Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Participants
2.3. Setting
2.4. Outcome Measurement Tools
2.4.1. Sample Characteristics
2.4.2. Dietary Measures
Healthy Eating Index-2015
Dietary Inflammatory Index
Additional Component—Water
2.4.3. Pain Measures
Experimental Pain Measures
- Pressure Pain Threshold (PPT)
- Electrical Detection and Electrical Pain Thresholds
- Temporal Summation (TS)
- Electrical Offset Analgesia (OA)
Self-Reported Pain Questionnaires
- Brief Pain Inventory (BPI)
- Central Sensitisation Inventory (CSI)
- Douleur Neuropathique 4 (DN4)
2.4.4. Anthropometrics
Body Height
Body Composition
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabangu, N.; Thebe, T.; Casey, M.; Wesselmann, U.; Parker, R. Chronic pain in female breast cancer survivors-prevalence, characteristics and contributing factors: A cross-sectional pilot study. BMC Women’s Health 2023, 23, 613. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Seidman, A.; Li, Q.; Seluzicki, C.; Blinder, V.; Meghani, S.H.; Farrar, J.T.; Mao, J.J. Living with chronic pain: Perceptions of breast cancer survivors. Breast Cancer Res. Treat. 2018, 169, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Slaghmuylder, Y.; Maingi, L.; Pype, P.; Lauwerier, E. The use of written guides to empower breast cancer survivors in their management of chronic pain: A realist evaluation. Patient Educ. Couns. 2023, 120, 108129. [Google Scholar] [CrossRef] [PubMed]
- Brain, K.; Burrows, T.; Rollo, M.; Chai, L.; Clarke, E.; Hayes, C.; Hodson, F.; Collins, C. A systematic review and meta-analysis of nutrition interventions for chronic noncancer pain. J. Hum. Nutr. Diet. 2019, 32, 198–225. [Google Scholar] [CrossRef] [PubMed]
- Nijs, J.; Elma, Ö.; Yilmaz, S.T.; Mullie, P.; Vanderweeën, L.; Clarys, P.; Deliens, T.; Coppieters, I.; Weltens, N.; Van Oudenhove, L. Nutritional neurobiology and central nervous system sensitisation: Missing link in a comprehensive treatment for chronic pain? Br. J. Anaesth. 2019, 123, 539–543. [Google Scholar] [CrossRef]
- Elma, O.; Yilmaz, S.T.; Deliens, T.; Clarys, P.; Nijs, J.; Coppieters, I.; Polli, A.; Malfliet, A. Chronic Musculoskeletal Pain and Nutrition: Where Are We and Where Are We Heading? PM R 2020, 12, 1268–1278. [Google Scholar] [CrossRef]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef]
- Wang, F.; Cai, H.; Gu, K.; Shi, L.; Yu, D.; Zhang, M.; Zheng, W.; Zheng, Y.; Bao, P.; Shu, X.-O. Adherence to dietary recommendations among long-term breast cancer survivors and cancer outcome associations. Cancer Epidemiol. Biomark. Prev. 2020, 29, 386–395. [Google Scholar] [CrossRef]
- Park, S.-H.; Hoang, T.; Kim, J. Dietary factors and breast cancer prognosis among breast cancer survivors: A systematic review and meta-analysis of cohort studies. Cancers 2021, 13, 5329. [Google Scholar] [CrossRef]
- Bu, Y.; Qu, J.; Ji, S.; Zhou, J.; Xue, M.; Qu, J.; Sun, H.; Liu, Y. Dietary patterns and breast cancer risk, prognosis, and quality of life: A systematic review. Front. Nutr. 2023, 9, 1057057. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.T.; Elma, Ö.; Deliens, T.; Coppieters, I.; Clarys, P.; Nijs, J.; Malfliet, A. Nutrition/Dietary Supplements and Chronic Pain in Patients with Cancer and Survivors of Cancer: A Systematic Review and Research Agenda. Pain Physician 2021, 24, 335–344. [Google Scholar] [PubMed]
- Dragan, S.; Șerban, M.-C.; Damian, G.; Buleu, F.; Valcovici, M.; Christodorescu, R. Dietary Patterns and Interventions to Alleviate Chronic Pain. Nutrients 2020, 12, 2510. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Casas-Barragán, A.; González-Jiménez, E.; Schmidt-RioValle, J.; Molina, F.; Aguilar-Ferrándiz, M.E. Dietary inflammatory index scores are associated with pressure pain hypersensitivity in women with fibromyalgia. Pain Med. 2020, 21, 586–594. [Google Scholar] [CrossRef]
- Elma, Ö.; Yılmaz, S.T.; Nijs, J.; Clarys, P.; Coppieters, I.; Mertens, E.; Deliens, T.; Malfliet, A. Proinflammatory Dietary Intake Relates to Pain Sensitivity in Chronic Nonspecific Low Back Pain: A Case-Control Study. J. Pain 2024, 25, 350–361. [Google Scholar] [CrossRef]
- George, S.M.; Neuhouser, M.L.; Mayne, S.T.; Irwin, M.L.; Albanes, D.; Gail, M.H.; Alfano, C.M.; Bernstein, L.; McTiernan, A.; Reedy, J. Postdiagnosis diet quality is inversely related to a biomarker of inflammation among breast cancer survivors. Cancer Epidemiol. Prev. Biomark. 2010, 19, 2220–2228. [Google Scholar] [CrossRef]
- Orchard, T.S.; Andridge, R.R.; Yee, L.D.; Lustberg, M.B. Diet quality, inflammation, and quality of life in breast cancer survivors: A cross-sectional analysis of pilot study data. J. Acad. Nutr. Diet. 2018, 118, 578–588.e571. [Google Scholar] [CrossRef]
- Wayne, S.J.; Baumgartner, K.; Baumgartner, R.N.; Bernstein, L.; Bowen, D.J.; Ballard-Barbash, R. Diet quality is directly associated with quality of life in breast cancer survivors. Breast Cancer Res. Treat. 2006, 96, 227–232. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Miccono, A.; Naso, M.; Nichetti, M.; Riva, A.; Guerriero, F.; De Gregori, M.; Peroni, G.; Perna, S. Food pyramid for subjects with chronic pain: Foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr. Res. Rev. 2018, 31, 131–151. [Google Scholar] [CrossRef]
- Tan, S.Y.; Wong, H.Y.; Vardy, J.L. Do cancer survivors change their diet after cancer diagnosis? Support. Care Cancer 2021, 29, 6921–6927. [Google Scholar] [CrossRef] [PubMed]
- Velicer, C.M.; Ulrich, C.M. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. J. Clin. Oncol. 2008, 26, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef]
- Mao, J.J.; Bruner, D.W.; Stricker, C.; Farrar, J.T.; Xie, S.X.; Bowman, M.A.; Pucci, D.; Han, X.; DeMichele, A. Feasibility trial of electroacupuncture for aromatase inhibitor—Related arthralgia in breast cancer survivors. Integr. Cancer Ther. 2009, 8, 123–129. [Google Scholar] [CrossRef]
- Vandelanotte, C.; De Bourdeaudhuij, I.; Philippaerts, R.; Sjöström, M.; Sallis, J. Reliability and validity of a computerized and Dutch version of the International Physical Activity Questionnaire (IPAQ). J. Phys. Act. Health 2005, 2, 63–75. [Google Scholar] [CrossRef]
- Gavala-González, J.; Torres-Pérez, A.; Fernández-García, J.C. Impact of Rowing Training on Quality of Life and Physical Activity Levels in Female Breast Cancer Survivors. Int. J. Environ. Res. Public Health 2021, 18, 7188. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, I.; Kim, J.I.; Park, H.; Lee, J.D.; Uhm, K.E.; Hwang, J.H.; Lee, E.S.; Jung, S.-Y.; Park, Y.H. Factors associated with physical activity of breast cancer patients participating in exercise intervention. Support. Care Cancer 2019, 27, 1747–1754. [Google Scholar] [CrossRef]
- Uhm, K.E.; Yoo, J.S.; Chung, S.H.; Lee, J.D.; Lee, I.; Kim, J.I.; Lee, S.K.; Nam, S.J.; Park, Y.H.; Lee, J.Y. Effects of exercise intervention in breast cancer patients: Is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Res. Treat. 2017, 161, 443–452. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Muller, M.; Cohen, P.D.; Essink-Bot, M.-L.; Fekkes, M.; Sanderman, R.; Sprangers, M.A.; Te Velde, A.; Verrips, E. Translation, validation, and norming of the Dutch language version of the SF-36 Health Survey in community and chronic disease populations. J. Clin. Epidemiol. 1998, 51, 1055–1068. [Google Scholar] [CrossRef]
- Treanor, C.; Donnelly, M. A methodological review of the Short Form Health Survey 36 (SF-36) and its derivatives among breast cancer survivors. Qual. Life Res. 2015, 24, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Busija, L.; Pausenberger, E.; Haines, T.P.; Haymes, S.; Buchbinder, R.; Osborne, R.H. Adult measures of general health and health-related quality of life: Medical outcomes study short form 36-item (SF-36) and short form 12-item (SF-12) health surveys, Nottingham health profile (NHP), sickness impact profile (SIP), medical outcomes study short form 6D (SF-6D), health utilities index mark 3 (HUI3), quality of well-being scale (QWB), and assessment of quality of life (AQoL). Arthritis Care Res. 2011, 63, S383–S412. [Google Scholar]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31, 38–45. [Google Scholar] [PubMed]
- Vance, V.; Campbell, S.; McCargar, L.; Mourtzakis, M.; Hanning, R. Dietary changes and food intake in the first year after breast cancer treatment. Appl. Physiol. Nutr. Metab. 2014, 39, 707–714. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S. The automated self-administered 24-h dietary recall (ASA24): A resource for researchers, clinicians and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134. [Google Scholar] [CrossRef]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower dietary inflammatory index scores are associated with lower glycemic index scores among college students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef]
- Song, D.; Kim, J.; Kang, M.; Park, J.; Lee, H.; Kim, D.-Y.; Park, S.Y.; Lim, H. Association between the dietary inflammatory index and bone markers in postmenopausal women. PLoS ONE 2022, 17, e0265630. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Developing the Healthy Eating Index. Available online: https://epi.grants.cancer.gov/hei/developing.html (accessed on 2 November 2024).
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons learned, improvements made, and future directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Nutrition and Chronic Pain. Available online: https://europeanpainfederation.eu/wp-content/uploads/2020/03/European-Year-2020-Nutrition-and-Chronic-Pain-Fact-Sheet.pdf (accessed on 13 October 2021).
- Caro-Morán, E.; Díaz-Rodríguez, L.; Cantarero-Villanueva, I.; Galiano-Castillo, N.; Arroyo-Morales, M.; Fernández-Lao, C. Nerve pressure pain hypersensitivity and upper limb mechanosensitivity in breast cancer survivors: A case–control study. Pain Med. 2014, 15, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- De Groef, A.; Van Kampen, M.; Vervloesem, N.; Clabau, E.; Christiaens, M.; Neven, P.; Geraerts, I.; Struyf, F.; Devoogdt, N. Inter-rater reliability of shoulder measurements in middle-aged women. Physiotherapy 2017, 103, 222–230. [Google Scholar] [CrossRef] [PubMed]
- De Groef, A.; Devoogdt, N.; Van Kampen, M.; Nevelsteen, I.; Smeets, A.; Neven, P.; Geraerts, I.; Dams, L.; Van der Gucht, E.; Debeer, P. Effectiveness of Botulinum Toxin A for Persistent Upper Limb Pain After Breast Cancer Treatment: A Double-Blinded Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Caro-Morán, E.; Fernández-Lao, C.; Díaz-Rodríguez, L.; Cantarero-Villanueva, I.; Madeleine, P.; Arroyo-Morales, M. Pressure pain sensitivity maps of the neck-shoulder region in breast cancer survivors. Pain Med. 2016, 17, 1942–1952. [Google Scholar] [CrossRef]
- France, C.R.; France, J.L.; al’Absi, M.; Ring, C.; McIntyre, D. Catastrophizing is related to pain ratings, but not nociceptive flexion reflex threshold. Pain 2002, 99, 459–463. [Google Scholar] [CrossRef]
- Szikszay, T.M.; Lévénez, J.L.; von Selle, J.; Adamczyk, W.M.; Luedtke, K. Investigation of correlations between pain modulation paradigms. Pain Med. 2021, 22, 2028–2036. [Google Scholar] [CrossRef]
- Petersen, K.K.; Mørch, C.D.; Ligato, D.; Arendt-Nielsen, L. Electrical stimulation for evoking offset analgesia: A human volunteer methodological study. Eur. J. Pain 2018, 22, 1678–1684. [Google Scholar] [CrossRef]
- Stanhope, J. Brief Pain Inventory review. Occup. Med. 2016, 66, 496–497. [Google Scholar] [CrossRef]
- Poquet, N.; Lin, C. The brief pain inventory (BPI). J. Physiother. 2015, 62, 52. [Google Scholar] [CrossRef]
- Ren, J.L.; Rojo, R.D.; Perez, J.V.D.; Yeung, S.-C.J.; Hanna, E.Y.; Reyes-Gibby, C.C. Variations in pain prevalence, severity, and analgesic use by duration of survivorship: A cross-sectional study of 505 post-treatment head and neck cancer survivors. BMC Cancer 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Swarm, R.A.; Paice, J.A.; Anghelescu, D.L.; Are, M.; Bruce, J.Y.; Buga, S.; Chwistek, M.; Cleeland, C.; Craig, D.; Gafford, E. Adult cancer pain, version 3.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 977–1007. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, C.S.; Fisher, H.M.; Thomas, S.; Kelleher, S.A.; Winger, J.G.; Mitchell, N.S.; Miller, S.N.; Somers, T.J. Breast cancer survivors with pain: An examination of the relationships between body mass index, physical activity, and symptom burden. Support. Care Cancer 2023, 31, 604. [Google Scholar] [CrossRef] [PubMed]
- Hurth, A.; Nijzink-Ter Steege, J.; Scheepbouwer, P.; Roose, E.; Lahousse, A.; Leysen, L.; Stas, L.; Kregel, J.; Salvat, E.; Nijs, J. Assessment of central sensitization in breast cancer survivors: Convergent validity and use of the Central Sensitization Inventory (CSI) and its short-form as a clustering tool. Clin. Pract. 2021, 11, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Neblett, R.; Hartzell, M.M.; Cohen, H.; Mayer, T.G.; Williams, M.; Choi, Y.; Gatchel, R.J. Ability of the central sensitization inventory to identify central sensitivity syndromes in an outpatient chronic pain sample. Clin. J. Pain 2015, 31, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Neblett, R.; Cohen, H.; Choi, Y.; Hartzell, M.M.; Williams, M.; Mayer, T.G.; Gatchel, R.J. The Central Sensitization Inventory (CSI): Establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J. Pain 2013, 14, 438–445. [Google Scholar] [CrossRef]
- Mayer, T.G.; Neblett, R.; Cohen, H.; Howard, K.J.; Choi, Y.H.; Williams, M.J.; Perez, Y.; Gatchel, R.J. The development and psychometric validation of the central sensitization inventory. Pain Pract. 2012, 12, 276–285. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- de Paredes, M.G.; del Moral Gonzalez, F.; Del Prado, P.M.; Ciriquián, J.M.; Francés, S.E.; Dols, M.C.; González, E.E.; Granados, A.O.; Tarruella, M.M.; Burón, J.C. First evidence of oncologic neuropathic pain prevalence after screening 8615 cancer patients. Results of the On study. Ann. Oncol. 2011, 22, 924–930. [Google Scholar] [CrossRef]
- Kaur, N.; Kumar, R.; Jain, A.; Saxena, A.K. Sensory changes and postmastectomy pain following preservation of intercostobrachial nerve in breast cancer surgery: A prospective randomized study. Indian J. Surg. Oncol. 2021, 12, 108–113. [Google Scholar] [CrossRef]
- Perez, C.; Galvez, R.; Huelbes, S.; Insausti, J.; Bouhassira, D.; Diaz, S.; Rejas, J. Validity and reliability of the Spanish version of the DN4 (Douleur Neuropathique 4 questions) questionnaire for differential diagnosis of pain syndromes associated to a neuropathic or somatic component. Health Qual. Life Outcomes 2007, 5, 1–10. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.; Pontifex, M.B.; Pivarnik, J.M. Reliability and validity of commercially available low-cost bioelectrical impedance analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Verney, J.; Schwartz, C.; Amiche, S.; Pereira, B.; Thivel, D. Comparisons of a multi-frequency bioelectrical impedance analysis to the dual-energy X-ray absorptiometry scan in healthy young adults depending on their physical activity level. J. Hum. Kinet. 2015, 47, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67. [Google Scholar]
- Andrade, C. The P value and statistical significance: Misunderstandings, explanations, challenges, and alternatives. Indian J. Psychol. Med. 2019, 41, 210–215. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Alsaqr, A.M. Remarks on the use of Pearson’s and Spearman’s correlation coefficients in assessing relationships in ophthalmic data. Afr. Vis. Eye Health 2021, 80, 10. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, L.; Sun, Y.; Yan, J.; Jiang, H. Causal Associations between Dietary Habits and Chronic Pain: A Two-Sample Mendelian Randomization Study. Nutrients 2023, 15, 3709. [Google Scholar] [CrossRef]
- World Cancer Research Fund/American Institute for Cancer Research. Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report 2018; American Institute for Cancer Research: Arlington, VA, USA, 2018. [Google Scholar]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K. American Cancer Society guideline for diet and physical activity for cancer prevention. CA A Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Philpot, U.; Johnson, M.I. Diet therapy in the management of chronic pain: Better diet less pain? Pain Manag. 2019, 9, 335–338. [Google Scholar] [CrossRef]
- Koh, D.; Song, S.; Moon, S.-E.; Jung, S.-Y.; Lee, E.S.; Kim, Z.; Youn, H.J.; Cho, J.; Yoo, Y.B.; Lee, S.K. Adherence to the American Cancer Society guidelines for cancer survivors and health-related quality of life among breast cancer survivors. Nutrients 2019, 11, 2924. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.-Y.; Ho, S.C.; Cheng, A.; Kwok, C.; Lee, C.-K.I.; Cheung, K.L.; Lee, R.; Loong, H.H.; He, Y.-Q.; Yeo, W. Adherence to the World Cancer Research Fund/American Institute for Cancer Research Guideline is associated with better health-related quality of life among Chinese patients with breast cancer. J. Natl. Compr. Cancer Netw. 2018, 16, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Porciello, G.; Montagnese, C.; Crispo, A.; Grimaldi, M.; Libra, M.; Vitale, S.; Palumbo, E.; Pica, R.; Calabrese, I.; Cubisino, S. Mediterranean diet and quality of life in women treated for breast cancer: A baseline analysis of DEDiCa multicentre trial. PLoS ONE 2020, 15, e0239803. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.S.; Strath, L.J.; Sorge, R.E. Dietary interventions for treatment of chronic pain: Oxidative stress and inflammation. Pain Ther. 2020, 9, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Tümkaya Yılmaz, S.; Malfliet, A.; Elma, Ö.; Deliens, T.; Nijs, J.; Clarys, P.; De Groef, A.; Coppieters, I. Diet/Nutrition: Ready to Transition from a Cancer Recurrence/Prevention Strategy to a Chronic Pain Management Modality for Cancer Survivors? J. Clin. Med. 2022, 11, 653. [Google Scholar] [CrossRef]
- Lee, E.; Zhu, J.; Velazquez, J.; Bernardo, R.; Garcia, J.; Rovito, M.; Hines, R.B. Evaluation of diet quality among American adult cancer survivors: Results from 2005-2016 National Health and Nutrition Examination Survey. J. Acad. Nutr. Diet. 2021, 121, 217–232. [Google Scholar] [CrossRef]
Absolute Number (%) | Mean (Standard Deviation) | ||
---|---|---|---|
Cancer stage | Stage 0–I | 3 (25%) | |
Stage II–III | 5 (41.7%) | ||
Unknown | 4 (33.3%) | ||
Affected site from cancer | Right | 8 (66.7%) | |
Left | 4 (33.3%) | ||
History of cancer treatment | Surgery | 10 (83.3%) | |
Chemotherapy | 7 (58.3%) | ||
Radiotherapy | 9 (75%) | ||
Endocrine therapy | 4 (33.3%) | ||
Immunotherapy | 1 (8.3%) | ||
Years after treatment | 4.1 (2.2) | ||
Dominant pain site | Right | 6 (50%) | |
Left | 5 (41.7%) | ||
Cannot decide | 1 (8.3%) | ||
Dominant pain site on affected site | Yes | 10 (83.3%) | |
No | 2 (16.3%) | ||
Cannot Decide | 0 (%) |
BCS (n = 12) Median (IQR)/Mean ± SD | HC (n = 12) Median (IQR)/Mean ± SD | U-Statistic/t-Statistic | Effect Size (r/Cohen’s d) | p-Value | |
---|---|---|---|---|---|
Age (years) | 52.8 ± 6.3 | 47.5 ± 3.8 | t = 2.46 | Cohen’s d = 1.01 | 0.024 * |
Weight (kg) | 72.0 (22.0) | 72.1 (13.6) | U = 74.00 | r = 0.03 | 0.932 |
Height (cm) | 166.3 (7.5) | 160.0 (8.5) | U = 35.50 | r = −0.47 | 0.033 * |
Body Mass Index (kg/m2) | 27.0 (8.8) | 29.4 (5.9) | U = 89.00 | r = 0.22 | 0.347 |
Body fat mass % | 37.2 ± 7.9 | 36.1 ± 4.9 | t = 0.42 | Cohen’s d = 0.17 | 0.677 |
Fat Free Mass (kg) | 46.9 (8.8) | 46.2 (6.5) | U = 73.00 | r = 0.01 | 1.000 |
Body water % | 44.6 ± 5.6 | 45.5 ± 3.5 | t = −0.50 | Cohen’s d = −0.20 | 0.622 |
SF-36-Physical Function (/100) | 50.4 ± 23.2 | 82.1 ± 14.4 | t = −4.02 | Cohen’s d = −1.64 | <0.001 * |
SF-36-Role Function (/100) | 0.0 (50.0) | 100.0 (25.0) | U = 118.00 | r = 0.63 | 0.007 * |
SF-36-Social Function (/100) | 63.0 (25.0) | 75.0 (25.0) | U = 110.50 | r = 0.52 | 0.024 * |
SF-36-Emotional Health (/100) | 33.0 (67.0) | 83.5 (67.0) | U = 105.00 | r = 0.44 | 0.060 |
SF-36-Bodily Pain (/100) | 41.9 ± 9.8 | 73.5 ± 23.2 | t = −4.34 | Cohen’s d = −1.77 | <0.001 * |
SF-36-Mental Health (/100) | 59.3 ± 12.5 | 69.0 ± 20.3 | t = −1.40 | Cohen’s d = −0.57 | 0.175 |
SF-36-Vitality (/100) | 39.6 ± 17.5 | 55.0 ± 20.2 | t = −2.00 | Cohen’s d = −0.82 | 0.058 |
SF-36-General Health (/100) | 37.5 (15.0) | 65.0 (10.0) | U = 128.00 | r = 0.73 | 0.001 * |
IPAQ-Total (min/week) | 4517.0 (8187.0) | 1981.5 (1695.0) | U = 51.00 | r = −0.27 | 0.242 |
Electrical Detection Threshold (mA) | 3.5 ± 0.8 | 3.3 ± 0.3 | t = 0.44 | Cohen’s d = 0.18 | 0.664 |
Electrical Pain Threshold (mA) | 10.3 ± 6.3 | 7.8 ± 2.3 | t = 1.27 | Cohen’s d = 0.52 | 0.225 |
Temporal Summation | 13.8 (25.0) | 20.0 (42.5) | U = 90.00 | r = 0.23 | 0.319 |
Electrical Offset Analgesia | 11.3 (13.1) | 8.8 (18.0) | U = 58.00 | r = −0.04 | 0.898 |
PPT-Chest (kg/cm2) | 3.1 (1.0) | 4.4 (1.6) | U = 105.00 | r = 0.43 | 0.060 |
PPT-Tibialis anterior (kg/cm2) | 7.2 ± 4.3 | 8.7 ± 2.3 | t = −1.02 | Cohen’s d = −0.41 | 0.321 |
Central Sensitization Inventory (/100) | 50.0 ± 13.1 | 32.8 ± 13.6 | t = 3.15 | Cohen’s d = 1.29 | 0.005 * |
Douleur Neuropathique 4 (/10) | 4.8 ± 2.5 | 0.0 | t = 6.65 | Cohen’s d = 1.29 | <0.001 * |
BPI-Severity (/10) | 4.1 (2.7) | 0.0 | U = 0.00 | r = −0.99 | <0.001 * |
BPI-Interference (/10) | 5.0 (4.6) | 0.0 | U = 0.00 | r = −0.99 | <0.001 * |
BCS (n = 12) Median (IQR)/Mean ± SD | HC (n = 12) Median (IQR)/Mean ± SD | U-Statistic/t-Statistic | Effect size (r/Cohen’s d) | p-Value | |
---|---|---|---|---|---|
Differences in overall diet quality indices based on HEI-2015 index | |||||
Total HEI-2015 score (/100) | 61.6 ± 11.3 | 61.6 ± 9.0 | t = 0.013 | Cohen’s d = 0.01 | 0.990 |
Total DII Score (−5.5–+5.5) | 0.4 ± 1.1 | 1.4 ± 1.2 | t = −2.18 | Cohen’s d = −0.90 | 0.041 * |
Differences in Healthy Eating Index-2015 Components | |||||
Adequacy Components | |||||
Total fruits (/5) | 3.5 ± 0.6 | 3.8 ± 1.6 | t = −0.59 | Cohen’s d = 0.24 | 0.563 |
Whole fruits (/5) | 4.9 (0.8) | 5.0 (0.0) | U = 100.00 | r = 0.40 | 0.114 |
Total vegetables (/5) | 4.7 (0.6) | 5.0 (0.5) | U = 104.00 | r = 0.44 | 0.068 |
Greens and beans (/5) | 1.8 (3.1) | 3.4 (4.9) | U = 82.50 | r = 0.14 | 0.551 |
Whole grains (/10) | 4.6 (5.5) | 9.4 (10.0) | U = 91.00 | r = 0.25 | 0.291 |
Dairy (/10) | 8.6 (2.4) | 4.6 (5.1) | U = 40.00 | r = −0.41 | 0.068 |
Total protein foods (/5) | 4.0 (1.6) | 5.0 (0.2) | U = 100.50 | r = 0.41 | 0.101 |
Seafood and plant proteins (/5) | 1.7 (1.9) | 5.0 (4.6) | U = 101.00 | r = 0.38 | 0.101 |
Fatty acid ratio (/10) | 3.7 ± 2.8 | 3.6 ± 3.0 | t = 0.08 | Cohen’s d = 0.03 | 0.941 |
Moderation Components | |||||
Refined grains (/10) | 7.50 (5.29) | 6.6 (3.9) | U = 54.50 | r = −0.23 | 0.319 |
Sodium (/10) | 4.43 ± 2.03 | 2.2 ± 1.9 | t = 2.74 | Cohen’s d = 1.12 | 0.012 * |
Added sugar (/10) | 9.66 (1.35) | 10.0 (2.0) | U = 82.50 | r = 0.14 | 0.551 |
Saturated fats (/10) | 3.55 ± 2.00 | 4.9 ± 2.7 | t = −1.34 | Cohen’s d = 0.55 | 0.193 |
Differences in Dietary Inflammatory Index (DII) Components | |||||
Kcal intake | 1543.2 (606.3) | 1545.2 (506.4) | U = 55.00 | r = −0.22 | 0.347 |
Protein (g) | 76.3 ± 18.1 | 64.6 ± 17.7 | t = 1.60 | Cohen’s d = 0.66 | 0.123 |
Total fat (g) | 71.4 (20.3) | 60.2 (40.0) | U = 50.00 | r = −0.27 | 0.219 |
Total carbohydrate (g) | 185.8 ± 46.3 | 193.6 ± 54.3 | t = −0.38 | Cohen’s d = 0.16 | 0.707 |
Alcohol (g) | 0.0 (0.0) | 0.0 (11.5) | U = 66.00 | r = −0.22 | 0.755 |
Caffeine (g) | 0.2 ± 0.1 | 0.1 ± 0.1 | t = 1.08 | Cohen’s d = 0.40 | 0.290 |
Fiber (g) | 19.2 ± 4.4 | 20.4 ± 5.6 | t = −0.54 | Cohen’s d = −0.22 | 0.592 |
Cholesterol (mg) | 312.9 ± 116.5 | 321.9 ± 171.3 | t = −0.15 | Cohen’s d = −0.06 | 0.881 |
Fatty acids, total saturated (g) | 25.6 (8.5) | 20.5 (15.5) | U = 57.00 | r = −0.19 | 0.410 |
Fatty acids, total monounsaturated (g) | 27.6 ± 7.1 | 26.6 ± 9.6 | t = 0.29 | Cohen’s d = 0.12 | 0.777 |
Fatty acids, total polyunsaturated (g) | 12.2 (10.0) | 11.9 (7.5) | U = 67.00 | r = −0.07 | 0.799 |
Omega-3 | 4.3 (23.0) | 1.2 (0.7) | U = 36.00 | r = −0.47 | 0.039 * |
Omega-6 | 12.3 ± 5.4 | 11.2 ± 3.5 | t = 0.57 | Cohen’s d = 0.23 | 0.577 |
Vitamin C (mg) | 100.2 ± 45.3 | 94.5 ± 61.1 | t = 0.26 | Cohen’s d = 0.11 | 0.799 |
Vitamin B1—Thiamin (mg) | 1.3 ± 0.2 | 1.2 ± 0.3 | t = 0.14 | Cohen’s d = 0.07 | 0.894 |
Vitamin B2—Riboflavin (mg) | 2.0 (0.5) | 1.6 (1.0) | U = 48.00 | r = −0.31 | 0.178 |
Vitamin B3—Niacin (mg) | 20.1 ± 5.4 | 17.7 ± 6.7 | t = 0.97 | Cohen’s d = 0.40 | 0.342 |
Vitamin B6 (mg) | 2.2 ± 0.7 | 1.6 ± 0.6 | t = 2.18 | Cohen’s d = 0.88 | 0.040 * |
Vitamin B9—Folic acid (mcg) | 100.1 ± 54.4 | 100.4 ± 34.0 | t = −0.02 | Cohen’s d = −0.01 | 0.987 |
Vitamin B12—Cobalamin (mcg) | 5.1 ± 2.6 | 2.8 ± 1.5 | t = 2.70 | Cohen’s d = 1.10 | 0.013 * |
Vitamin A, RAE (mcg_RAE) | 658.7 (74.0) | 428.7 (207.0) | U = 27.00 | r = −0.58 | 0.008 * |
Carotene, beta (mcg) | 3273.4 (1952.6) | 2220.6 (2647.7) | U = 32.00 | r = −0.52 | 0.020 * |
Vitamin E, alpha-tocopherol (mg) | 8.3 ± 3.1 | 6.9 ± 1.9 | t = 1.32 | Cohen’s d = 0.54 | 0.202 |
Vitamin D (D2 + D3) (mcg) | 4.7 (2.2) | 2.6 (2.7) | U = 32.00 | r = −0.52 | 0.020 * |
Iron (mg) | 11.7 ± 1.9 | 11.5 ± 3.3 | t = 0.22 | Cohen’s d = 0.09 | 0.829 |
Magnesium (mg) | 305.6 ± 45.5 | 262.1 ± 49.6 | t = 2.24 | Cohen’s d = 0.91 | 0.036 * |
Zinc (mg) | 9.9 ± 2.4 | 8.8 ± 2.4 | t = 1.11 | Cohen’s d = 0.45 | 0.279 |
Selenium (mcg) | 94.1 ± 31.1 | 97.0 ± 28.8 | t = −0.24 | Cohen’s d = −0.10 | 0.816 |
Additional component | |||||
Water (g) | 2439.4 ± 634.9 | 2359.9 ± 692.4 | t = 0.29 | Cohen’s d = 0.12 | 0.772 |
EDT (n = 12) | EPT (n = 12) | TS (n = 12) | OA (n = 12) | PPT-Chest (n = 12) | PPT-Tibialis (n = 12) | CSI (n = 12) | DN4 (n = 12) | BPI-Severity (n = 12) | BPI-Interference (n = 12) | |
---|---|---|---|---|---|---|---|---|---|---|
Total HEI-2015 score (/100) | 0.021 | 0.040 | 0.006 | 0.413 | −0.172 | −0.058 | −0.426 | −0.329 | 0.282 | −0.167 |
Total DII Score (−5.5–+5.5) | 0.080 | 0.201 | 0.276 | −0.588 | 0.281 | 0.386 | 0.379 | 0.267 | −0.036 | 0.215 |
Healthy Eating Index-2015 Components | ||||||||||
Total fruits (/5) | 0.075 | 0.216 | 0.045 | 0.186 | 0.063 | 0.257 | −0.098 | −0.326 | −0.098 | −0.426 |
Whole fruits (/5) | −0.083 | −0.052 | 0.342 | 0.161 | 0.271 | 0.153 | −0.249 | −0.495 * | −0.359 | −0.417 * |
Total vegetables (/5) | −0.336 | −0.397 | −0.096 | 0.071 | 0.036 | −0.485 | −0.238 | −0.222 | 0.097 | 0.138 |
Greens and beans (/5) | −0.448 | −0.427 | −0.194 | 0.287 | −0.258 | −0.452 | −0.275 | −0.204 | 0.110 | 0.047 |
Whole grains (/10) | −0.023 | 0.722 | 0.053 | 0.580 | 0.060 | −0.167 | −0.308 | −0.194 | 0.169 | −0.117 |
Dairy (/10) | −0.245 | −0.075 | 0.222 | 0.046 | −0.324 | −0.302 | 0.170 | 0.383 | 0.364 | 0.435 * |
Total protein foods (/5) | −0.098 | −0.096 | −0.292 | 0.065 | 0.179 | 0.428 * | −0.402 | −0.384 | −0.275 | −0.372 |
Seafood and plant proteins (/5) | −0.177 | −0.109 | −0.164 | 0.204 | −0.165 | −0.277 | −0.288 | −0.248 | −0.015 | −0.235 |
Fatty acid ratio (/10) | 0.035 | 0.098 | 0.090 | −0.208 | −0.087 | −0.003 | −0.367 | −0.275 | 0.251 | −0.033 |
Refined grains (/10) | −0.024 | 0.023 | −0.037 | 0.012 | −0.028 | −0.149 | −0.031 | 0.147 | 0.244 | 0.145 |
Sodium (/10) | 0.591 * | 0.696 * | 0.320 | −0.161 | 0.057 | 0.651 * | −0.231 | 0.018 | 0.353 | −0.133 |
Added sugar (/10) | −0.136 | −0.116 | −0.075 | −0.361 | 0.053 | 0.025 | −0.197 | −0.166 | −0.069 | −0.134 |
Saturated fats (/10) | −0.072 | 0.068 | 0.128 | 0.302 | 0.010 | −0.116 | −0.556 | −0.312 | 0.140 | −0.313 |
Dietary Inflammatory Index Components | ||||||||||
Kcal intake | −0.321 | −0.437 * | −0.390 | −0.042 | −0.291 | −0.517 ** | 0.396 | 0.189 | 0.126 | 0.258 |
Protein (g) | −0.186 | −0.472 | −0.669 * | 0.562 | −0.370 | −0.464 | 0.382 | 0.009 | −0.294 | 0.026 |
Total fat (g) | −0.166 | −0.508 | −0.469 | 0.098 | −0.088 | −0.419 | 0.324 | −0.040 | −0.040 | 0.360 |
Total carbohydrate (g) | −0.166 | −0.367 | −0.223 | 0.491 | −0.180 | −0.322 | 0.230 | 0.148 | −0.193 | 0.074 |
Alcohol (g) | 0.060 | 0.136 | 0.075 | −0.259 | 0.166 | 0.136 | −0.196 | −0.194 | −0.193 | −0.193 |
Caffeine (g) | 0.535 | 0.556 | −0.082 | −0.486 | −0.041 | 0.603 * | 0.205 | 0.420 | −0.068 | 0.016 |
Fiber (g) | −0.160 | −0.214 | −0.218 | 0.568 | −0.096 | −0.357 | −0.280 | −0.177 | −0.023 | −0.227 |
Cholesterol (mg) | −0.292 | −0.586 * | −0.407 | 0.103 | −0.067 | −0.416 | 0.323 | −0.209 | −0.171 | 0.258 |
Fatty acids, total saturated (g) | −0.162 | −0.482 | −0.429 | 0.159 | −0.033 | −0.327 | 0.550 | 0.169 | −0.214 | 0.338 |
Fatty acids, total monounsaturated (g) | −0.042 | −0.187 | −0.047 | −0.052 | 0.100 | −0.160 | −0.282 | −0.302 | 0.239 | 0.182 |
Fatty acids, total polyunsaturated (g) | −0.134 | −0.315 | −0.500 * | 0.129 | −0.179 | −0.172 | 0.197 | 0.068 | 0.064 | 0.152 |
Omega-3 | −0.278 | −0.388 | −0.422 * | 0.162 | −0.370 | −0.385 | 0.114 | 0.291 | 0.425 * | 0.480 * |
Omega-6 | −0.141 | −0.403 | −0.534 | 0.014 | −0.162 | −0.395 | 0.441 | 0.060 | −0.100 | 0.293 |
Vitamin C (mg) | −0.069 | −0.196 | −0.182 | 0.661 * | 0.066 | −0.137 | −0.062 | −0.006 | 0.021 | −0.077 |
Vitamin B1—Thiamin (mg) | −0.164 | −0.533 | −0.484 | 0.340 | −0.132 | −0.386 | 0.432 | 0.099 | −0.186 | 0.283 |
Vitamin B2—Riboflavin (mg) | 0.107 | −0.090 | −0.451 | −0.104 | −0.127 | −0.069 | 0.582 * | 0.268 | −0.322 | 0.116 |
Vitamin B3—Niacin (mg) | 0.105 | −0.237 | −0.750 ** | 0.628 * | −0.375 | −0.345 | 0.234 | 0.182 | −0.235 | −0.014 |
Vitamin B6 (mg) | 0.402 | 0.179 | −0.460 | 0.340 | −0.294 | −0.061 | −0.098 | 0.214 | −0.041 | −0.116 |
Vitamin B9—Folic acid (mcg) | −0.053 | −0.008 | 0.034 | −0.361 | −0.155 | −0.173 | 0.254 | 0.014 | −0.258 | −0.029 |
Vitamin B12—Cobalamin (mcg) | 0.424 | 0.354 | −0.045 | 0.308 | −0.339 | 0.114 | −0.016 | 0.140 | −0.073 | −0.265 |
Vitamin A, RAE (mcg_RAE) | 0.245 | 0.233 | −0.176 | 0.227 | −0.112 | −0.047 | 0.214 | 0.479 * | 0.564 ** | 0.545 ** |
Carotene, beta (mcg) | 0.218 | 0.213 | 0.022 | 0.307 | −0.195 | −0.228 | 0.177 | 0.355 | 0.470 * | 0.417 * |
Vitamin E, alpha-tocopherol (mg) | 0.227 | 0.409 | 0.156 | −0.272 | 0.142 | 0.147 | −0.330 | −0.149 | 0.039 | −0.300 |
Vitamin D (D2 + D3) (mcg) | −0.010 | −0.119 | −0.200 | 0.003 | −0.264 | −0.293 | 0.272 | 0.460 * | 0.451 * | 0.492 * |
Iron (mg) | −0.291 | −0.622 * | −0.568 | 0.255 | −0.161 | −0.532 | 0.368 | 0.048 | −0.168 | 0.304 |
Magnesium (mg) | 0.083 | −0.169 | −0.496 | 0.623 * | −0.098 | −0.171 | 0.082 | 0.023 | −0.038 | −0.059 |
Zinc (mg) | 0.492 | 0.313 | −0.313 | −0.190 | 0.084 | 0.449 | 0.394 | 0.400 | −0.152 | 0.080 |
Selenium (mcg) | −0.207 | −0.557 | −0.680 * | 0.117 | −0.208 | −0.506 | 0.425 | −0.046 | −0.257 | 0.119 |
Additional component | ||||||||||
Water (g) | 0.159 | 0.110 | −0.149 | −0.173 | 0.010 | 0.329 | 0.283 | 0.188 | −0.132 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tümkaya Yılmaz, S.; Elma, Ö.; Nijs, J.; Clarys, P.; Coppieters, I.; Deliens, T.; Calders, P.; Naert, E.; Malfliet, A. Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study. Nutrients 2024, 16, 3844. https://doi.org/10.3390/nu16223844
Tümkaya Yılmaz S, Elma Ö, Nijs J, Clarys P, Coppieters I, Deliens T, Calders P, Naert E, Malfliet A. Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study. Nutrients. 2024; 16(22):3844. https://doi.org/10.3390/nu16223844
Chicago/Turabian StyleTümkaya Yılmaz, Sevilay, Ömer Elma, Jo Nijs, Peter Clarys, Iris Coppieters, Tom Deliens, Patrick Calders, Eline Naert, and Anneleen Malfliet. 2024. "Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study" Nutrients 16, no. 22: 3844. https://doi.org/10.3390/nu16223844
APA StyleTümkaya Yılmaz, S., Elma, Ö., Nijs, J., Clarys, P., Coppieters, I., Deliens, T., Calders, P., Naert, E., & Malfliet, A. (2024). Diet Quality and Dietary Intake in Breast Cancer Survivors Suffering from Chronic Pain: An Explorative Case-Control Study. Nutrients, 16(22), 3844. https://doi.org/10.3390/nu16223844