An Innovative One Health Approach: BIOQUALIM, a Transdisciplinary Research Action Protocol—From Cultivated Biodiversity to Human Health Prevention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Features of BIOQUALIM Project
2.2. Evaluation of the Impact of the Planetary Health Diet on Interdental Microbiota Dysbiosis, a Risk Factor of NCDs Such as Cancer, and on Quality of Life in the General Population (Clinical Study)
2.2.1. Study Design
2.2.2. Study Setting
2.2.3. Outcomes
- -
- To compare the number of total bacteria and periodontal pathogens of the interdental microbiota before (T0) and after 1 month (T1) of consumption of a diet enriched in einkorn and reduced in meat.
- -
- To compare periodontal and oral clinical parameters before (T0), during (T1), and after (T2) the introduction of einkorn into the diet.
- -
- To compare general health indicators before (T0), during (T1), and after (T2) the introduction of einkorn into the diet through a consultation and a general medical examination.
- -
- To compare quality of life before (T0), during (T1), and after (T2) the introduction of einkorn into the diet through answers to a questionnaire.
2.2.4. Study Population and Inclusion Criteria
2.2.5. Sample Methodology
2.2.6. Sample Size
2.2.7. A Description of the Procedure and Data Collection
- -
- Microbiological: Sampling of interdental microbiota [54,55,56,57] and real-time PCR to quantify the total number of bacteria and 9 periodontal bacteria. Among them, several are considered cancer risk factors: Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Parvimonas micra, Fusobacterium nucleatum, Campilobacter rectus, and Eikenella corrodens.
- -
- Oral health: Quantitative and qualitative analysis of saliva (GC saliva check buffer, GC, Sucy-en-Brie, France) and measurement of periodontal parameters (Bleeding On Probing (BOP) [58], Gingivitis Index (GI) [59], Plaque Index (PI) [60], Clinical Attachment Level (CAL), and Probing Pocket Depth (PPD) [61].
- -
- General health: Body Mass Index (BMI), blood pressure, and abdominal circumference.
- -
- Quality of life: MOS SF-36 self-questionnaire validated in French [62].
2.2.8. Data Analysis
2.3. Characterization of the Nutritional Properties of Cereals, Especially Ancient Wheat Species (Chemical Study)
2.3.1. Study Design
2.3.2. Outcomes
2.3.3. Samples
2.3.4. Chemical Analysis
2.4. An Investigation of the Plant-Based Food Consumption Perceived Behaviors Captured in the General Population (Behavioral Study)
2.4.1. Study Design
2.4.2. Study Setting
2.4.3. Outcomes
- -
- To assess the general population’s knowledge of the PHD;
- -
- To identify determinants of the respondents with attitudes and behaviors corresponding to the PHD;
- -
- To identify obstacles and levers among regular consumers of farmers–bakers regarding their consumption of plant-based foods.
2.4.4. Study Population and Inclusion Criteria
2.4.5. Sample Methodology
2.4.6. Sample Size
2.4.7. A Description of the Procedure, Data Collection, and Interviews
2.4.8. Data Analysis
2.5. Evaluation of the Impact of Health Promotion Programs Focusing on the PHD, Using Plant-Based Cooking Workshops to Provide Peer Support, on Cancer Patients (Psycho-Social Study)
2.5.1. Study Design
2.5.2. Study Setting
2.5.3. Outcomes
- -
- To analyze the satisfaction of post-treatment cancer patients regarding the introduction of protein-rich cereals into their diet;
- -
- To raise patients’ awareness of micro-environmental health (reading labels, the benefits of plant-based food rich in protein and grown organically) and macro-environmental health (agricultural systems and their link with health, One Health approach);
- -
- To analyze the perception of social support and the knowledge and confidence gained through the cooking workshops.
2.5.4. Study Population
2.5.5. Sample Size
2.5.6. A Description of the Procedure and Data Collection
2.5.7. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lancet, T. One Health: A Call for Ecological Equity. Lancet 2023, 401, 169. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Visser, M.W.; Pittens, C.A.C.M.; Urias, E.; Zweekhorst, M.B.M.; van Dijk, G.M. Transdisciplinary Learning Trajectories: Developing Action and Attitude in Interplay. Humanit. Soc. Sci. Commun. 2024, 11, 149. [Google Scholar] [CrossRef]
- Promoting the Science of One Health. Nat. Commun. 2023, 14, 4735. [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and Combating Antibiotic Resistance from One Health and Global Health Perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated Modern Human-Induced Species Losses: Entering the Sixth Mass Extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- The Planetary Health Diet. Available online: https://eatforum.org/eat-lancet-commission/the-planetary-health-diet-and-you/ (accessed on 21 July 2024).
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Dopelt, K.; Radon, P.; Davidovitch, N. Environmental Effects of the Livestock Industry: The Relationship between Knowledge, Attitudes, and Behavior among Students in Israel. Int. J. Environ. Res. Public Health 2019, 16, 1359. [Google Scholar] [CrossRef]
- OIE Working Group. Report of the Sixth Meeting of the OIE Working Group on Animal Production Food Safety; World Organization for Animal Health: Paris, France, 2006. [Google Scholar]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Roe, D. Biodiversity Loss—More than an Environmental Emergency. Lancet Planet. Health 2019, 3, e287–e289. [Google Scholar] [CrossRef]
- Laine, J.E.; Huybrechts, I.; Gunter, M.J.; Ferrari, P.; Weiderpass, E.; Tsilidis, K.; Aune, D.; Schulze, M.B.; Bergmann, M.; Temme, E.H.M.; et al. Co-Benefits from Sustainable Dietary Shifts for Population and Environmental Health: An Assessment from a Large European Cohort Study. Lancet Planet Health 2021, 5, e786–e796. [Google Scholar] [CrossRef] [PubMed]
- Tulloch, A.; Oh, R.R.Y.; Gallegos, D. Environmental and Public Health Co-Benefits of Consumer Switches to Immunity-Supporting Food. Ambio 2022, 51, 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Volta, M.; Turrini, E.; Carnevale, C.; Valeri, E.; Gatta, V.; Polidori, P.; Maione, M. Co-Benefits of Changing Diet. A Modelling Assessment at the Regional Scale Integrating Social Acceptability, Environmental and Health Impacts. Sci. Total Environ. 2021, 756, 143708. [Google Scholar] [CrossRef]
- Rust, N.A.; Ridding, L.; Ward, C.; Clark, B.; Kehoe, L.; Dora, M.; Whittingham, M.J.; McGowan, P.; Chaudhary, A.; Reynolds, C.J.; et al. How to Transition to Reduced-Meat Diets That Benefit People and the Planet. Sci. Total Environ. 2020, 718, 137208. [Google Scholar] [CrossRef] [PubMed]
- Baudry, J.; Assmann, K.E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon, D.; et al. Association of Frequency of Organic Food Consumption With Cancer Risk: Findings From the NutriNet-Santé Prospective Cohort Study. JAMA Intern. Med. 2018, 178, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; et al. Global, Regional, and National Comparative Risk Assessment of 79 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks in 188 Countries, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 2287–2323. [Google Scholar] [CrossRef]
- Martinon, P.; Fraticelli, L.; Giboreau, A.; Dussart, C.; Bourgeois, D.; Carrouel, F. Nutrition as a Key Modifiable Factor for Periodontitis and Main Chronic Diseases. J. Clin. Med. 2021, 10, 197. [Google Scholar] [CrossRef]
- Caceres-Matos, R.; Castro-Méndez, A.; Domínguez, M.G.; Pabón-Carrasco, D.; Pabón-Carrasco, M. The Influence of Ultra-Processed Food on Colorectal Cancer: A Systematic Review. Gastrointest. Disord. 2024, 6, 164–179. [Google Scholar] [CrossRef]
- Diakité, M.T.; Diakité, B.; Koné, A.; Balam, S.; Fofana, D.; Diallo, D.; Kassogué, Y.; Traoré, C.B.; Kamaté, B.; Ba, D.; et al. Relationships between Gut Microbiota, Red Meat Consumption and Colorectal Cancer. J. Carcinog. Mutagen. 2022, 13, 1000385. [Google Scholar]
- Norat, T.; Bingham, S.; Ferrari, P.; Slimani, N.; Jenab, M.; Mazuir, M.; Overvad, K.; Olsen, A.; Tjønneland, A.; Clavel, F.; et al. Meat, Fish, and Colorectal Cancer Risk: The European Prospective Investigation into Cancer and Nutrition. J. Natl. Cancer Inst. 2005, 97, 906–916. [Google Scholar] [CrossRef]
- Smith-Warner, S.A.; Ritz, J.; Hunter, D.J.; Albanes, D.; Beeson, W.L.; Van den Brandt, P.A.; Colditz, G.; Folsom, A.R.; Fraser, G.E.; Freudenheim, J.L.; et al. Dietary Fat and Risk of Lung Cancer in a Pooled Analysis of Prospective Studies. Cancer Epidemiol. Biomark. Prev. 2002, 11, 987–992. [Google Scholar]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [PubMed]
- Cundiff, D.K.; Wu, C. The EAT-Lancet Commission’s Planetary Health Diet Compared With the Institute for Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. Cureus 2023, 15, e40061. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R. Plant-Based Diet for Obesity Treatment. Front. Nutr. 2022, 9, 952553. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Fleeman, R.; Hlozkova, A.; Holubkov, R.; Barnard, N.D. A Plant-Based Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: Metabolic Benefits of Plant Protein. Nutr. Diabetes 2018, 8, 58. [Google Scholar] [CrossRef]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef]
- Ojo, O.; Jiang, Y.; Ojo, O.O.; Wang, X. The Association of Planetary Health Diet with the Risk of Type 2 Diabetes and Related Complications: A Systematic Review. Healthcare 2023, 11, 1120. [Google Scholar] [CrossRef]
- Hardt, L.; Mahamat-Saleh, Y.; Aune, D.; Schlesinger, S. Plant-Based Diets and Cancer Prognosis: A Review of Recent Research. Curr. Nutr. Rep. 2022, 11, 695–716. [Google Scholar] [CrossRef]
- Salehin, S.; Rasmussen, P.; Mai, S.; Mushtaq, M.; Agarwal, M.; Hasan, S.M.; Salehin, S.; Raja, M.; Gilani, S.; Khalife, W.I. Plant Based Diet and Its Effect on Cardiovascular Disease. Int. J. Environ. Res. Public Health 2023, 20, 3337. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple Health and Environmental Impacts of Foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef]
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef] [PubMed]
- Detzel, A.; Krüger, M.; Busch, M.; Blanco-Gutiérrez, I.; Varela, C.; Manners, R.; Bez, J.; Zannini, E. Life Cycle Assessment of Animal-Based Foods and Plant-Based Protein-Rich Alternatives: An Environmental Perspective. J. Sci. Food Agric. 2022, 102, 5098–5110. [Google Scholar] [CrossRef] [PubMed]
- FAO; Portocarrero-Aya, M.; Hinkes, C. The State of the World’s Biodiversity for Food and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019; ISBN 978-92-5-131270-4. [Google Scholar]
- Lopes, S.O.; Abrantes, L.C.S.; Azevedo, F.M.; Morais, N.d.S.d.; Morais, D.d.C.; Gonçalves, V.S.S.; Fontes, E.A.F.; Franceschini, S.d.C.C.; Priore, S.E. Food Insecurity and Micronutrient Deficiency in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1074. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health. Foods 2024, 13, 877. [Google Scholar] [CrossRef]
- Mayer, A.; Kalt, G.; Kaufmann, L.; Röös, E.; Muller, A.; Weisshaidinger, R.; Frehner, A.; Roux, N.; Smith, P.; Theurl, M.C.; et al. Impacts of Scaling up Agroecology on the Sustainability of European Agriculture in 2050. EuroChoices 2022, 21, 27–36. [Google Scholar] [CrossRef]
- Bencze, S.; Makádi, M.; Aranyos, T.J.; Földi, M.; Hertelendy, P.; Mikó, P.; Bosi, S.; Negri, L.; Drexler, D. Re-Introduction of Ancient Wheat Cultivars into Organic Agriculture—Emmer and Einkorn Cultivation Experiences under Marginal Conditions. Sustainability 2020, 12, 1584. [Google Scholar] [CrossRef]
- Correa, S.; Lepagneul, J.; Thomas, M.; Mayaud, L.; Hamant, O.; Samson, M.; Charreyre, M. Unraveling Gluten Protein Compositions of Einkorn, Emmer, and Spelt Grown in the Lyon Region in France. Cereal Chem. 2024, 101, 798–816. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient Wheat Species and Human Health: Biochemical and Clinical Implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef]
- Bourgeois, D.; Inquimbert, C.; Ottolenghi, L.; Carrouel, F. Periodontal Pathogens as Risk Factors of Cardiovascular Diseases, Diabetes, Rheumatoid Arthritis, Cancer, and Chronic Obstructive Pulmonary Disease-Is There Cause for Consideration? Microorganisms 2019, 7, 424. [Google Scholar] [CrossRef]
- Laiola, M.; De Filippis, F.; Vitaglione, P.; Ercolini, D. A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl. Environ. Microbiol. 2020, 86, e00777-20. [Google Scholar] [CrossRef]
- Rehner, J.; Schmartz, G.P.; Kramer, T.; Keller, V.; Keller, A.; Becker, S.L. The Effect of a Planetary Health Diet on the Human Gut Microbiome: A Descriptive Analysis. Nutrients 2023, 15, 1924. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Chaimani, A.; Schwedhelm, C.; Toledo, E.; Pünsch, M.; Hoffmann, G.; Boeing, H. Comparative Effects of Different Dietary Approaches on Blood Pressure in Hypertensive and Pre-Hypertensive Patients: A Systematic Review and Network Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2674–2687. [Google Scholar] [CrossRef]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring Benefits and Barriers of Plant-Based Diets: Health, Environmental Impact, Food Accessibility and Acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef] [PubMed]
- Shah, U.A.; Merlo, G. Personal and Planetary Health—The Connection With Dietary Choices. JAMA 2023, 329, 1823–1824. [Google Scholar] [CrossRef] [PubMed]
- Plan National Santé Environnement. Available online: https://www.ecologie.gouv.fr/politiques-publiques/plan-national-sante-environnement-pnse (accessed on 24 July 2024).
- Hercberg, S.; Chat-Yung, S.; Chauliac, M. The French National Nutrition and Health Program: 2001–2006–2010. Int. J. Public. Health 2008, 53, 68–77. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 16 September 2024).
- FAO Home | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/home/en (accessed on 16 September 2024).
- Chan, A.-W.; Tetzlaff, J.M.; Gøtzsche, P.C.; Altman, D.G.; Mann, H.; Berlin, J.A.; Dickersin, K.; Hróbjartsson, A.; Schulz, K.F.; Parulekar, W.R.; et al. SPIRIT 2013 Explanation and Elaboration: Guidance for Protocols of Clinical Trials. BMJ 2013, 346, e7586. [Google Scholar] [CrossRef]
- Bourgeois, D.; Bravo, M.; Llodra, J.-C.; Inquimbert, C.; Viennot, S.; Dussart, C.; Carrouel, F. Calibrated Interdental Brushing for the Prevention of Periodontal Pathogens Infection in Young Adults—A Randomized Controlled Clinical Trial. Sci. Rep. 2019, 9, 15127. [Google Scholar] [CrossRef]
- Bourgeois, D.; David, A.; Inquimbert, C.; Tramini, P.; Molinari, N.; Carrouel, F. Quantification of Carious Pathogens in the Interdental Microbiota of Young Caries-Free Adults. PLoS ONE 2017, 12, e0185804. [Google Scholar] [CrossRef]
- Bourgeois, D.; Carrouel, F.; Llodra, J.C.; Bravo, M.; Viennot, S. A Colorimetric Interdental Probe as a Standard Method to Evaluate Interdental Efficiency of Interdental Brush. Open Dent. J. 2015, 9, 431–437. [Google Scholar] [CrossRef]
- Carrouel, F.; Viennot, S.; Santamaria, J.; Veber, P.; Bourgeois, D. Quantitative Molecular Detection of 19 Major Pathogens in the Interdental Biofilm of Periodontally Healthy Young Adults. Front. Microbiol. 2016, 7, 840. [Google Scholar] [CrossRef]
- Inquimbert, C.; Bourgeois, D.; Bravo, M.; Viennot, S.; Tramini, P.; Llodra, J.C.; Molinari, N.; Dussart, C.; Giraudeau, N.; Carrouel, F. The Oral Bacterial Microbiome of Interdental Surfaces in Adolescents According to Carious Risk. Microorganisms 2019, 7, 319. [Google Scholar] [CrossRef] [PubMed]
- Newbrun, E. Indices to Measure Gingival Bleeding. J. Periodontol. 1996, 67, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Löe, H. The Gingival Index, the Plaque Index and the Retention Index Systems. J. Periodontol. 1967, 38, 610–616. [Google Scholar] [CrossRef]
- Rustogi, K.N.; Curtis, J.P.; Volpe, A.R.; Kemp, J.H.; McCool, J.J.; Korn, L.R. Refinement of the Modified Navy Plaque Index to Increase Plaque Scoring Efficiency in Gumline and Interproximal Tooth Areas. J. Clin. Dent. 1992, 3, C9-12. [Google Scholar]
- Hefti, A.F. Periodontal Probing. Crit. Rev. Oral Biol. Med. 1997, 8, 336–356. [Google Scholar] [CrossRef]
- Perneger, T.V.; Leplège, A.; Etter, J.F.; Rougemont, A. Validation of a French-Language Version of the MOS 36-Item Short Form Health Survey (SF-36) in Young Healthy Adults. J. Clin. Epidemiol. 1995, 48, 1051–1060. [Google Scholar] [CrossRef]
- Guest, G.; Namey, E.; Chen, M. A Simple Method to Assess and Report Thematic Saturation in Qualitative Research. PLoS ONE 2020, 15, e0232076. [Google Scholar] [CrossRef]
- Baker, S.; Edwards, R. How Many Qualitative Interviews Is Enough; National Centre for Research Methods: Southampton, UK, 2012. [Google Scholar]
- Saunders, B.; Sim, J.; Kingstone, T.; Baker, S.; Waterfield, J.; Bartlam, B.; Burroughs, H.; Jinks, C. Saturation in Qualitative Research: Exploring Its Conceptualization and Operationalization. Qual. Quant. 2018, 52, 1893–1907. [Google Scholar] [CrossRef]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a Measure of the Motives Underlying the Selection of Food: The Food Choice Questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef]
- Fayet, Y.; Praud, D.; Fervers, B.; Ray-Coquard, I.; Blay, J.-Y.; Ducimetiere, F.; Fagherazzi, G.; Faure, E. Beyond the Map: Evidencing the Spatial Dimension of Health Inequalities. Int. J. Health Geogr. 2020, 19, 46. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Using Thematic Analysis in Psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Kastner, M.; Antony, J.; Soobiah, C.; Straus, S.E.; Tricco, A.C. Conceptual Recommendations for Selecting the Most Appropriate Knowledge Synthesis Method to Answer Research Questions Related to Complex Evidence. J. Clin. Epidemiol. 2016, 73, 43–49. [Google Scholar] [CrossRef]
- Whittemore, R.; Chao, A.; Jang, M.; Minges, K.E.; Park, C. Methods for Knowledge Synthesis: An Overview. Heart Lung 2014, 43, 453–461. [Google Scholar] [CrossRef]
- Conill, C.; Verger, E.; Salamero, M. Performance Status Assessment in Cancer Patients. Cancer 1990, 65, 1864–1866. [Google Scholar] [CrossRef]
- Suri, H. Purposeful Sampling in Qualitative Research Synthesis. Qual. Res. J. 2011, 11, 63–75. [Google Scholar] [CrossRef]
- Falletta, S. Evaluating Training Programs: The Four Levels: Donald L. Kirkpatrick, Berrett-Koehler Publishers, San Francisco, CA, 1996, 229 Pp. Am. J. Eval. 1998, 19, 259–261. [Google Scholar] [CrossRef]
- Shunmuga Sundaram, C.; Campbell, R.; Ju, A.; King, M.T.; Rutherford, C. Patient and Healthcare Provider Perceptions on Using Patient-Reported Experience Measures (PREMs) in Routine Clinical Care: A Systematic Review of Qualitative Studies. J. Patient Rep. Outcomes 2022, 6, 122. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.; Rabalski, I. Bioactive Compounds and Their Antioxidant Capacity in Selected Primitive and Modern Wheat Species. Open Agric. J. 2008, 208, 7–14. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Ivanova, N.; Dimov, I.; Stamatovska, V. The Effect of Einkorn (Triticum Monococcum L.) Whole Meal Flour Addition on Physico-Chemical Characteristics, Biological Active Compounds and in Vitro Starch Digestion of Cookies. J. Cereal Sci. 2018, 83, 116–122. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Bordoni, A.; Di Nunzio, M.; Viadel, B.; Gallego, E.; Villalba, M.P.; Tomás-Cobos, L.; Taneyo Saa, D.L.; Gianotti, A. Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads. Nutrients 2017, 9, 1232. [Google Scholar] [CrossRef]
- Kliemann, N.; Rauber, F.; Bertazzi Levy, R.; Viallon, V.; Vamos, E.P.; Cordova, R.; Freisling, H.; Casagrande, C.; Nicolas, G.; Aune, D.; et al. Food Processing and Cancer Risk in Europe: Results from the Prospective EPIC Cohort Study. Lancet Planet. Health 2023, 7, e219–e232. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.; Falkenberg, T.; Rutherford, J.; Colatruglio, S. Food Literacy Competencies: A Conceptual Framework for Youth Transitioning to Adulthood. Int. J. Consum. Stud. 2018, 42, 547–556. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Li, Y.; Xue, K.; Kan, J. Use of Dietary Fibers in Reducing the Risk of Several Cancer Types: An Umbrella Review. Nutrients 2023, 15, 2545. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Fund/American Institute for Cancer Research Continuous Update Project Expert Report 2018. Diet, Nutrition, Physical Activity and Colorectal Cancer. Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf (accessed on 8 October 2024).
- Yu, E.Y.W.; Wesselius, A.; Mehrkanoon, S.; Brinkman, M.; van den Brandt, P.; White, E.; Weiderpass, E.; Le Calvez-Kelm, F.; Gunter, M.; Huybrechts, I.; et al. Grain and Dietary Fiber Intake and Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies. Am. J. Clin. Nutr. 2020, 112, 1252–1266. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole Grain Consumption and Risk of Cardiovascular Disease, Cancer, and All Cause and Cause Specific Mortality: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMJ (Clin. Res. ed.) 2016, 353, i2716. [Google Scholar] [CrossRef]
- Gaesser, G.A. Whole Grains, Refined Grains, and Cancer Risk: A Systematic Review of Meta-Analyses of Observational Studies. Nutrients 2020, 12, 3756. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murat-Ringot, A.; Lan, R.; Fraticelli, L.; Fayet, Y.; Bourgeois, D.; Nugem, R.; Piton, M.; Goetz, E.; Préau, M.; Dutertre, F.; et al. An Innovative One Health Approach: BIOQUALIM, a Transdisciplinary Research Action Protocol—From Cultivated Biodiversity to Human Health Prevention. Nutrients 2024, 16, 3495. https://doi.org/10.3390/nu16203495
Murat-Ringot A, Lan R, Fraticelli L, Fayet Y, Bourgeois D, Nugem R, Piton M, Goetz E, Préau M, Dutertre F, et al. An Innovative One Health Approach: BIOQUALIM, a Transdisciplinary Research Action Protocol—From Cultivated Biodiversity to Human Health Prevention. Nutrients. 2024; 16(20):3495. https://doi.org/10.3390/nu16203495
Chicago/Turabian StyleMurat-Ringot, Audrey, Romain Lan, Laurie Fraticelli, Yohan Fayet, Denis Bourgeois, Rita Nugem, Maëva Piton, Emmie Goetz, Marie Préau, Fabien Dutertre, and et al. 2024. "An Innovative One Health Approach: BIOQUALIM, a Transdisciplinary Research Action Protocol—From Cultivated Biodiversity to Human Health Prevention" Nutrients 16, no. 20: 3495. https://doi.org/10.3390/nu16203495
APA StyleMurat-Ringot, A., Lan, R., Fraticelli, L., Fayet, Y., Bourgeois, D., Nugem, R., Piton, M., Goetz, E., Préau, M., Dutertre, F., Bernoud-Hubac, N., Basbous, L., Lastmann, A., Charreyre, M. -T., & Carrouel, F. (2024). An Innovative One Health Approach: BIOQUALIM, a Transdisciplinary Research Action Protocol—From Cultivated Biodiversity to Human Health Prevention. Nutrients, 16(20), 3495. https://doi.org/10.3390/nu16203495