Therapeutic Effects of Zanthoxyli Pericarpium on Intestinal Inflammation and Network Pharmacological Mechanism Analysis in a Dextran Sodium Sulfate-Induced Colitis Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Compounds in ZP
2.2. Target Analysis
2.3. Network Analysis
2.4. Active Compound Screening
2.5. Docking Analysis
2.6. Preparation of the ZPE
2.7. Animal Treatment
2.8. Assessment of Colitis
2.9. Histological Analysis
2.10. Immunoblot Analysis
2.11. Statistical Analysis and Other Methods
3. Results
3.1. Investigation of the Correlation Between Compounds and Targets Yielded 526 Sources of Target Information
3.2. Seventeen Active Compounds Met the Criteria for Absorption, Distribution, Metabolism, and Excretion Parameters
3.3. 37 Targeting Genes of ZP Were Related to IBD
3.4. Network of IBD-Associated Genes and Compounds for Identifying Target Molecules of Interest
3.5. Through Docking Analysis, We Identified 15 Active Compounds with Strong Binding Affinity for PTGS2
3.6. ZPE Significantly Ameliorated the Severity of DSS-Induced Colitis in Mice
3.7. Effect of ZPE on DSS-Induced Liver Injury
3.8. Effects of ZPE on Decreased Markers of Oxidative Stress and Inflammatory in DSS-Induced Colitis Mouse Small Intestine
3.9. Decreased Markers of Oxidative Stress and Inflammation in the ZPE-Treated Colon of DSS-Induced Colitis Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, D.B.; Xavier, R.J. Pathway Paradigms Revealed from the Genetics of Inflammatory Bowel Disease. Nature 2000, 578, 527–539. [Google Scholar] [CrossRef]
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s Disease. Nat. Rev. Dis. Primers 2020, 6, 22. [Google Scholar] [CrossRef]
- Kamm, M.A. Rapid Changes in Epidemiology of Inflammatory Bowel Disease. Lancet 2017, 390, 2741–2742. [Google Scholar] [CrossRef]
- Friedrich, M.J. Inflammatory Bowel Disease Goes Global. JAMA 2018, 319, 648. [Google Scholar] [CrossRef]
- Hegazy, S.K.; El-Bedewy, M.M. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J. Gastroenterol. 2010, 16, 4145–4151. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Sandborn, W.J. Inflammatory Bowel Disease: Clinical Aspects and Established and Evolving Therapies. Lancet 2007, 369, 1641–1657. [Google Scholar] [CrossRef]
- Steenholdt, C.; Brynskov, J.; Thomsen, O.Ø.; Munck, L.K.; Fallingborg, J.; Christensen, L.A.; Pedersen, G.; Kjeldsen, J.; Jacobsen, B.A.; Oxholm, A.S.; et al. Individualised Therapy Is More Cost-Effective than Dose Intensification in Patients with Crohn’s Disease Who Lose Response to Anti-TNF Treatment: A Randomised, Controlled Trial. Gut 2014, 63, 919–927. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, Y.; Zhu, Z.; Chen, G. Pharmacological studies on warming the middle-jiao to alleviate pain by Pericarpium Zanthoxyli. Zhongguo. Zhong Yao Za Zhi 1991, 16, 493–497. [Google Scholar]
- Zhang, W. Network pharmacology: A further description. Netw. Pharmacol. 2016, 1, 1–14. [Google Scholar]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Lv, Q.; Chen, G.; He, H.; Yang, Z.; Zhao, L.; Zhang, K.; Chen, C.Y. TCMBank-the largest TCM database provides deep learning-based Chinese-Western medicine exclusion prediction. Signal Transduct. Target. Ther. 2023, 8, 127. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Shi, Y.; Chen, T.; Xu, Z.; Wang, P.; Yu, M.; Chen, W.; Li, B.; Jing, Z.; et al. ETCM v2.0: An update with comprehensive resource and rich annotations for traditional Chinese medicine. Acta Pharm. Sin. B 2023, 13, 2559–2571. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Yin, Z.; Lin, J. Improving Chemical Similarity Ensemble Approach in Target Prediction. J. Cheminform. 2016, 8, 20. [Google Scholar] [CrossRef]
- UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Choi, N.R.; Jung, D.; Kim, S.C.; Park, J.W.; Choi, W.G.; Kim, B.J. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023, 15, 2644. [Google Scholar] [CrossRef]
- Choi, N.R.; Choi, W.G.; Zhu, A.; Park, J.; Kim, Y.T.; Hong, J.W.; Kim, B.J. Exploring the Therapeutic Effects of Atractylodes macrocephala Koidz against Human Gastric Cancer. Nutrients 2024, 16, 965. [Google Scholar] [CrossRef]
- Montrose, D.C.; Horelik, N.A.; Madigan, J.P.; Stoner, G.D.; Wang, L.S.; Bruno, R.S.; Park, H.J.; Giardina, C.; Rosenberg, D.W. Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis. Carcinogenesis 2011, 32, 343–350. [Google Scholar] [CrossRef]
- Cooper, H.S.; Murthy, S.N.; Shah, R.S.; Sedergran, D.J. Clinicopathologic Study of Dextran Sulfate Sodium Experimental Murine Colitis. Lab. Investig. 1993, 69, 238–249. [Google Scholar]
- Cho, Y.E.; Lee, M.H.; Song, B.J. Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats. PLoS ONE 2017, 12, e016994. [Google Scholar] [CrossRef]
- Cho, Y.E.; Mezey, E.; Hardwick, J.P.; Salem, N.; Clemens, D.L.; Song, B.J. Increased Ethanol-Inducible Cytochrome P450-2E1 and Cytochrome P450 Isoforms in Exosomes of Alcohol-Exposed Rodents and Patients with Alcoholism through Oxidative and Endoplasmic Reticulum Stress. Hepatol. Commun. 2017, 1, 675–690. [Google Scholar] [CrossRef]
- Cho, Y.E.; Yu, L.R.; Abdelmegeed, M.A.; Yoo, S.H.; Song, B.J. Apoptosis of Enterocytes and Nitration of Junctional Complex Proteins Promote Alcohol-Induced Gut Leakiness and Liver Injury. J. Hepatol. 2018, 69, 142–153. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Zhou, X.; Xu, Z.; Zhang, Y.; Ji, L.; Hong, C.; Li, C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front. Pharmacol. 2022, 13, 962718. [Google Scholar] [CrossRef]
- Tokuhira, N.; Kitagishi, Y.; Suzuki, M.; Minami, A.; Nakanishi, A.; Ono, Y.; Kobayashi, K.; Matsuda, S.; Ogura, Y. PI3K/AKT/PTEN Pathway as a Target for Crohn’s Disease Therapy (Review). Int. J. Mol. Med. 2015, 35, 10–16. [Google Scholar] [CrossRef]
- Zhu, L.; Han, J.; Li, L.; Wang, Y.; Li, Y.; Zhang, S. Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Front. Immunol. 2019, 10, 1441. [Google Scholar] [CrossRef]
- Shah, N.; Kammermeier, J.; Elawad, M.; Glocker, E.O. Interleukin-10 and Interleukin-10–Receptor Defects in Inflammatory Bowel Disease. Curr. Allergy Asthma Rep. 2012, 12, 373–379. [Google Scholar] [CrossRef]
- Wang, D.; DuBois, R.N. The Role of COX-2 in Intestinal Inflammation and Colorectal Cancer. Oncogene 2010, 29, 781–788. [Google Scholar] [CrossRef]
- Kim, Y.S.; Suh, S.Y.; Ahn, Y.T.; Lee, C.W.; Lee, S.Y.; Ahn, S.C.; An, W.G. Systemic Pharmacological Approach to Identification and Experimental Verification of the Effect of Anisi Stellati Fructus Extract on Chronic Myeloid Leukemia Cells. Evid. Based Complement. Altern. Med. 2019, 2019, 6959764. [Google Scholar] [CrossRef]
- Selick, H.E.; Beresford, A.P.; Tarbit, M.H. The Emerging Importance of Predictive ADME Simulation in Drug Discovery. Drug Discov. Today 2002, 7, 109–116. [Google Scholar] [CrossRef]
- Suzuki, T.; Hara, H. Role of Flavonoids in Intestinal Tight Junction Regulation. J. Nutr. Biochem. 2011, 22, 401–408. [Google Scholar] [CrossRef]
- Riemschneider, S.; Hoffmann, M.; Slanina, U.; Weber, K.; Hauschildt, S.; Lehmann, J. Indol-3-Carbinol and Quercetin Ameliorate Chronic DSS-Induced Colitis in C57BL/6 Mice by AhR-Mediated Anti-Inflammatory Mechanisms. Int. J. Environ. Res. Public Health 2021, 18, 2262. [Google Scholar] [CrossRef]
- Dong, Y.; Hou, Q.; Lei, J.; Wolf, P.G.; Ayansola, H.; Zhang, B. Quercetin Alleviates Intestinal Oxidative Damage Induced by H2O2 via Modulation of GSH: In Vitro Screening and In Vivo Evaluation in a Colitis Model of Mice. ACS Omega 2020, 5, 8334–8346. [Google Scholar] [CrossRef]
- Regmi, S.; Seo, Y.; Ahn, J.S.; Pathak, S.; Acharya, S.; Nguyen, T.T.; Yook, S.; Sung, J.H.; Park, J.B.; Kim, J.O.; et al. Heterospheroid Formation Improves Therapeutic Efficacy of Mesenchymal Stem Cells in Murine Colitis through Immunomodulation and Epithelial Regeneration. Biomaterials 2021, 271, 120752. [Google Scholar] [CrossRef]
- Ju, S.; Ge, Y.; Li, P.; Tian, X.; Wang, H.; Zheng, X.; Ju, S. Dietary Quercetin Ameliorates Experimental Colitis in Mouse by Remodeling the Function of Colonic Macrophages via a Heme Oxygenase-1-Dependent Pathway. Cell Cycle 2018, 17, 53–63. [Google Scholar] [CrossRef]
- De Silva, P.S.A.; Luben, R.; Shrestha, S.S.; Khaw, K.T.; Hart, A.R. Dietary Arachidonic and Oleic Acid Intake in Ulcerative Colitis Etiology: A Prospective Cohort Study Using 7-Day Food Diaries. Eur. J. Gastroenterol. Hepatol. 2014, 26, 11–18. [Google Scholar] [CrossRef]
- Uko, V.; Thangada, S.; Radhakrishnan, K. Liver Disorders in Inflammatory Bowel Disease. Gastroenterol. Res. Pract. 2012, 2012, 642923. [Google Scholar] [CrossRef]
- Fadi, H.M.; Kassem, A.B.; Nayef, E.S. Impairment of Small Intestinal Function in Ulcerative Colitis: Role of Enteric Innervation. J. Crohn’s Colitis 2017, 11, 369–377. [Google Scholar]
- Haskell, H.; Andrews, C.W., Jr.; Reddy, S.I.; Dendrinos, K.; Farraye, F.A.; Stucchi, A.F.; Becker, J.M.; Odze, R.D. Pathologic features and clinical significance of “backwash” ileitis in ulcerative colitis. Am. J. Surg. Pathol. 2005, 29, 1472–1481. [Google Scholar] [CrossRef]
- Lykov, A.P.; Poveshchenko, O.V.; Bondarenko, N.A.; Surovtseva, M.A.; Kim, I.I.; Bgatova, N.P. Therapeutic Potential of Biomedical Cell Product in DSS-Induced Inflammation in the Small Intestine of C57Bl/6J Mice. Bull. Exp. Biol. Med. 2018, 165, 576–580. [Google Scholar] [CrossRef]
- Viatour, P.; Merville, M.P.; Bours, V.; Chariot, A. Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation. Trends Biochem. Sci. 2005, 30, 43–52. [Google Scholar] [CrossRef]
No. | Molecule Name | Pubchem ID |
---|---|---|
1 | (−)-Citronellal | 443157 |
2 | (−)-N-acetylanonaine | 78411088 |
3 | (+)-Ledol | 92812 |
4 | (+)-Pinoresinol O-B-D-glucopyranoside | 486614 |
5 | (+)-Pinoresinol-3-hydroxy-4-methyl-4-pentenyl ether | - |
6 | (+)-trans-piperitenol | 85568 |
7 | (1R,4R)-4-isopropyl-1-methyl-2-cyclohexen-1-ol | - |
8 | (1S,3R,5S)-6,6-dimethyl-2-methylene-3-norpinanol | 1201530 |
9 | (1S,4S)-1-isopropyl-4-methyl-3-bicyclo[3.1.0]hexanone | - |
10 | (2E,4E,8E,10E,12E)-N-Isobutyl-2,4,8,10,12-tetradecapenta-enamide | 5318518 |
11 | (2R-cis)-1,2,3,4,4a,5,6,7-Octahydro-alpha | - |
12 | (2S)-3-methoxypropane-1,2-diol | 156179 |
13 | (6R)-6-isopropyl-3-methyl-1-cyclohex-2-enone | 107561 |
14 | (6R,7R)-Caryophyllene | - |
15 | (E)-linalool oxide acetate pyr | 6427501 |
16 | (e)-sabinene,hydrate | 6326181 |
17 | (s)-carvone | 16724 |
18 | 1-alpha-Terpinyl acetate | 11469649 |
19 | 1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))- | 97032059 |
20 | 1-heptanol | 8129 |
21 | 1-hexanol | 8103 |
22 | 1-Methoxy-4-(1-propenyl)benzene | 637563 |
23 | 1-methoxy-4-(2-propenyl)-benzene | 8815 |
24 | 1-Methoxyrutaecarpine | - |
25 | 1-nonanol | 8914 |
26 | 2,3,13-trimethoxy-5,11a-dihydro[1,3]dioxolo[4′,5′:4,5]-benzo[c]phenanthridine | - |
27 | 2-[(1R,3S,4S)-3-isopropenyl-4-methyl-4-vinylcyclohexyl]propan-2-ol | 92138 |
28 | 2-Propanone, 1, 3-dihydroxy- | 670 |
29 | 3,4-Dimethoxy-3′,4′-methylenedioxy-7,9′-epoxylignan-9-ol | - |
30 | 4-(1-Methylethyl)-1-cyclohexene-1-carboxaldehyde | 89488 |
31 | 4-Isopropylcyclohexanone | 79488 |
32 | 4-methyl-1-heptanol | 109451 |
33 | 4-methyl-1-isopropyl-3-cyclohexen-1-ol | 11230 |
34 | 5-methoxydictamnine | - |
35 | 6-methoxy[1,3]dioxolo[4′,5′:4,5]benzo[c][1,3]dioxolo[4,5-j]phenanthridine | - |
36 | 6-methyl-1-heptanol | 15450 |
37 | 7-(5′,6′-Dihydroxy-3′,7′-dimethylocta-2′,7′-dienyloxy)-coumarin | - |
38 | 7,9-Dimethoxy-2,3-methylendioxybenzophenanthridine | - |
39 | 8-(2-isopentenyloxy)-4,7-dimethoxyfuro[2,3-b]quinoline | 13970973 |
40 | 8-hydroxy-4,7-dimethoxy-furanoquinoline | 371227 |
41 | 8-methoxyisodecarine | 136854509 |
42 | 8-Methyl-5-isopropyl-6,8-nonadiene-2-one | 5319691 |
43 | Acetoxyauraptene | - |
44 | Ailanthamide | 25195168 |
45 | alpha-elemol | 92138 |
46 | alpha-terpinol | 442501 |
47 | Anizol | 7519 |
48 | Ascaridole | 12308625 |
49 | Acetone | 180 |
50 | benzaldehyde,4-(1-methylethyl) | 326 |
51 | benzeneacetic acid, methyl ester | 87574380 |
52 | Berberime | 2353 |
53 | Berberine | 2353 |
54 | beta-Cubebene | 93081 |
55 | beta-Gurjunene | 6450812 |
56 | beta-sitosterol | 222284 |
57 | beta-thujone | 261491 |
58 | BOX | 243 |
59 | Butenone | 6570 |
60 | Capsaicin | 1548943 |
61 | Chelerythrine | 5351594 |
62 | cis-9-hexadecenoic acid | 445638 |
63 | cis-linalol pyranoxide | 6428574 |
64 | cis-p-2-menthen- 1-ol | 141999 |
65 | cis-Pinene hydrate | 1268143 |
66 | Cis-p-mentha-2,8-dien-1-ol | 111274 |
67 | cis-sabinene hydrate | 62367 |
68 | Citronellol | 8842 |
69 | CLOVENE | 10102 |
70 | Collinin | 5316012 |
71 | Cuminol | 325 |
72 | D-Borneol | 6552009 |
73 | Dehydro-γ-sanshool | - |
74 | Dihydrobungeanool | 101936592 |
75 | Dihydrochelerythrine | 485077 |
76 | Diosmetin | 5281612 |
77 | Estriol | 16757678 |
78 | Eucalyptol | 34365085 |
79 | Fagaridine | 177893 |
80 | gallic acid | 370 |
81 | Geranial | 638011 |
82 | Haplopine | 5281846 |
83 | heptanoic acid;heptylic acid;enanthylic acid | 8094 |
84 | Herniarin | 10748 |
85 | hydroxy-beta-sanshool | 10220912 |
86 | hydroxy-Epsilon-sanshool | 46870578 |
87 | hydroxyl-alpha-sanshool | 10084135 |
88 | Isodecarine | 135844948 |
89 | Isofagaridine | 177893 |
90 | Isopiperitenone | 79036 |
91 | Isopulegol | 170833 |
92 | Kokusaginin | 10227 |
93 | lanyuamide V | 101153415 |
94 | lanyuamide VI | 101153416 |
95 | Lemairamide | 9468490 |
96 | Lemairamin | 1376042 |
97 | linalyl anthranilate | 23535 |
98 | Majudin | 2355 |
99 | Meso-2,3-bis(3,4,5-trimethoxybenzyl)-1,4-butanediol | - |
100 | methyl 4-methylvalerate | 17008 |
101 | Methyleugenol | 7127 |
102 | Mnk | 8163 |
103 | myrcene epoxide | 122371 |
104 | nerohdyl acetate | 25021983 |
105 | Nerol acetate | 1549025 |
106 | Nitidine | 4501 |
107 | N-nornitidine | 296524 |
108 | oleic acid | 445639 |
109 | o-methylacetophenone | 11340 |
110 | Oxychelerythrine | 147279 |
111 | p-1,8-menthadienyl-7 acetate | - |
112 | quercetin | 5280343 |
113 | rhoifoline A | 5282150 |
114 | Sabinene hydrate | 62367 |
115 | sanshool | 6440935 |
116 | Schinicoumarin | 5321163 |
117 | Skimmetin | 5281426 |
118 | Skimmianin | 6760 |
119 | Skimmianine | 6760 |
120 | spathulenol | 9794468 |
121 | suberosin | 68486 |
122 | tamgeretin | 68077 |
123 | timuramide C | 71524339 |
124 | T-Muurolol | 3084331 |
125 | trans-4-isopropyl-1-methylcyclohex-2-en-1-ol | 5319367 |
126 | trans-limonene,oxide | 449290 |
127 | Trans-p-mentha-2,8-dien-1-ol | 12618691 |
128 | WLN: VH6 | 8130 |
129 | Zanthobungeanine | 5315422 |
130 | zoomaric acid | 445638 |
131 | α-cadinol | 10398656 |
Compound | Target (PDB * ID) | Affinity (kcal/mol) |
---|---|---|
Diosmetin | PTGS2 (5ikq) | −9.677 |
Quercetin | PTGS2 (5ikq) | −9.562 |
Nitidine | PTGS2 (5ikq) | −9.553 |
1-Methoxyrutaecarpine | PTGS2 (5ikq) | −9.333 |
Oxychelerythrine | PTGS2 (5ikq) | −9.227 |
Berberine | PTGS2 (5ikq) | −9.029 |
Dihydrochelerythrine | PTGS2 (5ikq) | −8.803 |
beta-sitosterol | PTGS2 (5ikq) | −8.538 |
Tamgeretin | PTGS2 (5ikq) | −8.321 |
Eucalyptol | PTGS2 (5ikq) | −8.315 |
Suberosin | PTGS2 (5ikq) | −7.733 |
Skimmetin | PTGS2 (5ikq) | −7.342 |
Haplopine | PTGS2 (5ikq) | −7.193 |
Herniarin | PTGS2 (5ikq) | −7.125 |
beta-Cubebene | PTGS2 (5ikq) | −7.004 |
Capsaicin | PTGS2 (5ikq) | −6.962 |
oleic acid | PTGS2 (5ikq) | −6.877 |
linalyl anthranilate | PTGS2 (5ikq) | −6.834 |
CLOVENE | PTGS2 (5ikq) | −6.81 |
gallic acid | PTGS2 (5ikq) | −6.303 |
1-alpha-Terpinyl acetate | PTGS2 (5ikq) | −6.046 |
1-Methoxy-4-(1-propenyl)benzene | PTGS2 (5ikq) | −6.003 |
Methyleugenol | PTGS2 (5ikq) | −5.878 |
1-methoxy-4-(2-propenyl)-benzene | PTGS2 (5ikq) | −5.869 |
BOX | PTGS2 (5ikq) | −5.614 |
nerohdyl acetate | PTGS2 (5ikq) | −5.583 |
zoomaric acid | PTGS2 (5ikq) | −5.57 |
(E)-linalool oxide acetate pyr | PTGS2 (5ikq) | −5.421 |
Nerol acetate | PTGS2 (5ikq) | −5.203 |
Citronellol | PTGS2 (5ikq) | −5.177 |
cis-9-hexadecenoic acid | PTGS2 (5ikq) | −4.609 |
Acetone | PTGS2 (5ikq) | −3.182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-G.; Ko, S.-J.; Jung, D.; Kim, S.C.; Choi, N.-R.; Park, J.-W.; Kim, B.J. Therapeutic Effects of Zanthoxyli Pericarpium on Intestinal Inflammation and Network Pharmacological Mechanism Analysis in a Dextran Sodium Sulfate-Induced Colitis Mouse Model. Nutrients 2024, 16, 3521. https://doi.org/10.3390/nu16203521
Choi W-G, Ko S-J, Jung D, Kim SC, Choi N-R, Park J-W, Kim BJ. Therapeutic Effects of Zanthoxyli Pericarpium on Intestinal Inflammation and Network Pharmacological Mechanism Analysis in a Dextran Sodium Sulfate-Induced Colitis Mouse Model. Nutrients. 2024; 16(20):3521. https://doi.org/10.3390/nu16203521
Chicago/Turabian StyleChoi, Woo-Gyun, Seok-Jae Ko, Daehwa Jung, Sang Chan Kim, Na-Ri Choi, Jae-Woo Park, and Byung Joo Kim. 2024. "Therapeutic Effects of Zanthoxyli Pericarpium on Intestinal Inflammation and Network Pharmacological Mechanism Analysis in a Dextran Sodium Sulfate-Induced Colitis Mouse Model" Nutrients 16, no. 20: 3521. https://doi.org/10.3390/nu16203521
APA StyleChoi, W. -G., Ko, S. -J., Jung, D., Kim, S. C., Choi, N. -R., Park, J. -W., & Kim, B. J. (2024). Therapeutic Effects of Zanthoxyli Pericarpium on Intestinal Inflammation and Network Pharmacological Mechanism Analysis in a Dextran Sodium Sulfate-Induced Colitis Mouse Model. Nutrients, 16(20), 3521. https://doi.org/10.3390/nu16203521