The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patient Cohorts
2.2. Data Collection
2.3. Nutrition Related Data
2.4. Statistical Analysis
- -
- Daily GRV = mean ± standard deviation of the GRV (mL/24 h) of all patients during the entire observation period;
- -
- Time course of daily GRV = mean value ± standard deviation of the GRV (mL/24 h) in the time periods described above;
- -
- Limit of the GRV according to ESPEN guidelines [17] = absolute and relative frequency of days with high GRV (i.e., GRV ≥ 500 mL/24 h) during the entire observation period;
- -
- Univariable and multivariable Cox regression analyses were used to evaluate parameters associated with a high GRV (i.e., GRV ≥ 500 mL/24 h).
3. Results
3.1. Baseline Characteristics
3.2. Data on Position Dependent Nutrition Support
3.3. Nutrition Data in the First 30 Days of ECMO Support
3.4. Nutrition Support Practices during ECMO Therapy
3.5. Data on GRV in Different Positions
3.6. Patient-Specific Tolerance of Medical Nutrition Therapy
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aHR | adjusted hazard ratio |
ARDS | acute respiratory distress syndrome |
BMI | body mass index |
BW | body weight |
CI | confidence interval |
COVID-19 | Coronavirus Disease 2019 |
d | day |
del | delivery |
ECMO | extracorporeal membrane oxygenation |
EN | enteral nutrition |
ESPEN | European Society for Clinical Nutrition and Metabolism |
FiO2 | Fraction of inspired oxygen |
g | gram |
GI | gastrointestinal |
GRV | gastric residual volume |
HR | hazard ratio |
ICU | intensive care unit |
IQR | interquartile range |
kcal | kilocalories |
kg | kilogram |
mg | milligram |
mL | milliliter |
paO2 | oxygen partial pressure |
PN | parenteral nutrition |
prop | propofol |
requ | requirements |
SAPS II | Simplified Acute Physiology Score II |
SOFA | Sequential Organ Failure Assessment |
sPN | supplemental parenteral nutrition |
Std | standard deviation |
tPN | total parenteral nutrition |
VV | venovenous |
References
- Shekar, K.; Badulak, J.; Peek, G.; Boeken, U.; Dalton, H.J.; Arora, L.; Zakhary, B.; Ramanathan, K.; Starr, J.; Akkanti, B.; et al. Extracorporeal LifeSupport Organization Coronavirus Disease 2019 Interim Guidelines: A Consensus Document from anInternational Group ofInterdisciplinary Extracorporeal Membrane Oxygenation Providers. ASAIO J. 2020, 66, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Ferrie, S.; Herkes, R.; Forrest, P. Nutrition support during extracorporeal membrane oxygenation (ECMO) in adults: A retrospective audit of 86 patients. Intensive Care Med. 2013, 39, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.C.; Durham, L.A., 2nd; Kiraly, L., 3rd; Patel, J.J. Safety, Tolerability, and Outcomes ofEnteral Nutrition inExtracorporeal Membrane Oxygenation. Nutr. Clin. Pract. 2021, 36, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jeong, S.K.; Hwang, J.; Kim, J.H.; Shin, J.S.; Shin, H.J. Early enteral nutrition and factors related to in-hospital mortality in people on extracorporeal membrane oxygenation. Nutrition 2021, 89, 111222. [Google Scholar] [CrossRef]
- Lu, M.C.; Yang, M.D.; Li, P.C.; Fang, H.Y.; Huang, H.Y.; Chan, Y.C.; Bau, D.T. Effects ofNutritional Intervention onthe Survival of Patients withCardiopulmonary Failure Undergoing Extracorporeal Membrane Oxygenation Therapy. In Vivo 2018, 32, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Farías, M.M.; Olivos, C.; Díaz, R. Nutritional implications forthe patient undergoing extracorporeal membrane oxygenation. Nutr. Hosp. 2015, 31, 2346–2351. [Google Scholar]
- Lindberg, B.R.; Videm, V.; Dahl, T.; Sørensen, G.; Fiane, A.E.; Thiara, A.S. Influence ofthe ECMO circuit on theconcentration of nutritional supplements. Sci. Rep. 2020, 10, 19275. [Google Scholar] [CrossRef]
- MacGowan, L.; Smith, E.; Elliott-Hammond, C.; Sanderson, B.; Ong, D.; Daly, K.; Barrett, N.A.; Whelan, K.; Bear, D.E. Adequacy of nutrition support during extracorporeal membrane oxygenation. Clin. Nutr. 2019, 38, 324–331. [Google Scholar] [CrossRef]
- Stoppe, C.; Nesterova, E.; Elke, G. Nutritional support inpatients with extracorporeal life support and ventricular assist devices. Curr. Opin. Crit. Care 2018, 24, 269–276. [Google Scholar] [CrossRef]
- Ridley, E.J.; Davies, A.R.; Robins, E.J.; Lukas, G.; Bailey, M.J.; Fraser, J.F. Nutrition therapy in adult patients receiving extracorporeal membrane oxygenation: Aprospective, multicentre, observational study. Crit. Care Resusc. 2015, 17, 183–189. [Google Scholar] [CrossRef]
- Ho, D.K.N.; Nguyen, H.S.; Irnandi, D.F.; Faradina, A.; Do Dang, T.; Wiratama, B.S.; Nurwanti, E.; Hadi, H.; Chuang, Y.K.; Tinkov, A.A.; et al. Adherence to COVID-19 nutritional guidelines and their impact on the clinical outcomes of hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2021, 46, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Reintam Blaser, A.; Preiser, J.C.; Fruhwald, S.; Wilmer, A.; Wernerman, J.; Benstoem, C.; Casaer, M.P.; Starkopf, J.; van Zanten, A.; Rooyackers, O.; et al. Gastrointestinal dysfunction inthe critically ill:A systematic scoping review andresearch agenda proposed by the Section of Metabolism, Endocrinology and Nutrition ofthe European Society of Intensive Care Medicine. Crit. Care 2020, 24, 224. [Google Scholar] [CrossRef] [PubMed]
- Lakenman, P.L.M.; van Schie, J.C.; van der Hoven, B.; Baart, S.J.; Eveleens, R.D.; vanBommel, J.; Olieman, J.F.; Joosten, K.F.M. Nutritional intake and gastro-intestinal symptoms in critically ill COVID-19 patients. Clin. Nutr. 2022, 41, 2903–2909. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in theIntensive Care Unit-A Narrative Review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef]
- Reignier, J.; Mercier, E.; Le Gouge, A.; Boulain, T.; Desachy, A.; Bellec, F.; Clavel, M.; Frat, J.P.; Plantefeve, G.; Quenot, J.P.; et al. Effect of not monitoring residual gastric volume on risk ofventilator-associated pneumonia inadults receiving mechanical ventilation and early enteral feeding: Arandomized controlled trial. JAMA 2013, 309, 249–256. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Poeze, M.; Malbrain, M.L.; Björck, M.; Oudemans-van Straaten, H.M.; Starkopf, J. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: A prospective multicentre study. Intensive Care Med. 2013, 39, 899–909. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Calder, P.C.; Casaer, M.; Hiesmayr, M.; Mayer, K.; Montejo-Gonzalez, J.C.; Pichard, C.; Preiser, J.C.; et al. ESPEN practical andpartially revised guideline: Clinical nutrition inthe intensive care unit. Clin. Nutr. 2023, 42, 1671–1689. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.V.; Pantet, O.; Charrière, M.; Favre, D.; Piquilloud, L.; Schneider, A.G.; Hurni, C.A.; Berger, M.M. Specific nutrition and metabolic characteristics of critically ill patients withpersistent COVID-19. JPEN J. Parenter. Enter. Nutr. 2022, 46, 1149–1159. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPENexpert statements andpractical guidance fornutritional management ofindividuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Bear, D.E.; Smith, E.; Barrett, N.A. Nutrition Support inAdult Patients Receiving Extracorporeal Membrane Oxygenation. Nutr. Clin. Pract. 2018, 33, 738–746. [Google Scholar] [CrossRef]
- Martindale, R.; Patel, J.J.; Taylor, B.; Arabi, Y.M.; Warren, M.; McClave, S.A. Nutrition Therapy inCritically Ill Patients with Coronavirus Disease 2019. JPEN J. Parenter. Enter. Nutr. 2020, 44, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Bingham, A.L.; McCall, M.; Patel, J.; Rice, T.W.; Braunschweig, C.; McKeever, L. Guidelines forthe provision of nutrition support therapy in theadult critically illpatient: The American Society forParenteral and Enteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2022, 46, 12–41. [Google Scholar] [CrossRef] [PubMed]
- Saez de la Fuente, I.; Saez dela Fuente, J.; Quintana Estelles, M.D.; Garcia Gigorro, R.; Terceros Almanza, L.J.; Sanchez Izquierdo, J.A.; Montejo Gonzalez, J.C. Enteral Nutrition in Patients Receiving Mechanical Ventilation ina Prone Position. JPEN J. Parenter. Enter. Nutr. 2016, 40, 250–255. [Google Scholar] [CrossRef] [PubMed]
- van derVoort, P.H.; Zandstra, D.F. Enteral feeding in the critically ill: Comparison between the supine andprone positions: Aprospective crossover study in mechanically ventilated patients. Crit. Care 2001, 5, 216–220. [Google Scholar] [CrossRef]
- Osuna-Padilla, I.; Rodríguez-Moguel, N.C.; Aguilar-Vargas, A.; Rodríguez-Llamazares, S. Safety and tolerance of enteral nutrition in COVID-19 critically ill patients, a retrospective study. Clin. Nutr. ESPEN 2021, 43, 495–500. [Google Scholar] [CrossRef]
- Schneeweiss-Gleixner, M.; Scheiner, B.; Semmler, G.; Maleczek, M.; Laxar, D.; Hintersteininger, M.; Hermann, M.; Hermann, A.; Buchtele, N.; Schaden, E.; et al. Inadequate Energy Delivery Is Frequent among COVID-19 Patients Requiring ECMO Support andAssociated with Increased ICU Mortality. Nutrients 2023, 15, 2098. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II)based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; DeMendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.; Thijs, L.G. TheSOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of theEuropean Society ofIntensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Grasselli, G.; Calfee, C.S.; Camporota, L.; Poole, D.; Amato, M.B.; Antonelli, M.; Arabi, Y.M.; Baroncelli, F.; Beitler, J.R.; Bellani, G. ESICM guidelines onacute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023, 49, 727–759. [Google Scholar] [CrossRef]
- Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef]
- Chua, E.X.; Zahir, S.; Ng, K.T.; Teoh, W.Y.; Hasan, M.S.; Ruslan, S.R.B.; Abosamak, M.F. Effect of prone versus supine position inCOVID-19 patients: Asystematic review andmeta-analysis. J. Clin. Anesth. 2021, 74, 110406. [Google Scholar] [CrossRef] [PubMed]
- Mathews, K.S.; Soh, H.; Shaefi, S.; Wang, W.; Bose, S.; Coca, S.; Gupta, S.; Hayek, S.S.; Srivastava, A.; Brenner, S.K.; et al. Prone Positioning and Survival in Mechanically Ventilated Patients with Coronavirus Disease 2019-Related Respiratory Failure. Crit. Care Med. 2021, 49, 1026–1037. [Google Scholar] [CrossRef]
- Behesht Aeen, F.; Pakzad, R.; Goudarzi Rad, M.; Abdi, F.; Zaheri, F.; Mirzadeh, N. Effect of prone position on respiratory parameters, intubation anddeath rate in COVID-19 patients: Systematic review andmeta-analysis. Sci. Rep. 2021, 11, 14407. [Google Scholar] [CrossRef]
- Savio, R.D.; Parasuraman, R.; Lovesly, D.; Shankar, B.; Ranganathan, L.; Ramakrishnan, N.; Venkataraman, R. Feasibility, tolerance and effectiveness of enteral feeding in critically illpatients in prone position. J. Intensive Care Soc. 2021, 22, 41–46. [Google Scholar] [CrossRef]
- Patel, J.J.; Rice, T.W.; Mundi, M.S.; Stoppe, C.; McClave, S.A. Nutrition dose inthe early acute phase ofcritical illness: Finding the sweet spotand heeding the lessons fromthe NUTRIREA trials. JPEN J. Parenter. Enter. Nutr. 2023, 47, 859–865. [Google Scholar] [CrossRef]
- Al-Yousif, N.; Rawal, S.; Jurczak, M.; Mahmud, H.; Shah, F.A. Endogenous Glucose Production in Critical Illness. Nutr. Clin. Pract. 2021, 36, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Whittle, J.; Molinger, J.; MacLeod, D.; Haines, K.; Wischmeyer, P.E. Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients withCOVID-19. Crit. Care 2020, 24, 581. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Hajage, D.; Demoule, A.; Pham, T.; Combes, A.; Dres, M.; Lebbah, S.; Kimmoun, A.; Mercat, A.; Beduneau, G.; et al. [M2] Clinical characteristics and day-90 outcomes of 4244 critically ill adults withCOVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar]
- Yang, Z.; Hu, Q.; Huang, F.; Xiong, S.; Sun, Y. The prognostic value of the SOFAscore in patients with COVID-19: A retrospective, observational study. Medicine 2021, 100, e26900. [Google Scholar] [CrossRef]
- Fruhwald, S.; Holzer, P.; Metzler, H. Gastrointestinal motility inacute illness. Wien. Klin. Wochenschr. 2008, 120, 6–17. [Google Scholar] [CrossRef]
- Al-Dorzi, H.M.; Arabi, Y.M. Enteral Nutrition Safety with Advanced Treatments: Extracorporeal Membrane Oxygenation, Prone Positioning, and Infusion ofNeuromuscular Blockers. Nutr. Clin. Pract. 2021, 36, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Reintam Blaser, A.; Starkopf, J.; Alhazzani, W.; Berger, M.M.; Casaer, M.P.; Deane, A.M.; Fruhwald, S.; Hiesmayr, M.; Ichai, C.; Jakob, S.M.; et al. Early enteral nutrition incritically ill patients: ESICM clinical practice guidelines. Intensive Care Med. 2017, 43, 380–398. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, L.; Kichian, K.; Pinilla, J.; Rodych, N.J.; Dhaliwal, R.; Heyland, D.K. Does enteral nutrition compared toparenteral nutrition result in better outcomes in critically illadult patients? Asystematic review ofthe literature. Nutrition 2004, 20, 843–848. [Google Scholar] [CrossRef] [PubMed]
- de Alencar, E.S.; dos Santos Muniz, L.S.; Holanda, J.L.G.; Oliveira, B.D.D.; de Carvalho, M.C.F.; Leitão, A.M.M.; de Alencar Cavalcante, M.I.; de Oliveira, R.C.P.; da Silva, C.A.B.; Carioca, A.A.F. Enteral nutritional support forpatients hospitalized withCOVID-19: Results fromthe first wave in apublic hospital. Nutrition 2022, 94, 111512. [Google Scholar] [CrossRef]
- de Paula, J.A.; Rabito, E.I.; Justino, S.R.; Leite, L.S.; Dantas, D.; da Silva, J.S.M.; Maffini, L.F.; Júnior, O.R. Administration ofenteral nutrition andgastrointestinal complications inCovid-19 critical patients in prone position. Clin. Nutr. Open Sci. 2022, 45, 80–90. [Google Scholar] [CrossRef]
- Granholm, A.; Krag, M.; Marker, S.; Alhazzani, W.; Perner, A.; Møller, M.H. Predictors of gastrointestinal bleeding inadult ICU patients in theSUP-ICU trial. Acta Anaesthesiol. Scand. 2021, 65, 792–800. [Google Scholar] [CrossRef]
- Sekulic, A.D.; Trpkovic, S.V.; Pavlovic, A.P.; Marinkovic, O.M.; Ilic, A.N. Scoring Systems inAssessing Survival ofCritically Ill ICUPatients. Med. Sci. Monit. 2015, 21, 2621–2629. [Google Scholar] [CrossRef]
- Kaafarani, H.M.; El Moheb, M.; Hwabejire, J.O.; Naar, L.; Christensen, M.A.; Breen, K.; Gaitanidis, A.; Alser, O.; Mashbari, H.; Bankhead-Kendall, B.; et al. Gastrointestinal Complications in Critically IllPatients With COVID-19. Ann. Surg. 2020, 272, e61-2. [Google Scholar] [CrossRef]
- Liu, R.; Paz, M.; Siraj, L.; Boyd, T.; Salamone, S.; Lite, T.V.; Leung, K.M.; Chirinos, J.D.; Shang, H.H.; Townsend, M.J.; et al. Feeding intolerance in critically illpatients with COVID-19. Clin. Nutr. 2022, 41, 3069–3076. [Google Scholar] [CrossRef]
- El Moheb, M.; Naar, L.; Christensen, M.A.; Kapoen, C.; Maurer, L.R.; Farhat, M.; Kaafarani, H.M.A. Gastrointestinal Complications inCritically Ill Patients With and Without COVID-19. JAMA 2020, 324, 1899–1901. [Google Scholar] [CrossRef]
- Cereda, E.; Guzzardella, A.; Klersy, C.; Belliato, M.; Pellegrini, A.; Sciutti, F.; Mongodi, S.; Masi, S.; Crotti, S.; Savioli, M.; et al. Early caloric deficit is associated witha higher risk of death in invasive ventilated COVID-19 patients. Clin. Nutr. 2022, 41, 3096–3099. [Google Scholar] [CrossRef] [PubMed]
- De Waele, E.; Van Zwam, K.; Mattens, S.; Staessens, K.; Diltoer, M.; Honoré, P.M.; Czapla, J.; Nijs, J.; La Meir, M.; Huyghens, L.; et al. Measuring resting energy expenditure during extracorporeal membrane oxygenation: Preliminary clinical experience witha proposed theoretical model. Acta Anaesthesiol. Scand. 2015, 59, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Wollersheim, T.; Frank, S.; Müller, M.C.; Skrypnikov, V.; Carbon, N.M.; Pickerodt, P.A.; Spies, C.; Mai, K.; Spranger, J.; Weber-Carstens, S. Measuring Energy Expenditure in extracorporeal lung support Patients (MEEP)—Protocol, feasibility andpilot trial. Clin. Nutr. 2018, 37, 301–307. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Overall (n = 102 *) | Soubgroup A (n = 28 **) | Subgroup B (n = 73 **) | p-Value |
---|---|---|---|---|
Patient characteristics | ||||
Male, n (%) | 73 (71.6%) | 23 (82.1%) | 49 (67.1%) | 0.135 |
Age (years), median (IQR) | 57 (50–62) | 57 (46–62) | 57 (52–63) | 0.719 |
Weight (kg), median (IQR) | 90 (80–100) | 85 (80–100) | 80 (80–102) | 0.447 |
BMI (kg/m2), median (IQR) | 29 (26–35) | 28 (26–31) | 31 (27–35) | 0.017 |
SOFA at admission, median (IQR) | 8 (7–9) | 7.5 (6.25–8) | 8 (7–9) | 0.313 |
SOFA at ECMO start, median (IQR) | 8 (7–9) | 8 (7–9) | 8 (7–9.5) | 0.695 |
SAPS II at admission, median (IQR) | 42 (37–49) | 40 (33.5–47.75) | 42 (38–51) | 0.183 |
SAPS II at ECMO start, median (IQR) | 40 (34–46) | 38.5 (33–44) | 40 (35–48.5) | 0.495 |
ECMO duration (days), median (IQR) | 20 (11–31) | 14 (9–28) | 20 (12–31) | 0.545 |
ICU LOS (days), median (IQR) | 35 (22–57) | 36 (24–53) | 35 (20–58) | 0.776 |
ICU mortality, n (%) | 42 (41.2%) | 10 (35.7%) | 31 (42.5%) | 0.536 |
Nutrition Data of 2344 days | ||||
Daily calorie del. (% of requ.) overall, mean (Std.) | 73.7 (29.1) | 71.6 (26.0) | 74.4 (30.0) | 0.475 |
Daily calorie del. (% of requ.) from EN, mean (Std.) | 51.0 (34.6) | 56.2 (30.6) | 49.4 (35.6) | <0.001 |
Daily calorie del. (% of requ.) from PN, mean (Std.) | 14.2 (23.9) | 9.4 (19.4) | 15.7 (25.0) | <0.001 |
Daily calorie del. (% of requ.) from prop., mean (Std.) | 8.6 (7.7) | 6.0 (7.1) | 9.4 (7.7) | <0.001 |
Daily protein del. (g/kg BW/d) overall, mean (Std.) | 0.69 (0.35) | 0.70 (0.32) | 0.70 (0.36) | 0.037 |
Daily protein del. (g/kg BW/d) from EN, mean (Std.) | 0.49 (0.36) | 0.55 (0.33) | 0.47 (0.37) | <0.001 |
Daily protein del. (g/kg BW/d) from PN, mean (Std.) | 0.21 (0.36) | 0.15 (0.32) | 0.23 (0.37) | <0.001 |
GRV (mL/24 h), mean ± Std. | 127.8 (232.4) | 107.6 (224.5) | 134.5 (234.9) | 0.001 |
Nutrition Data | Overall | Days in Supine | Days in Prone | p-Value |
---|---|---|---|---|
All ECMO days | ||||
Overall, n (%)|mean (Std.) | 2344 (100)|73.7 (29.1) | 1830 (78.1)|74.4 (29.6) | 514 (21.9)|71.1 (27.2) | 0.001 |
EN, mean (Std.) | 51.0 (34.6) | 55.8 (34.3) | 33.9 (29.9) | <0.001 |
PN, mean (Std.) | 14.2 (23.9) | 11.2 (21.2) | 24.6 (29.4) | <0.001 |
Propofol, mean (Std.) | 8.6 (7.7) | 7.5 (7.4) | 12.6 (7.3) | <0.001 |
ECMO days 1–3 | ||||
Overall, n (%)|mean (Std.) | 305 (100)|63.9 (26.6) | 183 (60)|61.8 (26.9) | 122 (40)|67.1 (26.1) | 0.086 |
EN, mean (Std.) | 28.1 (27.2) | 33.3 (28.7) | 20.3 (22.7) | <0.001 |
PN, mean (Std.) | 23.2 (27.0) | 18.1 (23.9) | 30.9 (29.7) | <0.001 |
Propofol, mean (Std.) | 12.7 (6.7) | 10.4 (6.4) | 16.0 (5.7) | <0.001 |
ECMO days 1–7 | ||||
Overall, n (%)|mean (Std.) | 693 (100)|67.3 (26.9) | 433 (62.5)|66.1 (27.4) | 260 (37.5)|69.2 (26) | 0.137 |
EN, mean (Std.) | 33.6 (29.9) | 38.4 (30.9) | 25.6 (26.2) | <0.001 |
PN, mean (Std.) | 22.6 (27.3) | 18.4 (25.6) | 29.5 (28.5) | <0.001 |
Propofol, mean (Std.) | 11.1 (7.1) | 9.3 (6.7) | 14.1 (6.6) | <0.001 |
ECMO days 8–14 | ||||
Overall, n (%)|mean (Std.) | 548 (100)|75.1 (28.5) | 428 (78.1)|74.4 (28.8) | 120 (21.9)|77.3 (27.3) | 0.464 |
EN, mean (Std.) | 50.0 (34.5) | 51.9 (35.1) | 44.3 (31.9) | 0.055 |
PN, mean (Std.) | 17.2 (25.7) | 16.0 (23.4) | 21.6 (32.1) | 0.344 |
Propofol, mean (Std.) | 7.9 (7.2) | 6.8 (6.9) | 11.5 (7.4) | <0.001 |
ECMO days 15–30 | ||||
Overall, n (%)|mean (Std.) | 693 (100)|74.1 (29.7) | 580 (83.7)|74.8 (30.0) | 113 (16.3)|70.6 (28.2) | 0.072 |
EN, mean (Std.) | 57.3 (32.2) | 60.9 (31.5) | 39.1 (30) | <0.001 |
PN, mean (Std.) | 9.8 (20.4) | 7.6 (17.8) | 21.2 (27.9) | <0.001 |
Propofol, mean (Std.) | 6.9 (7.4) | 6.3 (7.2) | 10.2 (7.7) | <0.001 |
Overall | Days in Supine | Days in Prone | p-Value | |
---|---|---|---|---|
Energy delivery on all ECMO days | ||||
Total number of potential nutrition support days | 2344 | 1830 | 514 | |
Days with calorie del. 70–100% of requ., n (%) | 952 (40.6) | 770 (42.1) | 182 (35.4) | 0.007 |
Days with calorie del. <70% of requ., n (%) | 956 (40.8) | 707 (38.6) | 249 (48.4) | <0.001 |
Days with calorie del. >100% of requ., n (%) | 436 (18.6) | 353 (19.3) | 83 (16.1) | 0.106 |
Energy delivery on ECMO days 1–30 | ||||
Total number of potential nutrition support days | 1934 | 1441 | 493 | |
Days with calorie del. 70–100% of requ., n (%) | 769 (39.8) | 597 (41.4) | 172 (34.9) | 0.010 |
Days with calorie del. <70% of requ., n (%) | 852 (44.1) | 613 (42.5) | 239 (48.5) | 0.022 |
Days with calorie del. >100% of requ., n (%) | 313 (16.2) | 231 (16.0) | 82 (16.6) | 0.754 |
Protein (g/kg BW/d) delivery on all ECMO days | ||||
Days with protein del. ≥0.7 g/kg BW/d, n (%) | 1187 (50.6) | 972 (53.1) | 215 (41.8) | <0.001 |
Days with protein del. ≥1.3 g/kg BW/d, n (%) | 114 (4.9) | 84 (4.6) | 30 (5.8) | 0.246 |
Protein (g/kg BW/d) delivery on ECMO days 1–30 | ||||
Days with protein del. ≥0.7 g/kg BW/d, n (%) | 921 (47.6) | 711 (49.3) | 210 (42.6) | 0.010 |
Days with protein del. ≥1.3 g/kg BW/d, n (%) | 104 (5.4) | 74 (5.1) | 30 (6.1) | 0.420 |
Nutrition support practices on all ECMO days | ||||
Days with EN, n (%) | 1516 (64.7) | 1269 (69.3) | 247 (48.1) | <0.001 |
Days with tPN, n (%) | 181 (7.7) | 97 (5.3) | 84 (16.3) | <0.001 |
Days with sPN, n (%) | 567 (24.1) | 398 (21.7) | 169 (32.9) | <0.001 |
Days with no nutrition support, n (%) | 80 (3.4) | 66 (3.6) | 14 (2.7) | 0.330 |
Days with prokinetic therapy, n (%) | 1247 (53.2) | 960 (52.5) | 287 (55.8) | 0.175 |
Days with post-pyloric tube, n (%) | 151 (6.4) | 113 (6.2) | 38 (7.4) | 0.320 |
Days with ≥1 episode of hyperglycemia, n (%) | 1306 (55.7) | 980 (53.6) | 326 (63.4) | <0.001 |
Days with hypertriglyceridemia, n (%) | 801 (34.2) | 562 (30.7%) | 239 (46.5) | <0.001 |
Nutrition Data | Overall | Days in Supine | Days in Prone | p-Value |
---|---|---|---|---|
Gastric residual Volume (GRV) | ||||
All ECMO days, n (%)|mean (Std.) | 2344 (100)|127.8 (232.4) | 1830 (78.1)|111.0 (216.8) | 514 (21.9)|187.3 (273.0) | <0.001 |
ECMO days 1–3, n (%)|mean (Std.) | 305 (100)|147.3 (218.2) | 183 (60)|117.1 (188.4) | 122 (40.0)|192.7 (250.5) | 0.002 |
ECMO days 1–7, n (%)|mean (Std.) | 693 (100)|157.3 (247.2) | 433 (62.5)|139.5 (239.4) | 260 (37.5)|186.9 (257.6) | <0.001 |
ECMO days 8–14, n (%)|mean (Std.) | 548 (100)|143.1 (224.5) | 428 (78.1)|134.2 (214.2) | 120 (21.9)|175 (256.5) | 0.131 |
ECMO days 15–30, n (%)|mean (Std.) | 693 (100)|122.5 (245.7) | 580 (83.7)|104.3 (226.9) | 113 (16.3)|215.9 (310.6) | <0.001 |
GRV ≥ 500 mL on all ECMO days, n (%) | 196 (8.4) | 119 (6.5) | 77 (15.0) | <0.001 |
GRV ≥ 500 mL on ECMO days 1–3, n (%) | 28 (9.2) | 10 (5.5) | 18 (14.8) | 0.006 |
GRV ≥ 500 mL on ECMO days 1–7, n (%) | 72 (10.4) | 37 (8.6) | 35 (13.5) | 0.04 |
GRV ≥ 500 mL on ECMO days 8–14, n (%) | 53 (9.7) | 35 (8.2) | 18 (15) | 0.025 |
GRV ≥ 500 mL on ECMO days 15–30, n (%) | 55 (7.9) | 32 (5.5) | 23 (20.4) | <0.001 |
Parameter of Interest | Univariate (Unadjusted) Analysis | Multivariate (Adjusted) Analysis | ||||
---|---|---|---|---|---|---|
GRV ≥ 500 mL/24 h | HR | 95%CI | p-Value | aHR | 95%CI | p-Value |
Prone positioning, yes | 4.15 | 3.09–5.56 | <0.001 | 4.06 | 3.00–5.50 | <0.001 |
Age (years) | 0.97 | 0.95–0.98 | <0.001 | 0.99 | 0.98–1.01 | 0.483 |
Sex (male) | 1.10 | 0.79–1.54 | 0.584 | - | - | - |
BMI (kg/m2) | 1.02 | 1.00–1.05 | 0.097 | - | - | - |
SAPSII at ECMO start | 0.99 | 0.97–0.99 | 0.04 | 0.98 | 0.96–1.00 | 0.039 |
ECMO runtime | 0.95 | 0.94–0.96 | <0.001 | 0.95 | 0.93–0.96 | <0.001 |
ICU LOS | 0.908 | 0.97–0.99 | 0.001 | 1.00 | 1.00–1.01 | 0.54 |
Mean GRV (mL/24 h) Overall, Mean (Std.) | Mean GRV (mL/24 h) in Supine, Mean (Std.) | Mean GRV (mL/24 h) in Prone, Mean (Std.) | p-Value | |
---|---|---|---|---|
Group A | 101.4 (92.9) * | 101.4 (92.9) ** | / | / |
Group B | 146.5 (106.7) * | 130.1 (138.5) ** | 199.1 (175.7) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hintersteininger, M.; Haselwanter, P.; Maleczek, M.; Laxar, D.; Hermann, M.; Hermann, A.; Buchtele, N.; Staudinger, T.; Zauner, C.; Schneeweiss-Gleixner, M. The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support. Nutrients 2024, 16, 3534. https://doi.org/10.3390/nu16203534
Hintersteininger M, Haselwanter P, Maleczek M, Laxar D, Hermann M, Hermann A, Buchtele N, Staudinger T, Zauner C, Schneeweiss-Gleixner M. The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support. Nutrients. 2024; 16(20):3534. https://doi.org/10.3390/nu16203534
Chicago/Turabian StyleHintersteininger, Marlene, Patrick Haselwanter, Mathias Maleczek, Daniel Laxar, Martina Hermann, Alexander Hermann, Nina Buchtele, Thomas Staudinger, Christian Zauner, and Mathias Schneeweiss-Gleixner. 2024. "The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support" Nutrients 16, no. 20: 3534. https://doi.org/10.3390/nu16203534
APA StyleHintersteininger, M., Haselwanter, P., Maleczek, M., Laxar, D., Hermann, M., Hermann, A., Buchtele, N., Staudinger, T., Zauner, C., & Schneeweiss-Gleixner, M. (2024). The Influence of Prone Positioning on Energy and Protein Delivery in COVID-19 Patients Requiring ECMO Support. Nutrients, 16(20), 3534. https://doi.org/10.3390/nu16203534