Association between the Korean Healthy Diet Score and Metabolic Syndrome: Effectiveness and Optimal Cutoff of the Korean Healthy Diet Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Subjects by MetS Status
3.2. Relationship between Adherence to the KHD Components and MetS
3.3. Exploring the Optimal KHD Score Cutoff Related to MetS
3.4. Relationship between the Optimal KHD Score Cutoff and MetS Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Health Insurance Service. National Health Screening Statistical Yearbook 2019; National Health Insurance Service: Seoul, Republic of Korea, 2020. [Google Scholar]
- National Health Insurance Service. National Health Screening Statistical Yearbook 2022; National Health Insurance Service: Seoul, Republic of Korea, 2023. [Google Scholar]
- Lee, W.Y.; Park, J.S.; Noh, S.Y.; Rhee, E.J.; Kim, S.W.; Zimmet, P.Z. Prevalence of the metabolic syndrome among 40,698 Korean metropolitan subjects. Diabetes Res. Clin. Pract. 2004, 65, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.J.; Coyne, T.; McClintock, C. Dietary patterns and metabolic syndrome-a review of epidemiologic evidence. Asia Pac. J. Clin. Nutr. 2006, 15, 134–142. [Google Scholar] [PubMed]
- Kim, J.; Jo, I. Grains, vegetables, and fish dietary pattern is inversely associated with the risk of metabolic syndrome in South Korean adults. J. Am. Diet. Assoc. 2011, 111, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Chung, J.; Kim, K.J.; Kim, H.J.; Seo, W.W.; Jeon, K.H.; Cho, I.; Park, J.J.; Lee, M.H.; Suh, J.; et al. Lifestyle modification in the management of metabolic syndrome: Statement from Korean Society of CardioMetabolic Syndrome (KSCMS). Korean Circ. J. 2022, 52, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef]
- American Heart Association. What Is Metabolic Syndrome? Available online: https://www.heart.org/en/health-topics/metabolic-syndrome/about-metabolic-syndrome (accessed on 16 August 2024).
- Kweon, S.; Park, J.Y.; Park, M.; Kim, Y.; Yeon, S.Y.; Yoon, L.; Yun, S.; Park, S.; Yang, J.E.; Kim, Y.; et al. Trends in food and nutrient intake over 20 years: Findings from the 1998–2018 Korea National Health and Nutrition Examination Survey. Epidemiol. Health 2021, 43, e2021027. [Google Scholar] [CrossRef]
- Health Plan. The National Health Plan Goals. Available online: https://www.khepi.or.kr/hpn/hpnIdx/selectIdxDetailList2030.do?menuId=MENU01422 (accessed on 16 August 2024).
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Mazidi, M.; Pennathur, S.; Afshinnia, F. Link of dietary patterns with metabolic syndrome: Analysis of the National Health and Nutrition Examination Survey. Nutr. Diabetes 2017, 7, e255. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- McGuire, S. Scientific report of the 2015 dietary guidelines advisory committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv. Nutr. Int. Rev. J. 2016, 7, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Yook, S.M.; Park, S.; Moon, H.K.; Kim, K.; Shim, J.E.; Hwang, J.Y. Development of Korean healthy eating index for adults using the Korea national health and nutrition examination survey data. J. Nutr. Health 2015, 48, 419–428. [Google Scholar] [CrossRef]
- Lim, J.; Lee, Y.; Shin, S.; Lee, H.W.; Kim, C.E.; Lee, J.K.; Lee, S.A.; Kang, D. An association between diet quality index for Koreans (DQI-K) and total mortality in Health Examinees Gem (HEXA-G) study. Nutr. Res. Pract. 2018, 12, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Cho, M.S. The development and validation of the Korean Dietary Pattern Score (KDPS). Korean J. Food Cult. 2010, 25, 652–660. [Google Scholar]
- Lee, M.; Chae, S.W.; Cha, Y.S.; Cho, M.S.; Oh, H.Y.; Kim, M.K. Development of a Korean Diet Score (KDS) and its application assessing adherence to Korean healthy diet based on the Korean Food Guide Wheels. Nutr. Res. Pract. 2013, 7, 49–58. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, H.Y.; Hwang, J.Y.; Kwon, S.; Chung, H.R.; Kwak, T.K.; Kang, M.H.; Choi, Y.S. Development of nutrition quotient for Korean adults: Item selection and validation of factor structure. J. Nutr. Health 2018, 51, 340–356. [Google Scholar] [CrossRef]
- Ravelli, M.N.; Schoeller, D.A. Traditional self-reported dietary instruments are prone to inaccuracies and new approaches are needed. Front. Nutr. 2020, 7, 90. [Google Scholar] [CrossRef]
- Kim, S.H.; Joung, H. Development of evaluation components and criteria for the Korean Healthy Diet and assessment of the adherence status among Korean adults. J. Nutr. Health 2024, 57, e27. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare. The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2020. Available online: https://www.kns.or.kr/FileRoom/FileRoom_view.asp?idx=108&BoardID=Kdr (accessed on 16 August 2024).
- Arnoldy, L.; Gauci, S.; Lassemillante, A.M.; Verster, J.C.; Macpherson, H.; Minihane, A.M.; Scholey, A.; Pipingas, A.; White, D.J. Towards consistency in dietary pattern scoring: Standardising scoring workflows for healthy dietary patterns using 24-h recall and two variations of a food frequency questionnair. Br. J. Nutr. 2024, 131, 1554–1577. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Lipsy, R.J. The National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Manag. Care Pharm. 2003, 9, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Korea Society for the Study of Obesity. Weight Management Diet. Available online: https://general.kosso.or.kr/html/?pmode=nutritionDiet (accessed on 16 August 2024).
- Ahluwalia, N.; Andreeva, V.A.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. In WHO Technical Report Series; No. 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Romaguera, D.; Ängquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.G.; Halkjær, J.; Feskens, E.J.M.; van der A, D.L.; Masala, G.; Steffen, A.; et al. Food composition of the diet in relation to changes in waist circumference adjusted for body mass index. PLoS ONE 2011, 6, e23384. [Google Scholar] [CrossRef] [PubMed]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernandez-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodriguez-Reyes, S.C.; Betancourt-Nunez, A.; Vizmanos, B.; Martinez-Lopez, E.; Munoz-Valle, J.F.; Marquez-Sandoval, F.; et al. The effect of dietary interventions on hypertriglyceridemia: From public health to molecular nutrition evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef]
- Chen, J.P.; Chen, G.C.; Wang, X.P.; Qin, L.; Bai, Y. Dietary fiber and metabolic syndrome: A meta-analysis and review of related mechanisms. Nutrients 2017, 10, 24. [Google Scholar] [CrossRef]
- Tian, Y.; Su, L.; Wang, J.; Duan, X.; Jiang, X. Fruit and vegetable consumption and risk of the metabolic syndrome: A meta-analysis. Public Health Nutr. 2018, 21, 756–765. [Google Scholar] [CrossRef]
- Lee, M.; Lim, M.; Kim, J. Fruit and vegetable consumption and the metabolic syndrome: A systematic review and dose–response meta-analysis. Br. J. Nutr. 2019, 122, 723–733. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Xu, Y.; Yang, J.; Du, L.; Li, K.; Zhou, Y. Milk consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses in humans. Nutr. Metab. 2021, 18, 7. [Google Scholar] [CrossRef]
- Song, S.J.; Shim, J.E. Regional differences in dietary total fat and saturated fatty acid intake and their associations with metabolic diseases among Korean adults: Using the 2016–2019 Korea National Health and Nutrition Examination Surveys. Korean J. Community Nutr. 2021, 26, 495–507. [Google Scholar] [CrossRef]
- Woo, H.D.; Shin, A.; Kim, J. Dietary patterns of Korean adults and the prevalence of metabolic syndrome: A cross-sectional study. PLoS ONE 2014, 9, e111593. [Google Scholar] [CrossRef]
- Choi, S.A.; Chung, S.S.; Rho, J.O. Benefits of adherence to the Korea Healthy Eating Index on the risk factors and incidence of the metabolic syndrome: Analysis of the 7th (2016–2018) Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2022, 55, 120–140. [Google Scholar] [CrossRef]
- Seo, E.H.; Kim, H.; Kwon, O. Association between total sugar intake and metabolic syndrome in middle-aged Korean men and women. Nutrients 2019, 11, 2042. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ju, S.Y.; Park, C.R.; Park, Y.K. Relationship between Kimchi and metabolic syndrome in Korean adults: Data from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2007–2012. J. Korean Diet Assoc. 2016, 22, 151–162. [Google Scholar] [CrossRef]
- Skilton, M.R.; Laville, M.; Cust, A.E.; Moulin, P.; Bonnet, F. The association between dietary macronutrient intake and the prevalence of the metabolic syndrome. Br. J. Nutr. 2008, 100, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Kolahdouz Mohammadi, R.; Shab-Bidar, S.; Vafa, M.; Salehi-Abargouei, A. Sodium status and the metabolic syndrome: A systematic review and meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 196–206. [Google Scholar] [CrossRef]
- Han, D.; Fang, X.; Su, D.; Huang, L.; He, M.; Zhao, D.; Zou, Y.; Zhang, R. Dietary calcium intake and the risk of metabolic syndrome: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 19046. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, M.Y.; Lee, S.Y. The risk of metabolic syndrome by dietary patterns of middle-aged adults in Gyenggi province. Korean J. Community Nutr. 2014, 19, 527–536. [Google Scholar] [CrossRef]
- Jung, H.J.; Han, S.N.; Song, S.; Paik, H.Y.; Baik, H.W.; Joung, H. Association between adherence to the Korean Food Guidance System and the risk of metabolic abnormalities in Koreans. Nutr. Res. Pract. 2011, 5, 560–568. [Google Scholar] [CrossRef]
- Waijers, P.M.C.M.; Feskens, E.J.M.; Ocké, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef]
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, C.; Gibney, E.R. Dietary intake assessment using a novel, generic meal–based recall and a 24-hour recall [Comparison study]. JMIR 2024, 26, e48817. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Barchitta, M.; Fiore, V.; Rosta, G.; Favara, G.; La Mastra, C.; La Rosa, M.C.; San Lio, R.M.; Agodi, A. Determinants of adherence to the Mediterranean diet: Findings from a cross-sectional study in women from Southern Italy. Inc. J. Int. J. Environ. Res. Public Health 2019, 16, 2963. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Safford, M.M.; Soroka, O.; Brown, T.M.; Newby, P.K.; Durant, R.W.; Judd, S.E. Mediterranean diet score, dietary patterns, and risk of sudden cardiac death in the REGARDS study. J. Am. Heart Assoc. 2021, 10, e019158. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Kang, S.H.; Jang, S.I.; Park, E.C. Association between lifestyle factors and the risk of metabolic syndrome in the South Korea. Sci. Rep. 2022, 12, 13356. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Oh, S.W.; Cho, S.I.; Choi, W.H.; Kim, Y.S. The metabolic syndrome and associated lifestyle factors among South Korean adults. Int. J. Epidemiol. 2004, 33, 328–336. [Google Scholar] [CrossRef]
- Hoveling, L.A.; Lepe, A.; Boissonneault, M.; de Beer, J.A.A.; Smidt, N.; de Kroon, M.L.A.; Liefbroer, A.C. Educational inequalities in metabolic syndrome prevalence, timing, and duration amongst adults over the life course: A microsimulation analysis based on the lifelines cohort study. IJBNPA Int. J. Behav. Nutr. Phys. Act. 2023, 20, 104. [Google Scholar] [CrossRef]
- Kim, S.A.; Shin, S.; Ha, K.; Hwang, Y.; Park, Y.H.; Kang, M.S.; Joung, H. Effect of a balanced Korean diet on metabolic risk factors among overweight/obese Korean adults: A randomized controlled trial. Eur. J. Nutr. 2020, 59, 3023–3035. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, Y.; Lee, H.S.; Park, E.J.; Kim, J.; Shin, S.; Kim, K.N.; Bae, Y.J.; Kim, K.; Woo, T.; et al. The development of resources for the application of 2020 Dietary Reference Intakes for Koreans. J. Nutr. Health 2022, 55, 21–35. [Google Scholar] [CrossRef]
Total (n = 11,403) | MetS (n = 1668) | Non-MetS (n = 9735) | p-Value | |
---|---|---|---|---|
Women, n (%) | 6680 (51.5) | 593 (28.6) | 6087 (55.6) | <0.001 |
30–49 years, n (%) | 8234 (67.1) | 1432 (83.0) | 6802 (64.3) | <0.001 |
BMI (18.5–24.9 kg/m2), n (%) | 7195 (61.7) | 312 (18.0) | 6883 (69.5) | <0.001 |
Current smokers, n (%) | 2185 (21.4) | 515 (32.8) | 1670 (19.3) | <0.001 |
Alcohol consumption, over once a month, n (%) | 7292 (65.0) | 1125 (67.9) | 6167 (64.5) | 0.018 |
Physical activity (yes), n (%) | 5751 (52.6) | 751 (46.7) | 5000 (53.7) | <0.001 |
Household income level (high), n (%) | 8034 (70.1) | 1109 (67.4) | 6925 (70.6) | 0.025 |
Education level (over college), n (%) | 6904 (59.1) | 931 (55.7) | 5973 (59.7) | 0.011 |
Household status (single), n (%) | 993 (9.5) | 153 (10.1) | 840 (9.4) | 0.409 |
Abdominal obesity, n (%) | 2595 (23.6) | 1298 (78.8) | 1297 (13.9) | <0.001 |
High blood pressure, n (%) | 1905 (17.5) | 959 (58.4) | 946 (10.3) | <0.001 |
Hyperglycemia, n (%) | 2287 (19.8) | 1128 (67.3) | 1159 (11.4) | <0.001 |
Hypertriglyceridemia, n (%) | 2608 (23.8) | 1343 (80.5) | 1265 (13.8) | <0.001 |
Low HDL-cholesterol, n (%) | 2777 (23.4) | 1078 (63.1) | 1699 (16.4) | <0.001 |
KHD Score and Its Components | Total | MetS | Non-MetS | p-Value | OR (95% CI) |
---|---|---|---|---|---|
KHD score | 5.13 (0.02) | 5.03 (0.04) | 5.14 (0.02) | 0.016 | 0.95 (0.91–0.98) |
Carbohydrate | 3704 (32.6) | 515 (31.4) | 3189 (32.8) | 0.299 | 0.96 (0.84–1.10) |
Protein | 9850 (85.8) | 1454 (86.6) | 8396 (85.7) | 0.401 | 0.95 (0.79–1.14) |
Fat | 6770 (59.6) | 958 (58.3) | 5812 (59.8) | 0.329 | 0.91 (0.80–1.04) |
Fiber | 4512 (37.0) | 591 (32.4) | 3921 (37.8) | <0.001 | 0.82 (0.72–0.94) |
Sugar | 9788 (86.0) | 1475 (88.4) | 8313 (85.6) | 0.005 | 1.12 (0.93–1.35) |
Saturated fat | 5550 (48.1) | 915 (54.5) | 4635 (47.0) | <0.001 | 1.10 (0.97–1.25) |
Sodium | 3420 (29.4) | 381 (22.1) | 3039 (30.6) | <0.001 | 0.92 (0.79–1.07) |
Calcium | 1777 (15.2) | 238 (14.1) | 1539 (15.4) | 0.225 | 0.87 (0.73–1.04) |
Mixed grains | 2035 (17.6) | 295 (17.4) | 1740 (17.7) | 0.832 | 0.93 (0.79–1.10) |
Meat, fish, eggs, and beans | 3954 (34.9) | 593 (35.8) | 3361 (34.8) | 0.475 | 1.03 (0.90–1.18) |
Vegetables | 2321 (20.1) | 450 (27.0) | 1871 (18.9) | <0.001 | 1.12 (0.96–1.29) |
Fruits | 2154 (16.9) | 215 (11.3) | 1939 (17.9) | <0.001 | 0.67 (0.55–0.81) |
Milk and milk products | 3301 (29.3) | 387 (23.5) | 2914 (30.3) | <0.001 | 0.83 (0.72–0.95) |
Total | Men | Women | ||
---|---|---|---|---|
n | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Per 1-point increase | 11,403 | 0.95 (0.91–0.98) | 0.96 (0.91–1.00) | 0.93 (0.87–0.99) |
Per 2-point increase | 11,403 | 0.90 (0.84–0.97) | 0.92 (0.84–1.01) | 0.87 (0.77–0.98) |
Quartile | ||||
Q1 (1–3) | 1704 | 1.00 | 1.00 | 1.00 |
Q2 (4–5) | 5279 | 0.96 (0.80–1.14) | 0.99 (0.80–1.23) | 0.87 (0.64–1.19) |
Q3 (6) | 2030 | 0.95 (0.76–1.18) | 1.00 (0.76–1.31) | 0.84 (0.58–1.22) |
Q4 (7–13) | 2390 | 0.77 (0.63–0.95) | 0.78 (0.60–1.01) | 0.74 (0.52–1.07) |
Tertile | ||||
T1 (1–4) | 4181 | 1.00 | 1.00 | 1.00 |
T2 (5) | 2802 | 0.94 (0.80–1.10) | 1.07 (0.88–1.31) | 0.71 (0.55–0.93) |
T3 (6–13) | 4420 | 0.86 (0.74–1.00) | 0.91 (0.75–1.10) | 0.77 (0.61–0.97) |
Per category increase (version 1) | ||||
Low (1–4) | 4181 | 1.00 | 1.00 | 1.00 |
Medium (5–6) | 4832 | 0.95 (0.82–1.09) | 1.06 (0.88–1.26) | 0.76 (0.61–0.95) |
High (7–13) | 2390 | 0.78 (0.65–0.93) | 0.80 (0.64–1.01) | 0.73 (0.54–0.97) |
Per category increase (version 2) | ||||
Low (1–4) | 4181 | 1.00 | 1.00 | 1.00 |
Medium (5–7) | 6187 | 0.92 (0.81–1.05) | 1.01 (0.85–1.19) | 0.77 (0.63–0.96) |
High (8–13) | 1035 | 0.72 (0.56–0.91) | 0.79 (0.58–1.07) | 0.60 (0.40–0.90) |
Per category increase (version 3) | ||||
Low (1–4) | 4181 | 1.00 | 1.00 | 1.00 |
Medium (5–8) | 6841 | 0.90 (0.79–1.03) | 0.99 (0.84–1.17) | 0.75 (0.61–0.93) |
High (9–13) | 381 | 0.67 (0.46–0.99) | 0.67 (0.39–1.15) | 0.68 (0.39–1.19) |
Low vs. medium/high adherence | ||||
1–4 | 4181 | 1.00 | 1.00 | 1.00 |
5–13 | 7222 | 0.89 (0.78–1.02) | 0.97 (0.83–1.15) | 0.75 (0.61–0.92) |
Low vs. medium/high adherence | ||||
1–5 | 6983 | 1.00 | 1.00 | 1.00 |
6–13 | 4420 | 0.88 (0.77–1.01) | 0.88 (0.74–1.05) | 0.88 (0.72–1.09) |
Low/medium vs. high adherence | ||||
1–6 | 9013 | 1.00 | 1.00 | 1.00 |
7–13 | 2390 | 0.80 (0.68–0.94) | 0.78 (0.63–0.96) | 0.84 (0.65–1.09) |
Low/medium vs. high adherence | ||||
1–7 | 10,368 | 1.00 | 1.00 | 1.00 |
8–13 | 1035 | 0.75 (0.60–0.94) | 0.78 (0.58–1.05) | 0.71 (0.48–1.03) |
Low/medium vs. high adherence | ||||
1–8 | 11,022 | 1.00 | 1.00 | 1.00 |
9–13 | 381 | 0.72 (0.49–1.04) | 0.67 (0.40–1.14) | 0.82 (0.48–1.40) |
Score Range | Low | Medium | High | p-Trend |
---|---|---|---|---|
1–4 | 5–6 | 7–13 | ||
Abdominal obesity | ||||
All participants | 1.00 | 0.94 (0.84–1.06) | 0.94 (0.82–1.08) | 0.301 |
Men | 1.00 | 0.98 (0.84–1.15) | 0.90 (0.74–1.09) | 0.316 |
Women | 1.00 | 0.91 (0.76–1.08) | 1.00 (0.81–1.23) | 0.848 |
High blood pressure | ||||
All participants | 1.00 | 1.03 (0.91–1.18) | 0.92 (0.77–1.09) | 0.447 |
Men | 1.00 | 1.10 (0.94–1.30) | 0.96 (0.77–1.19) | 0.995 |
Women | 1.00 | 0.89 (0.71–1.11) | 0.83 (0.63–1.09) | 0.159 |
Hyperglycemia | ||||
All participants | 1.00 | 1.00 (0.88–1.13) | 0.98 (0.83–1.15) | 0.812 |
Men | 1.00 | 1.03 (0.86–1.22) | 1.03 (0.82–1.29) | 0.780 |
Women | 1.00 | 0.97 (0.81–1.17) | 0.95 (0.75–1.20) | 0.648 |
Hypertriglyceridemia | ||||
All participants | 1.00 | 0.96 (0.85–1.08) | 0.80 (0.69–0.94) | 0.009 |
Men | 1.00 | 1.04 (0.89–1.20) | 0.82 (0.67–1.00) | 0.120 |
Women | 1.00 | 0.83 (0.69–1.00) | 0.76 (0.60–0.96) | 0.016 |
Low HDL cholesterol | ||||
All participants | 1.00 | 0.94 (0.84–1.06) | 0.85 (0.74–0.98) | 0.027 |
Men | 1.00 | 1.04 (0.87–1.24) | 0.80 (0.63–1.01) | 0.140 |
Women | 1.00 | 0.87 (0.75–1.00) | 0.87 (0.73–1.03) | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Joung, H. Association between the Korean Healthy Diet Score and Metabolic Syndrome: Effectiveness and Optimal Cutoff of the Korean Healthy Diet Score. Nutrients 2024, 16, 3395. https://doi.org/10.3390/nu16193395
Kim S-H, Joung H. Association between the Korean Healthy Diet Score and Metabolic Syndrome: Effectiveness and Optimal Cutoff of the Korean Healthy Diet Score. Nutrients. 2024; 16(19):3395. https://doi.org/10.3390/nu16193395
Chicago/Turabian StyleKim, Soo-Hyun, and Hyojee Joung. 2024. "Association between the Korean Healthy Diet Score and Metabolic Syndrome: Effectiveness and Optimal Cutoff of the Korean Healthy Diet Score" Nutrients 16, no. 19: 3395. https://doi.org/10.3390/nu16193395
APA StyleKim, S. -H., & Joung, H. (2024). Association between the Korean Healthy Diet Score and Metabolic Syndrome: Effectiveness and Optimal Cutoff of the Korean Healthy Diet Score. Nutrients, 16(19), 3395. https://doi.org/10.3390/nu16193395