Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases
Abstract
:1. Introduction
- The FTO gene (variants of this gene have been associated with appetite, which is related to an increased body mass index) [22];
- The MC4R gene (known to play a role in regulating energy intake and appetite and metabolism) [23];
- The LEPR gene (encodes the leptin receptor, which plays a key role in regulating food intake, energy balance, and body weight) [24];
- The PPARG gene (plays a significant role in adipogenesis and metabolism regulation) [25];
- The TAS2R genes (regulate taste and its variants may play a role in obesity) [26].
2. Materials and Methods
3. Obesity and Its Genetic Determinants
Genetically Related Types of Obesity | Cause of Obesity | The Syndrome or Gene Symbol | Ref. |
---|---|---|---|
Syndromic obesity | Associated with other genetic abnormalities and developmental defects of organs/systems | Prader–Willi syndrome, Albright syndrome, Down syndrome, Bardet–Biedl syndrome, Alström syndrome, Cohen syndrome, Fragile X syndrome, Monosomy 1p36 syndrome, Proximal 16p11.2 microdeletion syndrome | [30,31] |
Non-syndromic obesity | |||
Monogenic obesity | Caused by single gene mutation | LEP, LEPR, POMC, SIM1, PCSK1, MC4R | [28,30,32,33] |
Polygenic obesity | Associated with involvement of many genes whose function is modulated by environment | FTO, MC4R, GNPDA2, BDNF, SH2B1, KCTD15, TMEM18, NEGR1, TLR4, TLR9, GPDIL | [30,32] |
3.1. Syndromic Obesity
Obesity-Related Syndrome | Gene/ Chromosome | Inheritance Pattern | Clinical Features | Obesity Features | Ref. |
---|---|---|---|---|---|
Prader–Willi Syndrome (PWS) | Chromosomal disorder with region on chromosome 15q11.2-q1 | AD | Endocrinopathies, hyperphagia, mild dysmorphic features, intellectual disability, severe hypotonia, developmental delay, intellectual disability, small hands and feet, characteristic behavior (e.g., skin picking, outbursts, anxiety) | Hyperphagia onset around age 8 results in obesity in absence of it if not controlled | [30,34,36,37]. |
Alström Syndrome | Mutations in ALMS1 gene (2p13) | AR | Insulin resistance, type 2 diabetes, hearing loss, cone-rod dystrophy, non-alcoholic fatty liver, chronic progressive kidney disease | Truncal obesity developed during first year of life | |
Fragile X Syndrome (FRAX) | Triplet repeat expansion of CGG repeats greater than 200 in size in 5′ untranslated region of FMR1 gene (Xq27.3) | X-linked | Autism spectrum disorder, intellectual disability, mild dysmorphic features, behavioral concerns, sleep disturbances, hypotonia, gastroesophageal reflux, scoliosis | Obesity and excessive appetite | |
Down Syndrome | Trisomy 21, Robertsonian translocations, and mosaicism involving chromosome 21 | AD | Intellectual disability, dysmorphic features, developmental delay, intellectual disability, characteristic facial features, hypotonia, heart defect, short stature, hypothyroidism, leukemia | Obesity | |
Bardet–Biedl Syndrome | Mutations in genes BBS1-BBS21/C80RF37, SCAPER, SCLT1, CEP164 | AR, oligogenic inheritance suggested in some families | Retinal cone-rod dystrophy, eye anomalies, polydactyly, hypogonadism, anosmia, renal malformations, behavioral concerns | Central obesity develops in first year of life | |
Cohen Syndrome | Mutation of vacuolar protein sorting 13 homolog B (VPS13B) gene 8q22.2 | AR | Failure to thrive in infancy and childhood; early-onset hypotonia; developmental delays; microcephaly; psychomotor retardation; neutropenia, progressive retinochoroidal dystrophy and myopia; joint hypermobility; characteristic facial features; a cheerful disposition | Obesity of trunk appearing in mid-childhood or later | |
Smith–Magenis Syndrome | Deletion 17p11.2, RAI1 | AD | Childhood-onset abdominal obesity, feeding difficulties, hypotonia, developmental delay, sleep disturbances, behavioral abnormalities, self-injurious behaviors, cognitive impairment | Childhood-onset truncal obesity | |
Kallmann Syndrome | ANOS1, KAL1, FGFR, FGF8, PROKR2, PROK2 | X-linked recessive pattern and autosomal recessive or dominant pattern with incomplete penetrance | Variable combination of hypogonadotropic hypogonadism and anosmia | Obesity reported in PROKR2 and KAL1 |
3.2. Monogenic Obesity
3.3. Polygenic Obesity
3.3.1. FTO Gene
3.3.2. PLIN1 Gene
3.3.3. SIRT1-7 Gene Family
3.4. Vitamin D Receptor Gene
3.5. MCM6 Gene Associated with Lactose Intolerance
3.6. Diagnosis of the Genetic Basis of Obesity
3.6.1. Polygenic Obesity
3.6.2. Monogenic Obesity
3.6.3. Syndromic Obesity
4. Genetic Determinants of Dietary Choices
4.1. Genetic Influences on Taste
4.2. Genetics of Weight Gain
4.3. Impact of Diet on Weight Gain
5. Epigenetics
Fetal Programing
6. Perspectives, Challenges, and Future Directions in Obesity Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals. Who.int. Available online: https://www.who.int/publications/i/item/9789240094703 (accessed on 23 September 2024).
- Mulugeta, W.; Desalegn, H.; Solomon, S. Impact of the COVID-19 Pandemic Lockdown on Weight Status and Factors Associated with Weight Gain among Adults in Massachusetts. Clin. Obes. 2021, 11, e12453. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-H.; Chen, Y.-C.; Chen, W.-Y.; Chen, C.-Y.; Hsu, W.-Y.; Chou, Y.; Chang, Y.-H. Weight Gain Associated with COVID-19 Lockdown in Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3668. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the First COVID-19 Lockdown on Body Weight: A Combined Systematic Review and a Meta-Analysis. Clin. Nutr. 2022, 41, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Barboza, L.L.S.; Pierangeli Costa, A.; de Oliveira Araujo, R.H.; Barbosa, O.G.S.; Leitão, J.L.A.E.S.P.; de Castro Silva, M.; Molina, G.E.; Grossi Porto, L.G. Comparative Analysis of Temporal Trends of Obesity and Physical Inactivity in Brazil and the USA (2011–2021). BMC Public Health 2023, 23, 2505. [Google Scholar] [CrossRef]
- Gui, J.; Li, Y.; Liu, H.; Guo, L.-L.; Li, J.; Lei, Y.; Li, X.; Sun, L.; Yang, L.; Yuan, T.; et al. Obesity-and Lipid-Related Indices as a Risk Factor of Hypertension in Mid-Aged and Elderly Chinese: A Cross-Sectional Study. BMC Geriatr. 2024, 24, 77. [Google Scholar] [CrossRef]
- Diamantis, D.V.; Karatzi, K.; Kantaras, P.; Liatis, S.; Iotova, V.; Bazdraska, Y.; Tankova, T.; Cardon, G.; Wikström, K.; Rurik, I.; et al. Prevalence and Socioeconomic Correlates of Adult Obesity in Europe: The Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2022, 19, 12572. [Google Scholar] [CrossRef]
- Dziegielewska-Gesiak, S. Metabolic Syndrome in an Aging Society—Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis. Clin. Interv. Aging 2021, 16, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Slutsky, N.; Vatarescu, M.; Haim, Y.; Goldstein, N.; Kirshtein, B.; Harman-Boehm, I.; Gepner, Y.; Shai, I.; Bashan, N.; Blüher, M.; et al. Decreased Adiponectin Links Elevated Adipose Tissue Autophagy with Adipocyte Endocrine Dysfunction in Obesity. Int. J. Obes. 2016, 40, 912–920. [Google Scholar] [CrossRef]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef]
- Caruso, A.; Gelsomino, L.; Panza, S.; Accattatis, F.M.; Naimo, G.D.; Barone, I.; Giordano, C.; Catalano, S.; Andò, S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023, 13, 1084. [Google Scholar] [CrossRef]
- Gómez-Hernández, A.; de Las Heras, N.; Gálvez, B.G.; Fernández-Marcelo, T.; Fernández-Millán, E.; Escribano, Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int. J. Mol. Sci. 2024, 25, 4659. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Postigo, M.; Oliva-Olivera, W.; Coin-Aragüez, L.; Ramos-Molina, B.; Giraldez-Perez, R.M.; Lhamyani, S.; Alcaide-Torres, J.; Perez-Martinez, P.; El Bekay, R.; Cardona, F.; et al. Metabolic Endotoxemia Promotes Adipose Dysfunction and Inflammation in Human Obesity. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E319–E332. [Google Scholar] [CrossRef]
- Tian, B.; Pan, Y.; Zhou, X.; Jiang, Y.; Zhang, X.; Luo, X.; Yang, K. Yellow Leaf Green Tea Modulates the AMPK/ACC/SREBP1c Signaling Pathway and Gut Microbiota in High-fat Diet-induced Mice to Alleviate Obesity. J. Sci. Food Agric. 2024, 104, 5882–5895. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Babu, J.R.; Wang, X.; Geetha, T. Role of Macronutrient Intake in the Epigenetics of Obesity. Biochem. Soc. Trans. 2022, 50, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Dumont, J.; Goumidi, L.; Grenier-Boley, B.; Cottel, D.; Marécaux, N.; Montaye, M.; Wagner, A.; Arveiler, D.; Simon, C.; Ferrières, J.; et al. Dietary Linoleic Acid Interacts with FADS1 Genetic Variability to Modulate HDL-Cholesterol and Obesity-Related Traits. Clin. Nutr. 2018, 37, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Younes, N.B.; Mohamed, O.A.; Rizk, N.M. Docosahexaenoic Acid Counteracts the Hypoxic-Induced Inflammatory and Metabolic Alterations in 3T3-L1 Adipocytes. Nutrients 2022, 14, 4600. [Google Scholar] [CrossRef] [PubMed]
- Noronha, N.Y.; Barato, M.; Sae-Lee, C.; Pinhel, M.A.d.S.; Watanabe, L.M.; Pereira, V.A.B.; Rodrigues, G.d.S.; Morais, D.A.; de Sousa, W.T., Jr.; Souza, V.C.d.O.; et al. Novel Zinc-Related Differentially Methylated Regions in Leukocytes of Women with and without Obesity. Front. Nutr. 2022, 9, 785281. [Google Scholar] [CrossRef]
- Watanabe, L.M.; Pereira, V.A.B.; Noronha, N.Y.; de Souza Pinhel, M.A.; Wolf, L.S.; de Oliveira, C.C.; Plaça, J.R.; Noma, I.H.Y.; da Silva Rodrigues, G.; de Souza, V.C.O.; et al. The Influence of Serum Selenium in Differential Epigenetic and Transcriptional Regulation of CPT1B Gene in Women with Obesity. J. Trace Elem. Med. Biol. 2024, 83, 127376. [Google Scholar] [CrossRef]
- Gusti, A.M.T.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-Related Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants 2021, 10, 595. [Google Scholar] [CrossRef]
- Duarte, M.R.; de Moraes Heredia, A.S.; Arantes, V.C.; de Barros Reis, M.A.; Rodrigues, P.R.M.; Gorgulho, B.M.; Fregadolli, C.H.; Latorraca, M.Q. The Interaction of the FTO Gene and Age Interferes with Macronutrient and Vitamin Intake in Women with Morbid Obesity. Exp. Gerontol. 2024, 193, 112463. [Google Scholar] [CrossRef]
- Ponce-Gonzalez, J.G.; Martínez-Ávila, Á.; Velázquez-Díaz, D.; Perez-Bey, A.; Gómez-Gallego, F.; Marín-Galindo, A.; Corral-Pérez, J.; Casals, C. Impact of the FTO Gene Variation on Appetite and Fat Oxidation in Young Adults. Nutrients 2023, 15, 2037. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martín, C.; Caballero, F.F.; de la Iglesia, R.; Alonso-Aperte, E. Association of MC4R Rs17782313 Genotype with Energy Intake and Appetite: A Systematic Review and Meta-Analysis. Nutr. Rev. 2024, nuae075. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Rathor, R.; Singh, S.N.; Suryakumar, G. miRNA and Leptin Signaling in Metabolic Diseases and at Extreme Environments. Pharmacol. Res. Perspect. 2024, 12, e1248. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Xu, L.; Wei, X.; Xia, B.; Gong, Y.; Li, Q.; Chen, X. PPARγ Enhanced Adiponectin Polymerization and Trafficking by Promoting RUVBL2 Expression during Adipogenic Differentiation. Gene 2021, 764, 145100. [Google Scholar] [CrossRef] [PubMed]
- Jeruzal-Świątecka, J.; Fendler, W.; Pietruszewska, W. Clinical Role of Extraoral Bitter Taste Receptors. Int. J. Mol. Sci. 2020, 21, 5156. [Google Scholar] [CrossRef]
- McPherson, R. Genetic Contributors to Obesity. Can. J. Cardiol. 2007, 23, 23A–27A. [Google Scholar] [CrossRef]
- Thaker, V.V. Genetic and Epigenetic Causes of Obesity. In AM:STARs: Obesity and Diabetes in the Adolescent; American Academy of Pediatrics: Washington, DC, USA, 2017; Volume 28, No. 2; pp. 379–405. [Google Scholar]
- Chen, J.; Lou, R.; Zhou, F.; Li, D.; Peng, C.; Lin, L. Sirtuins: Key Players in Obesity-Associated Adipose Tissue Remodeling. Front. Immunol. 2022, 13, 1068986. [Google Scholar] [CrossRef]
- Barczyk, A.; Kutkowska-Kaźmierczak, A.; Castañeda, J.; Obersztyn, E. The genetics of obesity—Pathogenetic, clinical and diagnostic aspects. Dev. Period Med. 2017, 21, 186–202. [Google Scholar]
- Butler, M.G. Single Gene and Syndromic Causes of Obesity: Illustrative Examples. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–45. [Google Scholar]
- da Fonseca, A.C.P.; Mastronardi, C.; Johar, A.; Arcos-Burgos, M.; Paz-Filho, G. Genetics of Non-Syndromic Childhood Obesity and the Use of High-Throughput DNA Sequencing Technologies. J. Diabetes Complicat. 2017, 31, 1549–1561. [Google Scholar] [CrossRef]
- Sanghera, D.K.; Bejar, C.; Sharma, S.; Gupta, R.; Blackett, P.R. Obesity Genetics and Cardiometabolic Health: Potential for Risk Prediction. Diabetes Obes. Metab. 2019, 21, 1088–1100. [Google Scholar] [CrossRef]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef] [PubMed]
- Warenik-Szymankiewicz, B.M.A.C. Rola Genów w Powstawaniu Otyłości. Współczesne Poglądy, Patogeneza, Aspekty Kliniczne. Endokrynol. Otyłość I Zaburzenia Przemiany Mater. 2008, 4, 27–37. [Google Scholar]
- Duis, J.; Butler, M.G. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv. Biol. 2022, 6, 2101154. [Google Scholar] [CrossRef]
- Huvenne, H.; Dubern, B.; Clément, K.; Poitou, C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes. Facts 2016, 9, 158–173. [Google Scholar] [CrossRef]
- Department of Pediatric Diabetes and Obesity Poznan University of Medical Sciences; Krasińska, A.; Skowrońska, B.; Department of Pediatric Diabetes and Obesity Poznan University of Medical Sciences. Prader-Willi Syndrome—Nutritional Management in Children, Adolescents and Adults. Pediatr. Endocrinol. Diabetes Metab. 2017, 23, 101–106. [Google Scholar] [CrossRef]
- McLennan, Y.; Polussa, J.; Tassone, F.; Hagerman, R. Fragile X Syndrome. Curr. Genomics 2011, 12, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Raspa, M.; Bailey, D.B., Jr.; Bishop, E.; Holiday, D.; Olmsted, M. Obesity, Food Selectivity, and Physical Activity in Individuals with Fragile X Syndrome. Am. J. Intellect. Dev. Disabil. 2010, 115, 482–495. [Google Scholar] [CrossRef]
- Clément, K.; Mosbah, H.; Poitou, C. Rare Genetic Forms of Obesity: From Gene to Therapy. Physiol. Behav. 2020, 227, 113134. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Ranadive, S.A.; Vaisse, C. Lessons from Extreme Human Obesity: Monogenic Disorders. Endocrinol. Metab. Clin. N. Am. 2008, 37, 733–751. [Google Scholar] [CrossRef]
- Górczyńska-Kosiorz, S.; Lejawa, M.; Goławski, M.; Tomaszewska, A.; Fronczek, M.; Maksym, B.; Banach, M.; Osadnik, T. The Impact of Haplotypes of the FTO Gene, Lifestyle, and Dietary Patterns on BMI and Metabolic Syndrome in Polish Young Adult Men. Nutrients 2024, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Ordovás, J.M. Update on Perilipin Polymorphisms and Obesity. Nutr. Rev. 2012, 70, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, N.; Pang, Y.; Gong, Y.; Yang, H.; Ding, W.; Yang, H. Mitochondria-Associated Regulation in Adipose Tissues and Potential Reagents for Obesity Intervention. Front. Endocrinol. 2023, 14, 1132342. [Google Scholar] [CrossRef] [PubMed]
- Newsom, S.A.; Boyle, K.E.; Friedman, J.E. Sirtuin 3: A Major Control Point for Obesity-Related Metabolic Diseases? Drug Discov. Today Dis. Mech. 2013, 10, e35–e40. [Google Scholar] [CrossRef]
- Zhou, Y.; Hambly, B.D.; Simmons, D.; McLachlan, C.S. RUNX1T1 Rs34269950 Is Associated with Obesity and Metabolic Syndrome. QJM 2021, 114, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Piwonska, A.M.; Cicha-Mikolajczyk, A.; Sobczyk-Kopciol, A.; Piwonski, J.; Drygas, W.; Kwasniewska, M.; Pajak, A.; Zdrojewski, T.; Tykarski, A.; Kozakiewicz, K.; et al. Independent Association of FTO Rs9939609 Polymorphism with Overweight and Obesity in Polish Adults. Results from the Representative Population-Based WOBASZ Study. J. Physiol. Pharmacol. 2022, 73, 395–402. [Google Scholar] [CrossRef]
- de Luis, D.; Izaola, O.; Primo, D.; Aller, R. RS2289487 Variation in PERILIPIN Gene Is a Predictor of Weight Loss and Protection against Impaired Glucose Metabolism after a Meal-Replacement Diet in Postmenopausal Obese Females. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9355–9362. [Google Scholar] [CrossRef]
- Al-Hazmi, A.S.; Al-Mehmadi, M.M.; Al-Bogami, S.M.; Shami, A.A.; Al-Askary, A.A.; Alomery, A.M.; Al-Shehri, S.S.; Dahlawi, H.; Abdulrazag, K.; Ali, T.; et al. Vitamin D Receptor Gene Polymorphisms as a Risk Factor for Obesity in Saudi Men. Electron. Physician 2017, 9, 5427–5433. [Google Scholar] [CrossRef]
- Tokgöz, Y.; Işık, I.A.; Akbari, S.; Kume, T.; Sayın, O.; Erdal, E.; Arslan, N. Perilipin Polymorphisms Are Risk Factors for the Development of Obesity in Adolescents? A Case-Control Study. Lipids Health Dis. 2017, 16, 52. [Google Scholar] [CrossRef]
- Andrade-Mayorga, O.; Díaz, E.; Salazar, L.A. Effects of Four Lipid Metabolism-Related Polymorphisms on Body Composition Improvements after 12 Weeks of High-Intensity Interval Training and Dietary Energy Restriction in Overweight/Obese Adult Women: A Pilot Study. Front. Physiol. 2021, 12, 712787. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-W.; Yao, H.; Caito, S.; Sundar, I.K.; Rahman, I. Redox Regulation of SIRT1 in Inflammation and Cellular Senescence. Free Radic. Biol. Med. 2013, 61, 95–110. [Google Scholar] [CrossRef]
- Murugasamy, K.; Munjal, A.; Sundaresan, N.R. Emerging Roles of SIRT3 in Cardiac Metabolism. Front. Cardiovasc. Med. 2022, 9, 850340. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Afrose, A.; Sharmin, S.; Rezwan, R.; Rahman, M.R.; Neelotpol, S. A Comprehensive Look into the Association of Vitamin D Levels and Vitamin D Receptor Gene Polymorphism with Obesity in Children. Biomed. Pharmacother. 2022, 153, 113285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Wang, F.; Zhang, W.; Wang, C.; Yu, C.; Zhao, J.; Gao, L.; Xu, J. The Relationship between Obesity Indices and Serum Vitamin D Levels in Chinese Adults from Urban Settings. Asia Pac. J. Clin. Nutr. 2016, 25, 333–339. [Google Scholar] [CrossRef]
- ClinVar. Nih.gov. Available online: https://www.ncbi.nlm.nih.gov/clinvar?LinkName=gene_clinvar&from_uid=7421 (accessed on 20 September 2024).
- Wysoczańska-Klaczyńska, A.; Ślęzak, A.; Hetman, M.; Barg, E. The impact of VDR gene polymorphisms on obesity, metabolic changes, bone mass disorders and neoplastic processes. Pediatr. Endocrinol. Diabetes Metab. 2018, 24, 96–105. [Google Scholar] [CrossRef]
- Górczyńska-Kosiorz, S.; Tabor, E.; Niemiec, P.; Pluskiewicz, W.; Gumprecht, J. Associations between the VDR Gene Rs731236 (TaqI) Polymorphism and Bone Mineral Density in Postmenopausal Women from the RAC-OST-POL. Biomedicines 2024, 12, 917. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, W.; Wang, Y.; Han, X.; Gao, L. Vitamin D Receptor Polymorphisms Associated with Susceptibility to Obesity: A Meta-Analysis. Med. Sci. Monit. 2019, 25, 8297–8305. [Google Scholar] [CrossRef]
- Bienertová-Vašků, J.; Zlámal, F.; Pohořalá, A.; Mikeš, O.; Goldbergová-Pávková, M.; Novák, J.; Šplíchal, Z.; Pikhart, H. Allelic Variants in Vitamin D Receptor Gene Are Associated with Adiposity Measures in the Central-European Population. BMC Med. Genet. 2017, 18, 90. [Google Scholar] [CrossRef]
- Fan, H.-R.; Lin, L.-Q.; Ma, H.; Li, Y.; Sun, C.-H. Association between Vitamin D Receptor Gene Polymorphism (TaqI) and Obesity in Chinese Population. J. Genet. 2015, 94, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, Y.; Sarafidou, T.; Kotsa, K.; Papadimitriou, M.; Goutzelas, Y.; Stamatis, C.; Bagiatis, V.; Tsekmekidou, X.; Yovos, J.G.; Mamuris, Z. VDR TaqI Is Associated with Obesity in the Greek Population. Gene 2013, 512, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Rahmadhani, R.; Zaharan, N.L.; Mohamed, Z.; Moy, F.M.; Jalaludin, M.Y. The Associations between VDR BsmI Polymorphisms and Risk of Vitamin D Deficiency, Obesity and Insulin Resistance in Adolescents Residing in a Tropical Country. PLoS ONE 2017, 12, e0178695. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.L.; Huang, L.; Bouzid, Y.Y.; Kirschke, C.P.; Durbin-Johnson, B.; Baldiviez, L.M.; Bonnel, E.L.; Keim, N.L.; Korf, I.; Stephensen, C.B.; et al. Association of Lactase Persistence Genotypes (Rs4988235) and Ethnicity with Dairy Intake in a Healthy U.s. Population. Nutrients 2019, 11, 1860. [Google Scholar] [CrossRef] [PubMed]
- Górczyńska-Kosiorz, S.; Cichocka, E.; Niemiec, P.; Trautsolt, W.; Pluskiewicz, W.; Gumprecht, J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: Rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients 2024, 16, 3002. [Google Scholar] [CrossRef]
- Manco, L.; Dias, H.; Muc, M.; Padez, C. The Lactase -13910C>T Polymorphism (Rs4988235) Is Associated with Overweight/Obesity and Obesity-Related Variables in a Population Sample of Portuguese Young Adults. Eur. J. Clin. Nutr. 2017, 71, 21–24. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Zhou, A.; Cavadino, A.; Hyppönen, E. Evidence for a Causal Association between Milk Intake and Cardiometabolic Disease Outcomes Using a Two-Sample Mendelian Randomization Analysis in up to 1,904,220 Individuals. Int. J. Obes. 2021, 45, 1751–1762. [Google Scholar] [CrossRef]
- Luo, K.; Chen, G.-C.; Zhang, Y.; Moon, J.-Y.; Xing, J.; Peters, B.A.; Usyk, M.; Wang, Z.; Hu, G.; Li, J.; et al. Variant of the Lactase LCT Gene Explains Association between Milk Intake and Incident Type 2 Diabetes. Nat. Metab. 2024, 6, 169–186. [Google Scholar] [CrossRef]
- Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef]
- WarsawGenomics. Ryzyko Otyłości. Available online: https://warsawgenomics.pl/panel/ryzyko-otylosci (accessed on 23 September 2024).
- Tamaroff, J.; Williamson, D.; Slaughter, J.C.; Xu, M.; Srivastava, G.; Shoemaker, A.H. Prevalence of Genetic Causes of Obesity in Clinical Practice. Obes. Sci. Pract. 2023, 9, 508–515. [Google Scholar] [CrossRef]
- Mazur, A.; Zachurzok, A.; Baran, J.; Dereń, K.; Łuszczki, E.; Weres, A.; Wyszyńska, J.; Dylczyk, J.; Szczudlik, E.; Drożdż, D.; et al. Otyłość dziecięca Stanowisko Polskiego Towarzystwa Pediatrycznego, Polskiego Towarzystwa Otyłości Dziecięcej, Polskiego Towarzystwa Endokrynologii i Diabetologii Dziecięcej, Kolegium Lekarzy Rodzinnych w Polsce oraz Polskiego Towarzystwa Badań nad Otyłością. Available online: https://www.mp.pl/nadwaga-i-otylosc/wytyczne/332002,otylosc-dziecieca-czesc-2-przyczyny-otylosci (accessed on 23 September 2024). (In Polish).
- WarsawGenomics. Otyłość Monogenowa. Available online: https://warsawgenomics.pl/panel/otylosc-monogenowa (accessed on 23 September 2024).
- MRC Holland. Mrcholland.com. Available online: https://www.mrcholland.com/product/P220 (accessed on 23 September 2024).
- Gravina, S.A.; Yep, G.L.; Khan, M. Human Biology of Taste. Ann. Saudi Med. 2013, 33, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Grimm, E.R.; Steinle, N.I. Genetics of Eating Behavior: Established and Emerging Concepts. Nutr. Rev. 2011, 69, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Benish; Choi, J. Bitter Taste Receptor TAS2R38 Genetic Variation (Rs10246939), Dietary Nutrient Intake, and Bio-Clinical Parameters in Koreans. Clin. Nutr. Res. 2023, 12, 40–53. [Google Scholar] [CrossRef]
- Nolden, A.A.; Behrens, M.; McGeary, J.E.; Meyerhof, W.; Hayes, J.E. Differential Activation of TAS2R4 May Recover Ability to Taste Propylthiouracil for Some TAS2R38 AVI Homozygotes. Nutrients 2024, 16, 1357. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.I.; Tepper, B.J. Short-Term Vegetable Intake by Young Children Classified by 6- n-Propylthoiuracil Bitter-Taste Phenotypey. Am. J. Clin. Nutr. 2006, 84, 245–251. [Google Scholar] [CrossRef]
- Tepper, B.J.; Koelliker, Y.; Zhao, L.; Ullrich, N.V.; Lanzara, C.; d’Adamo, P.; Ferrara, A.; Ulivi, S.; Esposito, L.; Gasparini, P. Variation in the Bitter-Taste Receptor Gene TAS2R38, and Adiposity in a Genetically Isolated Population in Southern Italy. Obesity 2008, 16, 2289–2295. [Google Scholar] [CrossRef]
- Merritt, D.C.; Jamnik, J.; El-Sohemy, A. FTO Genotype, Dietary Protein Intake, and Body Weight in a Multiethnic Population of Young Adults: A Cross-Sectional Study. Genes Nutr. 2018, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Li, L.; Zhang, L.; Guo, L.; Wang, C. Association between MC4R Rs17782313 Genotype and Obesity: A Meta-Analysis. Gene 2020, 733, 144372. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Milagro, F.I.; Allayee, H.; Chmurzynska, A.; Choi, M.S.; Curi, R.; De Caterina, R.; Ferguson, L.R.; Goni, L.; Kang, J.X.; et al. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. J. Nutrigenet. Nutrigenom. 2017, 10, 43–62. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, Q.; Zhang, C.; Smith, S.R.; Hu, F.B.; Sacks, F.M.; Bray, G.A.; Qi, L. FTO Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets: The POUNDS LOST Trial. Diabetes 2012, 61, 3005–3011. [Google Scholar] [CrossRef]
- Stocks, T.; Ängquist, L.; Hager, J.; Charon, C.; Holst, C.; Martinez, J.A.; Saris, W.H.M.; Astrup, A.; Sørensen, T.I.A.; Larsen, L.H. TFAP2B -Dietary Protein and Glycemic Index Interactions and Weight Maintenance after Weight Loss in the DiOGenes Trial. Hum. Hered. 2013, 75, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Goni, L.; Cuervo, M.; Milagro, F.I.; Martínez, J.A. Gene-Gene Interplay and Gene-Diet Interactions Involving the MTNR1B Rs10830963 Variant with Body Weight Loss. J. Nutrigenet. Nutrigenom. 2014, 7, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zheng, Y.; Huang, T.; Rood, J.; Bray, G.A.; Sacks, F.M.; Qi, L. Vitamin D Metabolism-Related Genetic Variants, Dietary Protein Intake and Improvement of Insulin Resistance in a 2 Year Weight-Loss Trial: POUNDS Lost. Diabetologia 2015, 58, 2791–2799. [Google Scholar] [CrossRef] [PubMed]
- Grau, K.; Cauchi, S.; Holst, C.; Astrup, A.; Martinez, J.A.; Saris, W.H.M.; Blaak, E.E.; Oppert, J.-M.; Arner, P.; Rössner, S.; et al. TCF7L2 Rs7903146-Macronutrient Interaction in Obese Individuals’ Responses to a 10-Wk Randomized Hypoenergetic Diet. Am. J. Clin. Nutr. 2010, 91, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Durst, R.; Schwarzfuchs, D.; Leitersdorf, E.; Shpitzen, S.; Li, Y.; Wu, H.; Champagne, C.M.; Hu, F.B.; Stampfer, M.J.; et al. CETP Genotype and Changes in Lipid Levels in Response to Weight-Loss Diet Intervention in the POUNDS LOST and DIRECT Randomized Trials. J. Lipid Res. 2015, 56, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Qi, Q.; Liang, J.; Bray, G.A.; Hu, F.B.; Sacks, F.M.; Qi, L. Genetic Determinant for Amino Acid Metabolites and Changes in Body Weight and Insulin Resistance in Response to Weight-Loss Diets: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) Trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) Trial. Circulation 2013, 127, 1283–1289. [Google Scholar] [CrossRef]
- Qi, Q.; Bray, G.A.; Smith, S.R.; Hu, F.B.; Sacks, F.M.; Qi, L. Insulin Receptor Substrate 1 Gene Variation Modifies Insulin Resistance Response to Weight-Loss Diets in a 2-Year Randomized Trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) Trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) Trial. Circulation 2011, 124, 563–571. [Google Scholar] [CrossRef]
- Huang, T.; Huang, J.; Qi, Q.; Li, Y.; Bray, G.A.; Rood, J.; Sacks, F.M.; Qi, L. PCSK7 Genotype Modifies Effect of a Weight-Loss Diet on 2-Year Changes of Insulin Resistance: The POUNDS LOST Trial. Diabetes Care 2015, 38, 439–444. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, T.; Zhang, X.; Rood, J.; Bray, G.A.; Sacks, F.M.; Qi, L. Dietary Fat Modifies the Effects of FTO Genotype on Changes in Insulin Sensitivity. J. Nutr. 2015, 145, 977–982. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, Q.; Bray, G.A.; Hu, F.B.; Sacks, F.M.; Qi, L. APOA5 Genotype Modulates 2-y Changes in Lipid Profile in Response to Weight-Loss Diet Intervention: The Pounds Lost Trial. Am. J. Clin. Nutr. 2012, 96, 917–922. [Google Scholar] [CrossRef]
- Qi, Q.; Bray, G.A.; Hu, F.B.; Sacks, F.M.; Qi, L. Weight-Loss Diets Modify Glucose-Dependent Insulinotropic Polypeptide Receptor Rs2287019 Genotype Effects on Changes in Body Weight, Fasting Glucose, and Insulin Resistance: The Preventing Overweight Using Novel Dietary Strategies Trial. Am. J. Clin. Nutr. 2012, 95, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ng, S.S.; Bray, G.A.; Ryan, D.H.; Sacks, F.M.; Ning, G.; Qi, L. Dietary Fat Intake Modifies the Effect of a Common Variant in the LIPC Gene on Changes in Serum Lipid Concentrations during a Long-Term Weight-Loss Intervention Trial. J. Nutr. 2015, 145, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Martinez, J.A.; Martinez-Gonzalez, M.A.; Fernández-Crehuet, J.; Santos, J.M.; Marti, A. A Mediterranean Diet Rich in Virgin Olive Oil May Reverse the Effects of the -174G/C IL6 Gene Variant on 3-Year Body Weight Change. Mol. Nutr. Food Res. 2010, 54 (Suppl. S1), S75–S82. [Google Scholar] [CrossRef]
- Bouchard-Mercier, A.; Paradis, A.-M.; Rudkowska, I.; Lemieux, S.; Couture, P.; Vohl, M.-C. Associations between Dietary Patterns and Gene Expression Profiles of Healthy Men and Women: A Cross-Sectional Study. Nutr. J. 2013, 12, 24. [Google Scholar] [CrossRef]
- Boqué, N.; de la Iglesia, R.; de la Garza, A.L.; Milagro, F.I.; Olivares, M.; Bañuelos, O.; Soria, A.C.; Rodríguez-Sánchez, S.; Martínez, J.A.; Campión, J. Prevention of Diet-Induced Obesity by Apple Polyphenols in Wistar Rats through Regulation of Adipocyte Gene Expression and DNA Methylation Patterns. Mol. Nutr. Food Res. 2013, 57, 1473–1478. [Google Scholar] [CrossRef]
- Leiherer, A.; Mündlein, A.; Drexel, H. Phytochemicals and Their Impact on Adipose Tissue Inflammation and Diabetes. Vascul. Pharmacol. 2013, 58, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, L.; Fernández-Quintela, A.; Arias, N.; Portillo, M.P. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules 2014, 19, 18632–18655. [Google Scholar] [CrossRef]
- Fraiz, G.M.; da Conceição, A.R.; de Souza Vilela, D.L.; Rocha, D.M.U.P.; Bressan, J.; Hermsdorff, H.H.M. Can Resveratrol Modulate Sirtuins in Obesity and Related Diseases? A Systematic Review of Randomized Controlled Trials. Eur. J. Nutr. 2021, 60, 2961–2977. [Google Scholar] [CrossRef]
- Tollefsbol, T.O. Dietary Epigenetics in Cancer and Aging. Cancer Treat. Res. 2014, 159, 257–267. [Google Scholar] [CrossRef]
- Yun, J.-M.; Jialal, I.; Devaraj, S. Effects of Epigallocatechin Gallate on Regulatory T Cell Number and Function in Obese v. Lean Volunteers. Br. J. Nutr. 2010, 103, 1771–1777. [Google Scholar] [CrossRef]
- Martin, S.L.; Hardy, T.M.; Tollefsbol, T.O. Medicinal Chemistry of the Epigenetic Diet and Caloric Restriction. Curr. Med. Chem. 2013, 20, 4050–4059. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, D.; Manco, L.; Nóbrega, C. Epigenetics of Human Obesity: A Link between Genetics and Nutrition. In Molecular Mechanisms Underpinning the Development of Obesity; Springer International Publishing: Cham, Switzerland, 2014; pp. 101–127. [Google Scholar]
- Gupta, V.K.; Sahu, L.; Sonwal, S.; Suneetha, A.; Kim, D.H.; Kim, J.; Verma, H.K.; Pavitra, E.; Raju, G.S.R.; Bhaskar, L.; et al. Advances in Biomedical Applications of Vitamin D for VDR Targeted Management of Obesity and Cancer. Biomed. Pharmacother. 2024, 177, 117001. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Miazek, K.; Selmi, A.; Balcerczyk, A.; Śliwińska, A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int. J. Mol. Sci. 2022, 23, 956. [Google Scholar] [CrossRef] [PubMed]
- Kauser, H.; Palakeel, J.J.; Ali, M.; Chaduvula, P.; Chhabra, S.; Lamsal Lamichhane, S.; Ramesh, V.; Opara, C.O.; Khan, F.Y.; Kabiraj, G.; et al. Factors Showing the Growing Relation between Vitamin D, Metabolic Syndrome, and Obesity in the Adult Population: A Systematic Review. Cureus 2022, 14, e27335. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, A.; Shidfar, F.; Hedayati, M.; Farshad, A.A.; Tehrani, A.N.; Mohammadi, S. Molecular Mechanisms of Vitamin D plus Bisphenol A Effects on Adipogenesis in Human Adipose-Derived Mesenchymal Stem Cells. Diabetol. Metab. Syndr. 2021, 13, 41. [Google Scholar] [CrossRef]
- Patel, P.; Selvaraju, V.; Babu, J.R.; Geetha, T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023, 15, 2840. [Google Scholar] [CrossRef]
- Calkins, K.; Devaskar, S.U. Fetal Origins of Adult Disease. Curr. Probl. Pediatr. Adolesc. Health Care 2011, 41, 158–176. [Google Scholar] [CrossRef]
- Seneviratne, S.N.; Rajindrajith, S. Fetal Programming of Obesity and Type 2 Diabetes. World J. Diabetes 2022, 13, 482–497. [Google Scholar] [CrossRef]
- Roseboom, T.; de Rooij, S.; Painter, R. The Dutch Famine and Its Long-Term Consequences for Adult Health. Early Hum. Dev. 2006, 82, 485–491. [Google Scholar] [CrossRef]
- Seremak-Mrozikiewicz, A.; Barlik, M.; Drews, K. Fetal Programming as a Cause of Chronic Diseases in Adult Life. Ginekol. Pol. 2014, 85, 43–48. [Google Scholar] [CrossRef]
- Bouchard, C. Genetics of Obesity: What We Have Learned over Decades of Research. Obesity 2021, 29, 802–820. [Google Scholar] [CrossRef] [PubMed]
- Kühnen, P.; Clément, K.; Wiegand, S.; Blankenstein, O.; Gottesdiener, K.; Martini, L.L.; Mai, K.; Blume-Peytavi, U.; Grüters, A.; Krude, H. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N. Engl. J. Med. 2016, 375, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Siu, J.J.; Queen, N.J.; Liu, X.; Huang, W.; McMurphy, T.; Cao, L. Molecular Therapy of Melanocortin-4-Receptor Obesity by an Autoregulatory BDNF Vector. Mol. Ther. Methods Clin. Dev. 2017, 7, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.C.; Trujillo, J.; Freitas-Vilela, A.A.; Farias, D.R.; Rosado, E.L.; Struchiner, C.J.; Kac, G. Associations between Obesity Candidate Gene Polymorphisms (Fat Mass and Obesity-Associated (FTO), Melanocortin-4 Receptor (MC4R), Leptin (LEP) and Leptin Receptor (LEPR)) and Dietary Intake in Pregnant Women. Br. J. Nutr. 2018, 120, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Pinney, S.E.; Joshi, A.; Yin, V.; Min, S.W.; Rashid, C.; Condon, D.E.; Wang, P.Z. Exposure to Gestational Diabetes Enriches Immune-Related Pathways in the Transcriptome and Methylome of Human Amniocytes. J. Clin. Endocrinol. Metab. 2020, 105, 3250–3264. [Google Scholar] [CrossRef]
- Hellmuth, C.; Kirchberg, F.F.; Lass, N.; Harder, U.; Peissner, W.; Koletzko, B.; Reinehr, T. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J. Diabetes Res. 2016, 2016, 2108909. [Google Scholar] [CrossRef]
- Berry, A.; Bellisario, V.; Panetta, P.; Raggi, C.; Magnifico, M.C.; Arese, M.; Cirulli, F. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet. Front. Behav. Neurosci. 2018, 12, 48. [Google Scholar] [CrossRef]
- Miksza, U.; Adamska-Patruno, E.; Bauer, W.; Fiedorczuk, J.; Czajkowski, P.; Moroz, M.; Drygalski, K.; Ustymowicz, A.; Tomkiewicz, E.; Gorska, M.; et al. Obesity-Related Parameters in Carriers of Some BDNF Genetic Variants May Depend on Daily Dietary Macronutrients Intake. Sci. Rep. 2023, 13, 6585. [Google Scholar] [CrossRef]
- Czajkowski, P.; Adamska-Patruno, E.; Bauer, W.; Krasowska, U.; Fiedorczuk, J.; Moroz, M.; Gorska, M.; Kretowski, A. Dietary Fiber Intake May Influence the Impact of FTO Genetic Variants on Obesity Parameters and Lipid Profile—A Cohort Study of a Caucasian Population of Polish Origin. Antioxidants 2021, 10, 1793. [Google Scholar] [CrossRef]
- Almeida, S.M.; Furtado, J.M.; Mascarenhas, P.; Ferraz, M.E.; Ferreira, J.C.; Monteiro, M.P.; Vilanova, M.; Ferraz, F.P. Association between LEPR, FTO, MC4R, and PPARG-2 Polymorphisms with Obesity Traits and Metabolic Phenotypes in School-Aged Children. Endocrine 2018, 60, 466–478. [Google Scholar] [CrossRef]
- Zhao, N.-N.; Dong, G.-P.; Wu, W.; Wang, J.-L.; Ullah, R.; Fu, J.-F. FTO Gene Polymorphisms and Obesity Risk in Chinese Population: A Meta-Analysis. World J. Pediatr. 2019, 15, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, J.; Naka, I.; Kimura, R.; Natsuhara, K.; Yamauchi, T.; Furusawa, T.; Nakazawa, M.; Ataka, Y.; Patarapotikul, J.; Nuchnoi, P.; et al. FTO Polymorphisms in Oceanic Populations. J. Hum. Genet. 2007, 52, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Dastgheib, S.A.; Bahrami, R.; Setayesh, S.; Salari, S.; Mirjalili, S.R.; Noorishadkam, M.; Sadeghizadeh-Yazdi, J.; Akbarian, E.; Neamatzadeh, H. Evidence from a Meta-Analysis for Association of MC4R Rs17782313 and FTO Rs9939609 Polymorphisms with Susceptibility to Obesity in Children. Diabetes Metab. Syndr. 2021, 15, 102234. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.; Van der Merwe, M.-T.; Dodgen, T.M.; Myburgh, R.; Eloff, A.; Alessandrini, M.; Pepper, M.S. Allelic Variants of the Melanocortin 4 Receptor (MC4R) Gene in a South African Study Group. Mol. Genet. Genomic Med. 2016, 4, 68–76. [Google Scholar] [CrossRef]
- Supti, D.A.; Akter, F.; Rahman, M.I.; Munim, M.A.; Tonmoy, M.I.Q.; Tarin, R.J.; Afroz, S.; Reza, H.A.; Yeasmin, R.; Alam, M.R.; et al. Meta-Analysis Investigating the Impact of the LEPR Rs1137101 (A>G) Polymorphism on Obesity Risk in Asian and Caucasian Ethnicities. Heliyon 2024, 10, e27213. [Google Scholar] [CrossRef]
- McLachlan, C.; Shelton, R.; Li, L. Obesity, Inflammation, and Depression in Adolescents. Front. Psychiatry 2023, 14, 1709. [Google Scholar] [CrossRef]
- Ly, M.; Yu, G.Z.; Mian, A.; Cramer, A.; Meysami, S.; Merrill, D.A.; Samara, A.; Eisenstein, S.A.; Hershey, T.; Babulal, G.M.; et al. Neuroinflammation: A Modifiable Pathway Linking Obesity, Alzheimer’s Disease, and Depression. Am. J. Geriatr. Psychiatry 2023, 31, 853–866. [Google Scholar] [CrossRef]
- Young, D.R.; Hedderson, M.M.; Sidell, M.A.; Lee, C.; Cohen, D.A.; Liu, E.F.; Barton, L.J.; Falbe, J.; Inzhakova, G.; Sridhar, S.; et al. City-Level Sugar-Sweetened Beverage Taxes and Youth Body Mass Index Percentile. JAMA Netw. Open 2024, 7, e2424822. [Google Scholar] [CrossRef]
Function | Gene Name | Phenotypic Traits | Ref. |
---|---|---|---|
Genes encoding proteins that regulate food intake | POMC, MC4R, LEP, LEPR, GHRL, PYY, ADCY3 | Relative hyperphagia Weight loss with energy restriction Good response to appetite-suppressant pharmacotherapy | [27,29,45,46,47] |
Genes involved in adipogenesis, preadipocyte differentiation, triglyceride synthesis, regulation of lipid storage and lipolysis | PPAR γ; [DGAT]-1; ADRB2; PLIN1; FTO | No significant hyperphagia, worse response to nutritional intervention for selected SNPs | |
Genes regulating mitochondrial biogenesis, influencing adaptive thermogenesis | SIRT1-7 | Influence propensity to gain weight, modulate weight loss |
Type of Diet | Variant, Gene, Allele | Phenotypic Effect | Ref. |
---|---|---|---|
High protein | rs1558902, FTO, allele A | Greater weight loss | [88] |
rs987237, TFAP2B, allele G | Higher weight regains | [89] | |
rs10830963, MTNR1B, allele G | Smaller weight loss in women | [90] | |
rs12785878, DHCR7, allele T | Higher decreases in insulin and HOMA-IR | [91] | |
High fat | rs7903146, TCF7L2, allele T | Smaller weight loss and HOMA-IR | [92] |
rs3764261, CETP, allele C | Larger increases in HDL-c and decreases in triglycerides | [93] | |
rs1440581, PPM1K, allele C | Smaller weight loss and smaller decreases in insulin and HOMA-IR | [94] | |
High carbohydrate | rs2943641, IRS1, allele C | Higher decreases in insulin, HOMA-IR, and weight loss | [95] |
rs236918, PCSK7, allele G | Higher decreases in insulin and HOMA-IR | [96] | |
Low fat | rs1558902, FTO, allele A | Less reduction in insulin and HOMA-IR | [97] |
rs964184, APOA5, allele G | Larger reduction in TC and LDL-c | [98] | |
rs2287019, GIPR, allele T | Greater weight loss and greater decrease in glucose, insulin, and HOMA-IR | [99] | |
rs2070895, LIPC, allele A | Higher decreases in TC and LDL-c and lower increase in HDL-c | [100] | |
Mediterranean diet | rs2069827, IL6, allele C | Lower weight gain | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górczyńska-Kosiorz, S.; Kosiorz, M.; Dzięgielewska-Gęsiak, S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024, 16, 3562. https://doi.org/10.3390/nu16203562
Górczyńska-Kosiorz S, Kosiorz M, Dzięgielewska-Gęsiak S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients. 2024; 16(20):3562. https://doi.org/10.3390/nu16203562
Chicago/Turabian StyleGórczyńska-Kosiorz, Sylwia, Matylda Kosiorz, and Sylwia Dzięgielewska-Gęsiak. 2024. "Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases" Nutrients 16, no. 20: 3562. https://doi.org/10.3390/nu16203562
APA StyleGórczyńska-Kosiorz, S., Kosiorz, M., & Dzięgielewska-Gęsiak, S. (2024). Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients, 16(20), 3562. https://doi.org/10.3390/nu16203562