Estimated Dietary Intakes of Vitamin A5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vitamin A5 / Provitamin A5 Levels in Food Items
2.2. Consumption of Fruits and Vegetables, as Well as Their Subgroups
2.3. Calculation of Provitamin A5 Intake
2.4. Statistical Analysis
9CBC | 9CBC | |
---|---|---|
Dry Weight in µg/g | Fresh Weight in µg/g | |
Food item | ||
Fruits | ||
Apricot | 4.4 | 0.6 |
Banana | 0.3 | 0.1 |
Cherry | - | - |
Date | - | - |
Grape | - | - |
Guava | - | - |
Mango | - | - |
Nectarine | - | - |
Papaya | 7.0 | 1.3 |
Peach | - | - |
Pear | - | - |
Prune | - | - |
Peach | - | 0.3 |
Average of all fruits | 0.9 | 0.2 |
Vegetables | ||
Lettuce # | 41 | 2.0 |
Spinach # | 38.6 | |
Cabbage ## | - | - |
Kale ## | 14.1 | |
Broccoli ## | 5.0 | |
Carrot § | 57.1 | 6.5 |
Cucumber §§ | - | - |
Eggplant §§ | - | - |
Pumpkin (1) §§ | 2.7 | 0.2 |
Tomato (1) §§ | - | - |
Zucchini §§ | - | - |
Pumpkin (2) §§ | 2.5 | |
Tomato (2) §§ | 4.8 | |
Pepper (red) §§ | 6.0 | 0.6 |
Pepper (red hot) §§ | 9.6 | 1.0 |
Onion (green) $ | - | - |
Parsley $$ | 111.2 | 11.6 |
Dill $$ | 27.7 | 4.3 |
Potato $$ | - | |
Sweet potato (1) $$ | 65.1 | 10.2 |
Sweet corn $$ | - | - |
Sweet potato (2) $$ | 1.5 | |
Average of all vegetables | 20.1 | 4.7 |
3. Results
3.1. Concentration of Vitamin A5 in the Form of Provitamin A5 in Individual Food Items
9CBC in µg/g (&) | |
---|---|
Average for leafy vegetables (#) | 20.3 |
Average for cabbages (##) | 6.4 |
Average for root vegetables (§) | 6.5 |
Average for fruiting vegetables (§§) | 1.0 |
Average for onions / garlic ($) | 0.1 |
Average for other vegetables ($$) | 4.6 |
Adjusted average of all vegetables | 5.2 * |
3.2. Summary of Current Intake Recommendations for Fruits and Vegetables
3.2.1. Daily Intake of Fruit and Vegetables in Europe
- A. Based on the EFSA food-consumption database (Table 3)
Countries | Fruits | Vegetables | F + V | % V | Measurement Method and Survey Name | Sample Size | Year |
---|---|---|---|---|---|---|---|
Italy | 171 ± 143 | 236 ± 155 | 407 | 58 | Italian national dietary survey on the adult population from 10 up to 74 years old | 726 | 2018 |
Hungary | 138 ± 139 | 235 ± 166 | 373 | 63 | Hungarian national food-consumption survey | 529 | 2018 |
Serbia | 137 ± 164 | 217 ± 165 | 354 | 62 | Serbian Food Consumption Survey on adults | 1150 | 2019 |
Luxembourg * | 287 ± 268 | 216 ± 172 | 503 | 43 | ORISCAV-LUX 2 [33] | 1326 | 2017 |
Latvia | 141 ± 170 | 203 ± 133 | 345 | 59 | Latvian National Dietary Survey | 1080 | 2012 |
Cyprus | 111 ± 135 | 201 ± 145 | 312 | 65 | National dietary survey of the adult population of Cyprus | 272 | 2014 |
Greece | 121 ± 164 | 192 ± 143 | 313 | 61 | The EFSA-funded collection of dietary and related data in the general population aged 10–74 years in Greece | 260 | 2014 |
Portugal | 161 ± 140 | 182 ± 130 | 343 | 53 | National Food, Nutrition, and Physical Activity Survey of the Portuguese general population | 3102 | 2015 |
Croatia | 136 ± 153 | 174 ± 158 | 310 | 56 | Croatian food-consumption survey on adults | 2002 | 2011 |
Estonia | 226 ± 231 | 168 ± 159 | 394 | 43 | National Dietary Survey among 11–74-year-old individuals in Estonia | 2124 | 2013 |
Montenegro | 120 ± 110 | 163 ± 121 | 326 | 50 | Montenegrin National Dietary Survey on the general population | 697 | 2017 |
Netherlands | 115 ± 128 | 163 ± 117 | 279 | 59 | Dutch National Food Consumption Survey 2012–2016 (DNFCS) | 1487 | 2012 |
Romania | 163 ± 186 | 154 ± 110 | 317 | 49 | Romanian national food-consumption survey for adolescents, adults, and elderly | 740 | 2019 |
Slovenia | 158 ± 151 | 153 ± 105 | 311 | 50 | Slovenian national food-consumption survey | 385 | 2017 |
Ireland | 91 ± 95 | 151 ± 84 | 242 | 62 | North / South Ireland Food Consumption Survey | 958 | 1997 |
Bosnia and Herzegovina | 130 ± 144 | 149 ± 122 | 279 | 53 | Bosnia-Herzegovinian Dietary Survey of adolescents, adults, and pregnant women | 850 | 2017 |
Spain | 155 ± 129 | 144 ± 102 | 299 | 48 | Spanish National dietary survey in adults, elderly, and pregnant women | 536 | 2013 |
France | 133 ± 131 | 144 ± 90 | 277 | 52 | Individual and national study on food consumption 2 | 2276 | 2007 |
Finland | 171 ± 178 | 126 ± 102 | 297 | 43 | National Findiet Surveys | 1575 | 2007 |
Sweden | 91 ± 104 | 126 ± 99 | 218 | 59 | National Diet and Nutrition Survey—Years 1–3 | 1266 | 2008 |
Belgium | 118 ± 122 | 125 ± 100 | 244 | 52 | Diet National 2004 | 1292 | 2004 |
Czech Republic | 124 ± 123 | 117 ± 91 | 241 | 49 | Czech National Food Consumption Survey | 1666 | 2003 |
Germany | 165 ± 175 | 95 ± 94 | 260 | 37 | National Nutrition Survey II | 10,419 | 2007 |
Austria | 162 ± 153 | 90 ± 96 | 252 | 36 | Austrian Study on Nutritional Status 2010–2012-Adults | 308 | 2010 |
European average ± STD | 147 ± 42 | 164 ± 41 | 312 ± 64 | 53 ± 8 | Calculated sum of the 24 listed surveys | 37,026 |
Men | Fruits (F) | Vegetables (V) | F + V | Leafy V | % V / (F + V) | % LV / V | |
---|---|---|---|---|---|---|---|
Country | n | mean | mean | mean | |||
Greece | 1312 | 273 | 270 | 543 | 30 | 50 | 11 |
Spain | 1777 | 372 | 224 | 596 | 44 | 38 | 19 |
Italy | 1444 | 403 | 211 | 614 | 35 | 34 | 17 |
Germany | 2268 | 207 | 160 | 368 | 14 | 44 | 9 |
Netherlands | 1024 | 168 | 137 | 305 | 28 | 45 | 20 |
UK * | 518 | 206 | 193 | 400 | 10 | 48 | 5 |
Denmark | 1923 | 160 | 141 | 301 | 10 | 47 | 7 |
Sweden | 2765 | 122 | 112 | 234 | 9 | 48 | 8 |
Sum # / av ## | 13,031 | 239 | 181 | 420 | 23 | 44 | 12 |
STD | 102 | 53 | 146 | 13 | 5 | 6 | |
Women | |||||||
Greece | 1374 | 242 | 207 | 449 | 29 | 46 | 14 |
Spain | 1443 | 355 | 196 | 551 | 34 | 36 | 17 |
Italy | 2512 | 343 | 181 | 524 | 28 | 34 | 16 |
Germany | 2150 | 236 | 166 | 403 | 17 | 41 | 10 |
Netherlands | 2960 | 192 | 130 | 322 | 23 | 40 | 18 |
UK * | 768 | 223 | 192 | 415 | 15 | 46 | 8 |
Denmark | 1995 | 206 | 150 | 356 | 11 | 42 | 7 |
Sweden | 3285 | 164 | 127 | 290 | 11 | 44 | 9 |
France ** | 4639 | 251 | 226 | 476 | 45 | 47 | 20 |
Norway ** | 1798 | 168 | 125 | 293 | 7 | 43 | 5 |
Sum # / av ## | 22,924 | 238 | 170 | 408 | 22 | 42 | 12 |
STD | 66 | 36 | 93 | 12 | 4 | 5 | |
Women and Men | |||||||
Greece | 2686 | 257 | 238 | 496 | 29 | 48 | 12 |
Spain | 3220 | 363 | 210 | 573 | 39 | 37 | 18 |
Italy | 3956 | 373 | 196 | 569 | 32 | 34 | 16 |
UK * | 1286 | 215 | 193 | 407 | 13 | 47 | 6 |
Germany | 4418 | 222 | 163 | 385 | 15 | 42 | 9 |
Denmark | 3918 | 183 | 145 | 328 | 10 | 44 | 7 |
Netherlands | 3984 | 180 | 133 | 313 | 25 | 43 | 19 |
Sweden | 6050 | 143 | 119 | 262 | 10 | 46 | 8 |
Sum # / av ## | 29,518 | 242 | 175 | 417 | 22 | 43 | 12 |
STD | 85 | 41 | 118 | 11 | 5 | 5 |
- B. The EPIC cohort (Table 4)
3.2.2. Calculation of Individual Intake of Vegetable Subgroups
3.3. Estimating the Daily Intake of Provitamin A5
3.4. Comparison of Provitamin A5 Intake in Persons Consuming Low, Medium, and High Amounts of Fruits and Vegetables (Figure 4)
4. Discussion
5. Summary
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krężel, W.; Rivas, A.; Szklenar, M.; Ciancia, M.; Alvarez, R.; de Lera, A.R.; Rühl, R. Vitamin A5/X, a new food to lipid hormone concept for a nutritional ligand to control RXR-mediated signaling. Nutrients 2021, 13, 925. [Google Scholar] [CrossRef]
- Rühl, R.; Krężel, W.; de Lera, A.R. 9-Cis-13, 14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: Vitamin A5. Nutr. Rev. 2018, 76, 929–941. [Google Scholar]
- Bohn, T.; Hellmann-Regen, J.; de Lera, Á.R.; Böhm, V.; Rühl, R. Human nutritional relevance and suggested nutritional guidelines for Vitamin A5/X and Provitamin A5/X. Nutr. Metab. 2023, 20, 34. [Google Scholar] [CrossRef]
- Bánáti, D.; Hellman-Regen, J.; Mack, I.; Young, H.A.; Benton, D.; Eggersdorfer, M.; Rohn, S.; Dulińska-Litewka, J.; Krężel, W.; Rühl, R. Defining a vitamin A5/X specific deficiency—Vitamin A5/X as a critical dietary factor for mental health. Int. J. Vitam. Nutr. Res. 2024, 94, 443–475. [Google Scholar] [CrossRef]
- Banati, D.; Rühl, R. Analysis of the current vitamin A terminology and dietary regulations from vitamin A1 to vitamin A5. Int. J. Vitam. Nutr. Res. 2024, 94, 326–333. [Google Scholar]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva Switzerland, 2004. [Google Scholar]
- WHO/FAO Expert Group. Requirements of Vitamin A, Thiamine, Riboflavine and Niacin; World Health Organization: Geneva, Switzerland, 1967. [Google Scholar]
- IUPAC-IUB. Nomenclature of retinoids. Recommondations. Eur. J. Biochem. 1982, 129, 1–5. [Google Scholar]
- Rühl, R.; Krzyzosiak, A.; Niewiadomska-Cimicka, A.; Rochel, N.; Szeles, L.; Vaz, B.; Wietrzych-Schindler, M.; Álvarez, S.; Szklenar, M.; Nagy, L.; et al. 9-cis-13,14-dihydroretinoic acid is an endogenous retinoid acting as RXR ligand in mice. PLoS Genet. 2015, 11, e1005213. [Google Scholar] [CrossRef]
- de Lera, A.R.; Krezel, W.; Rühl, R. An endogenous mammalian retinoid X receptor ligand, at last! ChemMedChem 2016, 11, 1027–1037. [Google Scholar] [CrossRef]
- Krezel, W.; Rühl, R.; de Lera, A.R. Alternative retinoid X receptor (RXR) ligands. Mol. Cell Endocrinol. 2019, 491, 110436. [Google Scholar] [CrossRef]
- Evans, R.M. The nuclear receptor superfamily: A rosetta stone for physiology. Mol. Endocrinol. 2005, 19, 1429–1438. [Google Scholar] [CrossRef]
- Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell 2014, 157, 255–266. [Google Scholar] [CrossRef]
- Krezel, W.; Ghyselinck, N.; Samad, T.A.; Dupé, V.; Kastner, P.; Borrelli, E.; Chambon, P. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 1998, 279, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Krzyzosiak, A.; Szyszka-Niagolov, M.; Wietrzych, M.; Gobaille, S.; Muramatsu, S.; Krezel, W. Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 2010, 66, 908–920. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.K.; Jarjour, A.A.; Nait Oumesmar, B.; Kerninon, C.; Williams, A.; Krezel, W.; Kagechika, H.; Bauer, J.; Zhao, C.; Evercooren, A.B.V.; et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat. Neurosci. 2011, 14, 45–53. [Google Scholar] [CrossRef]
- Wood, H. Retinoid X receptor mediates brain clean-up after stroke. Nat. Rev. Neurol. 2022, 16, 128–129. [Google Scholar] [CrossRef]
- Abildayeva, K.; Jansen, P.J.; Hirsch-Reinshagen, V.; Bloks, V.W.; Bakker, A.H.; Ramaekers, F.C.; De Vente, J.; Groen, A.K.; Wellington, C.L.; Kuipers, F.; et al. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J. Biol. Chem. 2006, 281, 12799–12808. [Google Scholar] [CrossRef]
- Krzyzosiak, A.; Podlesny-Drabiniok, A.; Vaz, B.; Alvarez, R.; Rühl, R.; de Lera, A.R.; Krezel, W. Vitamin A5/X controls stress-adaptation and prevents depressive-like behaviors in a mouse model of chronic stress. Neurobiol. Stress 2021, 15, 100375. [Google Scholar] [CrossRef]
- Shaish, A.; Harari, A.; Hananshvili, L.; Cohen, H.; Bitzur, R.; Luvish, T.; Harats, D. 9-cis beta-carotene-rich powder of the alga Dunaliella bardawil increases plasma HDL-cholesterol in fibrate-treated patients. Atherosclerosis 2006, 189, 215–221. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of mixed carotenes (E 160a (i)) and beta-carotene (E 160a (ii)) as a food additive. EFSA J. 2012, 10, 2593. [Google Scholar]
- Scott, J.M.; Molloy, A.M. The discovery of vitamin B(12). Ann. Nutr. Metab. 2012, 61, 239–245. [Google Scholar] [CrossRef]
- Van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can animal models of disease reliably inform human studies? PLoS Med. 2010, 7, e1000245. [Google Scholar] [CrossRef] [PubMed]
- Rucker, R.B.; Rucker, M.R. Nutrition: Ethical issues and challenges. Nutr. Res. 2016, 36, 1183–1192. [Google Scholar] [CrossRef]
- Semba, R.D. The discovery of the vitamins. Int. J. Vitam. Nutr. Res. 2012, 82, 310–315. [Google Scholar] [CrossRef]
- Roe, D.A. A Plague of Corn: The Social History of Pellagra; Cornell University Press: London, UK, 1973. [Google Scholar]
- van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [CrossRef]
- Cifuentes, M.; Vahid, F.; Devaux, Y.; Bohn, T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Function. 2024, 15, 7271–7304. [Google Scholar] [CrossRef]
- Agudo, A.; Slimani, N.; Ocke, M.C.; Naska, A.; Miller, A.B.; Kroke, A.; Bamia, C.; Karalis, D.; Vineis, P.; Palli, D.; et al. Consumption of vegetables, fruit and other plant foods in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Public. Health Nutr. 2002, 5, 1179–1196. [Google Scholar] [CrossRef]
- EFSA. The EFSA Comprehensive European Food Consumption Database; EFSA: Parma, Italy, 2022. [Google Scholar]
- Ben-Amotz, A.; Fishier, R. Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem. 1998, 62, 515–520. [Google Scholar] [CrossRef]
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Jiang, Y.; Ismail, A. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef]
- Vahid, F.; Brito, A.; Le Coroller, G.; Vaillant, M.; Samouda, H.; Bohn, T.; ORISCAV Working Group. Dietary Intake of Adult Residents in Luxembourg Taking Part in Two Cross-Sectional Studies—ORISCAV-LUX (2007–2008) and ORISCAV-LUX 2 (2016–2017). Nutrients 2021, 13, 4382. [Google Scholar] [CrossRef]
- Hébel, G.T.P. Fruits et légumes: Les Français suivent de moins en moins la recommandation. Credoc—Consomm. Modes Vie 2017, 29, 3–8. [Google Scholar]
- Castetbon, K.; Vernay, M.; Malon, A.; Salanave, B.; Deschamps, V.; Roudier, C.; Oleko, A.; Szego, E.; Hercberg, S. Dietary intake, physical activity and nutritional status in adults: The French nutrition and health survey (ENNS, 2006–2007). Br. J. Nutr. 2009, 102, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Francou, A.; Hebel, P.; Braesco, V.; Drewnowski, A. Consumption Patterns of Fruit and Vegetable Juices and Dietary Nutrient Density among French Children and Adults. Nutrients 2015, 7, 6073–6087. [Google Scholar] [CrossRef]
- Stea, T.H.; Nordheim, O.; Bere, E.; Stornes, P.; Eikemo, T.A. Fruit and vegetable consumption in Europe according to gender, educational attainment and regional affiliation—A cross-sectional study in 21 European countries. PLoS ONE 2020, 15, e0232521. [Google Scholar] [CrossRef]
- Casagrande, S.S.; Wang, Y.; Anderson, C.; Gary, T.L. Have Americans increased their fruit and vegetable intake? The trends between 1988 and 2002. Am. J. Prev. Med. 2007, 32, 257–263. [Google Scholar] [CrossRef]
- Mensink, G.B.; Truthmann, J.; Rabenberg, M.; Heidemann, C.; Haftenberger, M.; Schienkiewitz, A.; Richter, A. Fruit and vegetable intake in Germany: Results of the German health interview and examination survey for adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013, 56, 779–785. [Google Scholar] [CrossRef]
- Böhm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Bánati, D.; Borel, P.; Corte-Real, J.; De Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations—Implications for dietary intake recommendations. Nutr. Rev. 2020, 79, 544–573. [Google Scholar] [CrossRef]
- Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2018, 90, e214–e222. [Google Scholar] [CrossRef]
- Chawner, L.R.; Blundell-Birtill, P.; Hetherington, M.M. Predictors of vegetable consumption in children and adolescents: Analyses of the UK National Diet and Nutrition Survey (2008–2017). Brit. J. Nutr. 2021, 126, 295–306. [Google Scholar] [CrossRef]
- da Costa, G.G.; da Conceição Nepomuceno, G.; da Silva Pereira, A.; Simões, B.F.T. Worldwide dietary patterns and their association with socioeconomic data: An ecological exploratory study. Glob. Health 2022, 18, 31. [Google Scholar] [CrossRef]
- OECD/European Union. Health at a Glance: Europe 2022: State of Health in the EU Cycle; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Głąbska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohn, T.; Despotovic, M.; Vahid, F.; Rühl, R. Estimated Dietary Intakes of Vitamin A5. Nutrients 2024, 16, 4004. https://doi.org/10.3390/nu16234004
Bohn T, Despotovic M, Vahid F, Rühl R. Estimated Dietary Intakes of Vitamin A5. Nutrients. 2024; 16(23):4004. https://doi.org/10.3390/nu16234004
Chicago/Turabian StyleBohn, Torsten, Marta Despotovic, Farhad Vahid, and Ralph Rühl. 2024. "Estimated Dietary Intakes of Vitamin A5" Nutrients 16, no. 23: 4004. https://doi.org/10.3390/nu16234004
APA StyleBohn, T., Despotovic, M., Vahid, F., & Rühl, R. (2024). Estimated Dietary Intakes of Vitamin A5. Nutrients, 16(23), 4004. https://doi.org/10.3390/nu16234004