A.; Raine, L.B.; Hillman, C.H.; Kramer, A.F.; McAuley, E. Relationship between fruit and vegetable intake and interference control in breast cancer survivors. Eur. J. Nutr. 2016, 55, 1555–1562. [Google Scholar] [CrossRef]
- Crowder, S.L.; Welniak, T.L.; Hoogland, A.I.; Small, B.J.; Rodriguez, Y.; Carpenter, K.M.; Fischer, S.M.; Li, D.; Kinney, A.Y.; Rotroff, D.; et al. Diet quality indices and changes in cognition during chemotherapy. Support. Care Cancer 2022, 31, 75. [Google Scholar] [CrossRef]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement. 2022, 18, 457–468. [Google Scholar] [CrossRef]
- Duan, H.; Zhou, D.; Xu, N.; Yang, T.; Wu, Q.; Wang, Z.; Sun, Y.; Li, Z.; Li, W.; Ma, F.; et al. Association of Unhealthy Lifestyle and Genetic Risk Factors with Mild Cognitive Impairment in Chinese Older Adults. JAMA Netw. Open 2023, 6, e2324031. [Google Scholar] [CrossRef] [PubMed]
- Rummel, N.G.; Chaiswing, L.; Bondada, S.; St Clair, D.K.; Butterfield, D.A. Chemotherapy-induced cognitive impairment: Focus on the intersection of oxidative stress and TNFα. Cell Mol. Life Sci. 2021, 78, 6533–6540. [Google Scholar] [CrossRef] [PubMed]
- Baierle, M.; Nascimento, S.N.; Moro, A.M.; Brucker, N.; Freitas, F.; Gauer, B.; Durgante, J.; Bordignon, S.; Zibetti, M.; Trentini, C.M.; et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid. Med. Cell Longev. 2015, 2015, 804198. [Google Scholar] [CrossRef] [PubMed]
- van der Meij, B.S.; Langius, J.A.; Spreeuwenberg, M.D.; Slootmaker, S.M.; Paul, M.A.; Smit, E.F.; van Leeuwen, P.A. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: An RCT. Eur. J. Clin. Nutr. 2012, 66, 399–404. [Google Scholar] [CrossRef]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Peskind, E.R.; Li, G.; Shofer, J.B.; Millard, S.P.; Leverenz, J.B.; Yu, C.E.; Raskind, M.A.; Quinn, J.F.; Galasko, D.R.; Montine, T.J. Influence of lifestyle modifications on age-related free radical injury to brain. JAMA Neurol. 2014, 71, 1150–1154. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Cho, A.R.; Kwon, Y.J.; Lee, J.H. Oxidative balance score is inversely associated with the incidence of non-alcoholic fatty liver disease. Clin. Nutr. 2023, 42, 1292–1300. [Google Scholar] [CrossRef]
- Song, L.L.; Li, H.R.; Fu, X.H.; Cen, M.Q.; Wu, J. Association of the Oxidative Balance Score and Cognitive Function and the Mediating Role of Oxidative Stress: Evidence from the National Health and Nutrition Examination Survey (NHANES) 2011–2014. J. Nutr. 2023, 153, 1974–1983. [Google Scholar] [CrossRef]
- Lu, J.; Li, D.; Li, F.; Zhou, A.H.; Wang, F.; Zuo, X.M.; Jia, X.F.; Song, H.Q.; Jia, J.P. Montreal Cognitive Assessment in Detecting Cognitive Impairment in Chinese Elderly Individuals: A Population-Based Study. J. Geriatr. Psychiatry Neuro 2011, 24, 184–190. [Google Scholar] [CrossRef]
- Annor, F.B.; Goodman, M.; Okosun, I.S.; Wilmot, D.W.; Il’yasova, D.; Ndirangu, M.; Lakkur, S. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population. J. Am. Soc. Hypertens. 2015, 9, 592–599. [Google Scholar] [CrossRef]
- Simó, M.; Root, J.C.; Vaquero, L.; Ripollés, P.; Jové, J.; Ahles, T.; Navarro, A.; Cardenal, F.; Bruna, J.; Rodríguez-Fornells, A. Cognitive and Brain Structural Changes in a Lung Cancer Population. J. Thorac. Oncol. 2015, 10, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Langa, K.M.; Larson, E.B.; Crimmins, E.M.; Faul, J.D.; Levine, D.A.; Kabeto, M.U.; Weir, D.R. A Comparison of the Prevalence of Dementia in the United States in 2000 and 2012. JAMA Intern. Med. 2017, 177, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, L.; Rodríguez-Fornells, A.; Pera-Jambrina, M.A.; Bruna, J.; Simó, M. Plasticity in bilateral hippocampi after a 3-month physical activity programme in lung cancer patients. Eur. J. Neurol. 2021, 28, 1324–1333. [Google Scholar] [CrossRef]
- Leigh, S.J.; Morris, M.J. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.X.; Yao, N.; Sun, M.Z.; Guo, R.R.; Wang, F.D.; Wu, Z.B.; Dong, Y.B.; Wang, S.Z.; Li, B. Interaction between composite dietary antioxidant index and physical activity on cognitive impairment in the elderly: NHANES 2011–2014. J. Funct. Foods 2024, 112, 105945. [Google Scholar] [CrossRef]
- Peng, M.; Liu, Y.; Jia, X.; Wu, Y.; Zou, X.; Ke, M.; Cai, K.; Zhang, L.; Lu, D.; Xu, A. Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011–2014. J. Nutr. Health Aging 2023, 27, 479–486. [Google Scholar] [CrossRef]
- Sheng, L.T.; Jiang, Y.W.; Feng, L.; Pan, A.; Koh, W.P. Dietary Total Antioxidant Capacity and Late-Life Cognitive Impairment: The Singapore Chinese Health Study. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 561–569. [Google Scholar] [CrossRef]
- James-Martin, G.; Koczwara, B.; Smith, E.L.; Miller, M.D. Information needs of cancer patients and survivors regarding diet, exercise and weight management: A qualitative study. Eur. J. Cancer Care 2014, 23, 340–348. [Google Scholar] [CrossRef]
- Coro, D.G.; Hutchinson, A.D.; Banks, S.; Coates, A.M. Diet and cognitive function in cancer survivors with cancer-related cognitive impairment: A qualitative study. Eur. J. Cancer Care 2020, 29, e13303. [Google Scholar] [CrossRef]
- Liu, S.; Luo, J.; Xiao, Z.; Wu, W.; Liang, X.; Ding, S.; Zhao, Q.; Zhao, X.; Wang, Y.; Ding, D. Low dietary vitamin E intake is associated with high risk of incident dementia among older adults: The Shanghai Aging Study. Front. Nutr. 2022, 9, 1036795. [Google Scholar] [CrossRef]
- Grodstein, F.; Chen, J.; Willett, W.C. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am. J. Clin. Nutr. 2003, 77, 975–984. [Google Scholar] [CrossRef]
- Vercambre, M.N.; Boutron-Ruault, M.C.; Ritchie, K.; Clavel-Chapelon, F.; Berr, C. Long-term association of food and nutrient intakes with cognitive and functional decline: A 13-year follow-up study of elderly French women. Br. J. Nutr. 2009, 102, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, B.; Flood, V.M.; Kifley, A.; Louie, J.C.; Mitchell, P. Association Between Carbohydrate Nutrition and Successful Aging Over 10 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Prokopidis, K.; Giannos, P.; Ispoglou, T.; Witard, O.C.; Isanejad, M. Dietary Fiber Intake is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. Am. J. Med. 2022, 135, e257–e262. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Chan, R.R.; Lehto, R.H. Relationships Between Smoking Status and Psychological Distress, Optimism, and Health Environment Perceptions at Time of Diagnosis of Actual or Suspected Lung Cancer. Cancer Nurs. 2019, 42, 156–163. [Google Scholar] [CrossRef]
- Bagnall-Moreau, C.; Chaudhry, S.; Salas-Ramirez, K.; Ahles, T.; Hubbard, K. Chemotherapy-Induced Cognitive Impairment Is Associated with Increased Inflammation and Oxidative Damage in the Hippocampus. Mol. Neurobiol. 2019, 56, 7159–7172. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Perrotte, M.; Le Page, A.; Fournet, M.; Le Sayec, M.; Rassart, É.; Fulop, T.; Ramassamy, C. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer’s disease patients. Free Radic. Biol. Med. 2019, 130, 499–511. [Google Scholar] [CrossRef]
- Brown, A.A.; Hu, F.B. Dietary modulation of endothelial function: Implications for cardiovascular disease. Am. J. Clin. Nutr. 2001, 73, 673–686. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, S.E.; Abdel-Aziz, A.K.; Wahdan, S.; Esmat, A.; Azab, S.S. Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries. Mol. Neurobiol. 2018, 55, 5727–5740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, L.; Li, Z.; Zhang, P.; Song, H.; Yao, D.A.; Cao, J.; Zhang, J.J. Green tea improves cognitive function through reducing AD-pathology and improving anti-oxidative stress capacity in Chinese middle-aged and elderly people. Front. Aging Neurosci. 2022, 14, 919766. [Google Scholar] [CrossRef] [PubMed]
- Tejada, S.; Sarubbo, F.; Jiménez-García, M.; Ramis, M.R.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.M.; Capó, X.; Esteban, S.; Sureda, A.; Moranta, D. Mitigating Age-Related Cognitive Decline and Oxidative Status in Rats Treated with Catechin and Polyphenon-60. Nutrients 2024, 16, 368. [Google Scholar] [CrossRef]
CRCI (n = 103) | Non-CRCI (n = 212) | p-Value | |
---|---|---|---|
Age (years) 1 | 68.0 (63.0, 72.0) | 66.0 (60.0, 71.0) | 0.018 |
Sex, n (%) 2 | |||
Male | 79 (76.7) | 154 (72.6) | 0.441 |
Female | 24 (23.3) | 58 (27.4) | |
Marital status, n (%) 2 | |||
Widowed/divorced/single | 7 (6.8) | 13 (6.1) | 0.821 |
Married | 96 (93.2) | 199 (93.9) | |
Education level, n (%) 2 | |||
Primary school or lower | 39 (37.9) | 57 (26.9) | <0.001 |
Middle school | 56 (54.3) | 90 (42.4) | |
High school and above | 8 (7.8) | 65 (30.7) | |
Employment, n (%) 2 | |||
Employed | 3 (2.9) | 16 (7.5) | 0.058 |
Unemployed | 14 (13.6) | 15 (7.1) | |
Retired | 86 (83.5) | 181 (85.4) | |
Residence, n (%) 2 | |||
Rural areas | 40 (38.8) | 43 (20.3) | 0.001 |
Towns | 13 (12.6) | 22 (10.4) | |
Urban areas | 50 (48.6) | 147 (69.3) | |
Family monthly income (RMB), n (%) 2 | |||
<3000 | 31 (30.1) | 26 (12.3) | <0.001 |
3000–5000 | 51 (49.5) | 76 (35.8) | |
>5000 | 21 (20.4) | 110 (51.9) | |
Presence of comorbidities, n (%) 2 | |||
No | 49 (47.6) | 113 (53.3) | 0.340 |
Yes | 54 (52.4) | 99 (46.7) | |
Surgery, n (%) 2 | |||
No | 65 (63.1) | 101 (47.6) | 0.010 |
Yes | 38 (36.9) | 111 (52.4) | |
Pathology subtype, n (%) 2 | |||
Non-small cell lung cancer | 86 (83.5) | 195 (92.0) | 0.023 |
Small cell lung cancer | 17 (16.5) | 17 (8.0) | |
Cancer stage, n (%) 2 | |||
I | 12 (11.7) | 33 (15.6) | 0.670 |
II | 8 (7.8) | 19 (9.0) | |
III | 22 (21.3) | 49 (23.0) | |
IV | 61 (59.2) | 111 (52.4) | |
Risk of malnutrition, n (%) 2 | |||
No | 78 (75.7) | 190 (89.6) | 0.001 |
Yes | 25 (24.3) | 22 (10.4) | |
Chemotherapy cycle, n (%) 2 | |||
T0~T1 | 53 (51.5) | 100 (47.2) | 0.751 |
T2~T6 | 32 (31.1) | 74 (34.9) | |
≥T7 | 18 (17.4) | 38 (17.9) | |
Energy intake (kcal/d) 1 | 1006.0 (828.0, 1258.0) | 1134.0 (962.3, 1383.0) | 0.002 |
CRCI (n = 103) | Non-CRCI (n = 212) | p-Value | |
---|---|---|---|
OBS 1 | 16.0 (14.0, 19.0) | 18.0 (16.0, 21.0) | <0.001 |
Lifestyle OBS 1 | 5.0 (4.0, 6.0) | 5.5 (5.0, 6.0) | 0.411 |
Dietary OBS 1 | 11.0 (8.0, 13.0) | 13.0 (10.0, 15.0) | <0.001 |
Lifestyle OBS components | |||
Smoking status, n (%) 2 | |||
Never | 29 (28.1) | 80 (37.7) | 0.239 |
Former | 69 (67.0) | 122 (57.6) | |
Current | 5 (4.9) | 10 (4.7) | |
Alcohol use, n (%) 3 | |||
Never | 47 (45.6) | 116 (54.7) | 0.157 |
Former | 55 (53.4) | 90 (42.5) | |
Current | 1 (1.0) | 6 (2.8) | |
Obesity status, n (%) 2 | |||
Obese | 6 (5.8) | 19 (9.0) | 0.274 |
Overweight | 31 (30.1) | 48 (22.6) | |
Normal weight | 66 (64.1) | 145 (68.4) | |
Physical activity 1 | 696.0 (198.0, 1396.5) | 696.0 (342.0, 1393.5) | 0.689 |
Dietary OBS components | |||
SFA (g/d) 1 | 11.2 (8.3, 14.8) | 12.4 (8.7, 17.9) | 0.110 |
Omega-6 fatty acids (mg/d) 1 | 549.4 (391.7, 730.1) | 631.6 (479.6, 888.7) | 0.003 |
Iron (mg/d) 1 | 12.5 (9.5, 15.7) | 14.2 (10.8, 17.5) | 0.011 |
Omega-3 fatty acids (mg/d) 1 | 87.5 (60.4, 110.7) | 99.3 (70.6, 132.0) | 0.021 |
MUFA (g/d) 1 | 12.7 (8.6, 18.5) | 13.7 (9.3, 19.6) | 0.238 |
Dietary fiber (g/d) 1 | 5.6 (3.6, 7.4) | 7.6 (5.7, 10.7) | <0.001 |
Vitamin C (mg/d) 1 | 64.0 (35.6, 104.3) | 87.5 (48.1, 134.6) | 0.003 |
Vitamin E (mg/d) 1 | 9.1 (6.6, 11.7) | 11.7 (8.2, 15.2) | <0.001 |
Vitamin A (µgRAE/d) 1 | 355.0 (213.0, 508.0) | 389.5 (280.3, 526.3) | 0.062 |
β-Carotene (µg/d) 1 | 928.5 (462.6, 1782.0) | 1393.9 (887.8, 2317.2) | 0.001 |
Zinc (mg/d) 1 | 7.4 (5.9, 9.3) | 8.4 (6.3, 10.6) | 0.005 |
Selenium (µg/d) 1 | 32.6 (22.5, 48.9) | 40.8 (26.5, 59.5) | 0.008 |
OR | 95% CI | p-Value | |
---|---|---|---|
OBS (continuous) | 0.894 | 0.819, 0.977 | 0.013 |
Dietary OBS | 0.882 | 0.801, 0.971 | 0.011 |
OBS (categorical) | |||
Lowest tertile (8 to 16) | 1.000 | Reference | 0.036 * |
Middle tertile (17 to19) | 0.635 | 0.331, 1.217 | |
Highest tertile (20 to 27) | 0.466 | 0.221, 0.981 | |
OBS components | |||
Omega-6 fatty acids | 0.999 | 0.998, 1.000 | 0.141 |
Iron | 0.989 | 0.942, 1.037 | 0.640 |
Omega-3 fatty acids | 0.999 | 0.994, 1.003 | 0.564 |
Dietary fiber | 0.909 | 0.832, 0.992 | 0.032 |
Vitamin C | 0.999 | 0.994, 1.004 | 0.588 |
Vitamin E | 0.922 | 0.868, 0.980 | 0.009 |
β-Carotene | 1.000 | 1.000, 1.000 | 0.224 |
Zinc | 0.943 | 0.847, 1.049 | 0.277 |
Selenium | 0.996 | 0.987, 1.005 | 0.345 |
Mediators | ATE | ADE | ACME | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | Estimate | 95% CI | p-Value | |
SOD | −0.0155 | −0.0241, −0.0028 | 0.010 | −0.0094 | −0.0190, 0.0022 | 0.072 | −0.0061 | −0.0170, −0.0004 | 0.015 |
GPx | −0.0150 | −0.0243, −0.0023 | 0.008 | −0.0081 | −0.0179, 0.0040 | 0.096 | −0.0069 | −0.0203, −0.0002 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Cheng, L.; He, J.; Wang, Y.; Lin, X.; Xia, S. The Mediating Role of Oxidative Stress on the Association Between Oxidative Balance Score and Cancer-Related Cognitive Impairment in Lung Cancer Patients: A Cross-Sectional Study. Nutrients 2024, 16, 4090. https://doi.org/10.3390/nu16234090
Cheng X, Cheng L, He J, Wang Y, Lin X, Xia S. The Mediating Role of Oxidative Stress on the Association Between Oxidative Balance Score and Cancer-Related Cognitive Impairment in Lung Cancer Patients: A Cross-Sectional Study. Nutrients. 2024; 16(23):4090. https://doi.org/10.3390/nu16234090
Chicago/Turabian StyleCheng, Xinxin, Lan Cheng, Jianyun He, Yuting Wang, Xiaoxia Lin, and Shufang Xia. 2024. "The Mediating Role of Oxidative Stress on the Association Between Oxidative Balance Score and Cancer-Related Cognitive Impairment in Lung Cancer Patients: A Cross-Sectional Study" Nutrients 16, no. 23: 4090. https://doi.org/10.3390/nu16234090
APA StyleCheng, X., Cheng, L., He, J., Wang, Y., Lin, X., & Xia, S. (2024). The Mediating Role of Oxidative Stress on the Association Between Oxidative Balance Score and Cancer-Related Cognitive Impairment in Lung Cancer Patients: A Cross-Sectional Study. Nutrients, 16(23), 4090. https://doi.org/10.3390/nu16234090