Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing
Abstract
:1. Introduction
2. Methods
2.1. Population of Study
2.2. Outcome: Blood-Based Biological Age Based on Deep Learning
2.3. Exposure: Socioeconomic Indicators and Computation of SES Trajectories
2.4. Statistical Analyses
2.5. Mediation Analysis
2.6. Definition of Covariates and Potential Mediators
3. Results
Analysis of Potential Mediators
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean diet and the hallmarks of ageing. Eur. J. Clin. Nutr. 2021, 75, 1176–1192. [Google Scholar] [CrossRef] [PubMed]
- Mamoshina, P.; Koche, K.; Cortese, F.; Kova, A. Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Sci. Rep. 2019, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Gialluisi, A.; Di Castelnuovo, A.; Costanzo, S.; Bonaccio, M.; Persichillo, M.; Magnacca, S.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing. Eur. J. Epidemiol. 2022, 37, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Gialluisi, A.; Santoro, A.; Tirozzi, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Franceschi, C.; Iacoviello, L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res. Rev. 2021, 72, 101502. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Socioeconomic trajectories across the life course and risk of total and cause-specific mortality: Prospective findings from the Moli-sani Study. J. Epidemiol. Community Health 2019, 73, 516–528. [Google Scholar] [CrossRef]
- Stringhini, S.; Dugravot, A.; Shipley, M.; Goldberg, M.; Zins, M.; Kivimäki, M.; Marmot, M.; Sabia, S.; Singh-Manoux, A. Health Behaviours, Socioeconomic Status, and Mortality: Further Analyses of the British Whitehall II and the French GAZEL Prospective Cohorts. PLoS Med. 2011, 8, e1000419. [Google Scholar] [CrossRef]
- Allen, L.; Williams, J.; Townsend, N.; Mikkelsen, B.; Roberts, N.; Foster, C.; Wickramasinghe, K. Socioeconomic status and non-communicable disease behavioural risk factors in low-income and lower-middle-income countries: A systematic review. Lancet Glob. Health 2017, 5, e277–e289. [Google Scholar] [CrossRef]
- Karimi, M.; Castagné, R.; Delpierre, C.; Albertus, G.; Berger, E.; Vineis, P.; Kumari, M.; Kelly-Irving, M.; Chadeau-Hyam, M. Early-life inequalities and biological ageing: A multisystem Biological Health Score approach in Understanding Society. J. Epidemiol. Community Health 2019, 73, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Cunliffe, V.T. Epigenetic impacts of social stress. Epigenomics 2016, 8, 1653–1669. [Google Scholar] [CrossRef]
- Schröder, S.L.; Richter, M.; Schröder, J.; Frantz, S.; Fink, A. Socioeconomic inequalities in access to treatment for coronary heart disease: A systematic review. Int. J. Cardiol. 2016, 219, 70–78. [Google Scholar] [CrossRef]
- Schrempft, S.; Trofimova, O.; Künzi, M.; Draganski, B.; Kliegel, M.; Stringhini, S. Life-course socioeconomic conditions and cognitive performance in older adults: A cross-cohort comparison. Aging Ment. Health 2023, 27, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.L.; Zhao, W.; Ratliff, S.M.; Goodwin, J.; Miao, J.; Lu, Q. The Socioeconomic Gradient in Epigenetic Ageing Clocks: Evidence from the Multi-Ethnic Study of Atherosclerosis and the Health and Retirement Study. Epigenetics 2022, 17, 589–611. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, M.; Ellis, B.J.; Shirtcliff, E.A. The Adaptive Calibration Model of stress responsivity. Neurosci. Biobehav. Rev. 2011, 35, 1562–1592. [Google Scholar] [CrossRef]
- Angelini, V.; Howdon, D.D.H.; Mierau, J.O. Childhood Socioeconomic Status and Late-Adulthood Mental Health: Results From the Survey on Health, Ageing and Retirement in Europe. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019, 74, 95–104. [Google Scholar] [CrossRef]
- Henriques, A.; Ruano, L.; Fraga, S.; Soares, S.; Barros, H.; Talih, M. Life-course socio-economic status and its impact on functional health of Portuguese older adults. J. Biosoc. Sci. 2024, 56, 36–49. [Google Scholar] [CrossRef]
- Morita, A.; Fujiwara, T.; Murayama, H.; Machida, M.; Inoue, S.; Shobugawa, Y. Association Between Trajectory of Socioeconomic Position and Regional Brain Volumes Related to Dementia: Results From the NEIGE Study. J. Gerontol. Ser. A 2024, 79, glad269. [Google Scholar] [CrossRef] [PubMed]
- Schrempft, S.; Trofimova, O.; Künzi, M.; Ramponi, C.; Lutti, A.; Kherif, F.; Latypova, A.; Vollenweider, P.; Marques-Vidal, P.; Preisig, M.; et al. The Neurobiology of Life Course Socioeconomic Conditions and Associated Cognitive Performance in Middle to Late Adulthood. J. Neurosci. 2024, 44, e1231232024. [Google Scholar] [CrossRef]
- Fiorito, G.; Polidoro, S.; Dugué, P.-A.; Kivimaki, M.; Ponzi, E.; Matullo, G.; Guarrera, S.; Assumma, M.B.; Georgiadis, P.; Kyrtopoulos, S.A.; et al. Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci. Rep. 2017, 7, 16266. [Google Scholar] [CrossRef]
- Fiorito, G.; Mccrory, C.; Robinson, O.; Carmeli, C.; Ochoa, C. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis. Aging 2019, 11, 2045–2070. [Google Scholar] [CrossRef]
- Hughes, A.; Smart, M.; Gorrie-Stone, T.; Hannon, E.; Mill, J.; Bao, Y.; Burrage, J.; Schalkwyk, L.; Kumari, M. Socioeconomic Position and DNA Methylation Age Acceleration Across the Life Course. Am. J. Epidemiol. 2018, 187, 2346–2354. [Google Scholar] [CrossRef]
- Bao, Y.; Gorrie-Stone, T.; Hannon, E.; Hughes, A.; Andrayas, A.; Neilson, G.; Burrage, J.; Mill, J.; Schalkwyk, L.; Kumari, M. Social mobility across the lifecourse and DNA methylation age acceleration in adults in the UK. Sci. Rep. 2022, 12, 22284. [Google Scholar] [CrossRef] [PubMed]
- Raffington, L.; Schwaba, T.; Aikins, M.; Richter, D.; Wagner, G.G.; Harden, K.P.; Belsky, D.W.; Tucker-Drob, E.M. Associations of socioeconomic disparities with buccal DNA-methylation measures of biological aging. Clin. Epigenet. 2023, 15, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- George, A.; Hardy, R.; Fernandez, J.C.; Kelly, Y.; Maddock, J. Life course socioeconomic position and DNA methylation age acceleration in mid-life. J. Epidemiol. Community Health 2021, 1186, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.K.; Chen, E.; Ross, K.M.; McEwen, L.M.; Maclsaac, J.L.; Kobor, M.S.; Miller, G.E. Early-life socioeconomic disadvantage, not current, predicts accelerated epigenetic aging of monocytes. Psychoneuroendocrinology 2018, 97, 131–134. [Google Scholar] [CrossRef]
- Mccrory, C.; Fiorito, G.; Halloran, A.M.O.; Polidoro, S.; Vineis, P.; Anne, R. Early life adversity and age acceleration at mid-life and older ages indexed using the next-generation GrimAge and Pace of Aging epigenetic clocks. Psychoneuroendocrinology 2022, 137, 105643. [Google Scholar] [CrossRef]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen, N.; Sudlow, C.; Downey, P.; Peakman, T.; Danesh, J.; Elliott, P.; Gallacher, J.; Green, J.; Matthews, P.; Pell, J.; et al. UK Biobank: Current status and what it means for epidemiology. Health Policy Technol. 2012, 1, 123–126. [Google Scholar] [CrossRef]
- Iacoviello, L.; Bonanni, A.; Costanzo, S.; De Curtis, A.; Di Castelnuovo, A.; Olivieri, M.; Zito, F.; Donati, M.B.; de Gaetano, G. The Moli-Sani Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Ital. J. Public Health 2007, 4, 110–118. [Google Scholar] [CrossRef]
- Kowarik, A.; Templ, M. Imputation with the R package VIM. J. Stat. Softw. 2016, 74, 1–16. [Google Scholar] [CrossRef]
- Mamoshina, P.; Kochetov, K.; Putin, E.; Cortese, F.; Aliper, A.; Lee, W.-S.; Ahn, S.-M.; Uhn, L.; Skjodt, N.; Kovalchuk, O.; et al. Population specific biomarkers of human aging: A big data study using South Korean, Canadian and Eastern European patient populations. J. Gerontol. Ser. A 2018, 73, 1482–1490. [Google Scholar] [CrossRef]
- Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging 2016, 8, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; De Gaetano, G.; Iacoviello, L.; De Gaetano, G.; et al. Life-Course Socioeconomic Status and Risk of Hospitalization for Heart Failure or Atrial Fibrillation in the Moli-sani Study Cohort. Am. J. Epidemiol. 2021, 190, 1561–1571. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Socioeconomic trajectories across the life course and risk of all-cause and cardiovascular mortality: Prospective findings from the moli-sani study. Circulation 2018, 137, 35–48. [Google Scholar] [CrossRef]
- Byrd, D.A.; Judd, S.E.; Flanders, W.D.; Hartman, T.J.; Fedirko, V.; Bostick, R.M. Development and Validation of Novel Dietary and Lifestyle Inflammation Scores. J. Nutr. 2019, 149, 2206–2218. [Google Scholar] [CrossRef]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Choirat, C.; Coull, B.A.; VanderWeele, T.J.; Valeri, L. CMAverse: A Suite of Functions for Reproducible Causal Mediation Analyses. Epidemiology 2021, 32, 20–22. [Google Scholar] [CrossRef]
- Richiardi, L.; Bellocco, R.; Zugna, D. Mediation analysis in epidemiology: Methods, interpretation and bias. Int. J. Epidemiol. 2013, 42, 1511–1519. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef]
- Pisani, P.; Faggiano, F.; Krogh, V.; Palli, D.; Vineis, P.; Berrino, F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int. J. Epidemiol. 1997, 26, S152–S160. [Google Scholar] [CrossRef]
- Costanzo, S.; Mukamal, K.J.; Di Castelnuovo, A.; Bonaccio, M.; Olivieri, M.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Alcohol consumption and hospitalization burden in an adult Italian population: Prospective results from the Moli-sani study. Addiction 2019, 114, 636–650. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E.J.; Gandek, B. Overview of the SF-36 Health Survey and the International Quality of Life Assessment (IQOLA) Project. J. Clin. Epidemiol. 1998, 51, 903–912. [Google Scholar] [CrossRef]
- Ware, J.E.J.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Washburn, R.A.; Adams, L.L.; Haile, G.T. Physical activity assessment for epidemiologic research: The utility of two simplified approaches. Prev. Med. 1987, 16, 636–646. [Google Scholar] [CrossRef]
- Washburn, R.A.; Goldfield, S.R.; Smith, K.W.; McKinlay, J.B. The validity of self-reported exercise-induced sweating as a measure of physical activity. Am. J. Epidemiol. 1990, 132, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, A.; Di Thiene, D.; Del Cimmuto, A.; Masala, D.; Boccia, A.; De Vito, E. International Physical Activity Questionnaire: Validation and assessment in an Italian sample. Ital. J. Public Health 2010, 7, 369–376. [Google Scholar] [CrossRef]
- Lawn, R.B.; Anderson, E.L.; Suderman, M.; Simpkin, A.J.; Gaunt, T.R.; Teschendorff, A.E.; Widschwendter, M.; Hardy, R.; Kuh, D.; Relton, C.L.; et al. Psychosocial adversity and socioeconomic position during childhood and epigenetic age: Analysis of two prospective cohort studies. Hum. Mol. Genet. 2018, 27, 1301–1308, Erratum in Hum. Mol. Genet. 2024, 33, 1726. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrovic, D.; Carmeli, C.; Sandoval, J.L.; Bodinier, B.; Chadeau-Hyam, M.; Schrempft, S.; Ehret, G.; Dhayat, N.A.; Ponte, B.; Pruijm, M.; et al. Life-course socioeconomic factors are associated with markers of epigenetic aging in a population-based study. Psychoneuroendocrinology 2023, 147, 105976. [Google Scholar] [CrossRef]
- Schrempft, S.; Belsky, D.W.; Draganski, B.; Kliegel, M.; Vollenweider, P.; Marques-Vidal, P.; Preisig, M.; Stringhini, S. Associations Between Life-Course Socioeconomic Conditions and the Pace of Aging. J. Gerontol. Ser. A 2022, 77, 2257–2264. [Google Scholar] [CrossRef]
- Karlsson Linnér, R.; Marioni, R.E.; Rietveld, C.A.; Simpkin, A.J.; Davies, N.M.; Watanabe, K.; Armstrong, N.J.; Auro, K.; Baumbach, C.; Bonder, M.J.; et al. An epigenome-wide association study meta-analysis of educational attainment. Mol. Psychiatry 2017, 22, 1680–1690. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santimone, I.; Di Castelnuovo, A.; De Curtis, A.; Spinelli, M.; Cugino, D.; Gianfagna, F.; Zito, F.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population: Results from the MOLI-SANI project. Haematologica 2011, 96, 1180–1188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables | N of Subjects | Mean | SD | % |
---|---|---|---|---|
Chronological age, CA (y) | 4772 | 55.9 | 11.9 | |
Biological age, BA (y) | 4772 | 55.0 | 8.7 | |
Δage (BA−CA) | 4772 | −0.89 | 7.8 | |
Sex (men) | 2299 | – | – | 48.2 |
Education level | ||||
Up to lower school | 2578 | – | – | 54.0 |
Upper secondary | 1632 | – | – | 34.2 |
Postsecondary education | 555 | – | – | 11.6 |
Missing data | 7 | – | – | 0.1 |
Housing tenure | ||||
Rent | 454 | – | – | 9.5 |
1 dwelling ownership | 3884 | – | – | 81.4 |
>1 dwelling ownership | 426 | – | – | 8.9 |
Missing data | 8 | – | – | 0.2 |
Place of residence | ||||
Rural | 1593 | – | – | 33.4 |
Urban | 3179 | – | – | 66.6 |
Body mass index (BMI) | 4766 | 28.3 | 4.8 | |
Lifestyles | ||||
Leisure-time physical activity (met−h/day) | 4720 | 3.5 | 4.0 | |
Smoking status | ||||
Non−smoker | 2390 | – | – | 50.2 |
Smokers | 1066 | – | – | 22.4 |
Former | 1306 | – | – | 27.4 |
Missing data | 10 | – | – | 0.2 |
LIS | 4524 | 0.6 | 0.8 | |
Dietary information | ||||
MDS | 4750 | 4.4 | 1.6 | |
DIS | 4524 | −0.2 | 2.0 | |
Alcohol intake (g/day) | 4752 | 20.3 | 7.3 | |
Cardiovascular disease | ||||
No | 4421 | – | – | 92.6 |
Yes | 276 | – | – | 5.8 |
Missing data | 75 | – | – | 1.6 |
Cancer | ||||
No | 4591 | – | – | 96.2 |
Yes | 151 | – | – | 3.2 |
Missing data | 30 | – | – | 0.6 |
Diabetes | ||||
No | 4470 | – | – | 93.7 |
Yes | 234 | – | – | 4.9 |
Missing data | 8 | – | – | 1.4 |
Hypertension | ||||
No | 3300 | – | – | 69.2 |
Yes | 1428 | – | – | 29.9 |
Missing data | 44 | 0.9 | ||
Hyperlipidemia | ||||
No | 4337 | – | – | 91.9 |
Yes | 384 | – | – | 8.1 |
Missing data | 51 | – | – | 1.1 |
Quality of life | ||||
SF−36 physical QoL | 3728 | 46.6 | 6.4 | |
SF−36 mental QoL | 3728 | 46.9 | 10.1 |
SES Trajectories | β 1 (95%CI) | β 2 (95%CI) |
---|---|---|
Stable high | Reference | Reference |
Education downward | 0.38 (−0.50 to 1.26) | 0.51 (−0.35 to 1.37) |
Material downward | 0.29 (−0.31 to 0.89) | 0.32 (−0.26 to 0.90) |
Education and material downward | 1.37 (0.81 to 1.94) | 1.28 (0.73 to 1.83) |
Education and material upward | 0.26 (−0.41 to 0.93) | 0.28 (−0.37 to 0.94) |
Material upward | 0.72 (−0.01 to1.50) | 0.60 (−0.16 to 0.14) |
Education upward | 0.57 (−0.19 to 1.33) | 0.46 (−0.29 to 1.21) |
Stable low | 0.93 (0.42 to 1.44) | 0.75 (0.25 to 1.25) |
(a) | ||||
Potential Mediators | Total Effect β [95% CI] | Pure Natural Direct Effect β [95% CI] | Pure Natural Indirect Effect β [95% CI] | % Mediation [95% CI] (p-Value) |
LIS score | 1.28 [0.74; 1.78] | 1.15 [0.63; 1.65] | 0.14 [0.07; 0.21] | 10.6 (5.4; 20.0)% p < 0.001 |
DIS score | 1.28 [0.73; 1.78] | 1.21 [0.65; 1.72] | 0.07 [0.03; 0.12] | 5.3 (2.1; 11.7)% p = 0.002 |
MDS | 1.28 [0.70; 1.78] | 1.25 [0.68; 1.75] | 0.03 [0.003; 0.075] | 2.7 (0.3; 6.5)% p = 0.028 |
Smoke | 1.28 [0.71; 1.81] | 1.28 [0.72; 1.82] | −0.002 [−0.06; 0.06] | −0.2 (−6.2; 4.9)% p = 0.92 |
Physical activity | 1.28 [0.74; 1.84] | 1.28 [0.74; 1.84] | 0.004 [−0.009; 0.022] | 0.3 (−0.7; 1.9)% p = 0.57 |
Alcohol drinking | 1.29 [0.73; 1.85] | 1.27 [0.70; 1.84] | 0.02 [0.14; 0.77] | 1.2 (−8.6; 11.1)% p = 0.77 |
BMI | 1.28 [0.74; 1.82] | 1.07 [0.52; 1.62] | 0.22 [0.14; 0.31] | 16.8 (9.7; 32.1)% p < 0.001 |
SF36 physical | 1.28 [0.70; 1.90] | 1.02 [0.43; 1.62] | 0.27 [0.17; 0.38] | 20.7 (11.7; 40.3)% p < 0.001 |
SF36 mental | 1.28 [0.73; 1.83] | 1.29 [0.72; 1.84] | −0.003 [−0.019; 0.009] | −0.3 (−1.7; 0.1)% p = 0.65 |
ALL | 1.27 [0.75; 1.84] | 0.81 [0.26; 1.41] | 0.46 [0.29; 0.67] | 36.2 (20.4; 67.0)% p < 0.001 |
(b) | ||||
Potential Mediators | Total Effect β [95% CI] | Pure Natural Direct Effect β [95% CI] | Pure Natural Indirect Effect β [95% CI] | % Mediation [95% CI] (p-Value) |
LIS score | 0.75 [0.26; 1.27] | 0.57 [0.07; 1.06] | 0.18 [0.11; 0.27] | 24.6 (12.2; 70.1)% p = 0.004 |
DIS score | 0.75 [0.25; 1.28] | 0.68 [0.19; 1.22] | 0.07 [0.03; 0.12] | 9.2 (3.4; 28.2)% p = 0.004 |
MDS | 0.75 [0.22; 1.24] | 0.70 [0.18; 1.20] | 0.05 [0.01; 0.09] | 6.2 (1.7; 21.0)% p = 0.010 |
Smoke | 0.77 [0.21; 1.22] | 0.79 [0.25; 1.25] | −0.01 [−0.10; 0.02] | −1.7 (−26.7; 2.7)% p = 0.23 |
Physical activity | 0.75 [0.25; 1.23] | 0.74 [0.23; 1.21] | 0.01 [−0.02; 0.04] | 1.4 (−2.4; 8.3)% p = 0.50 |
Alcohol drinking | 0.74 [0.25; 1.26] | 0.76 [0.26; 1.29] | −0.02 [−0.12; 0.10] | −2.5 (−24.7; 17.5)% p = 0.86 |
BMI | 0.75 [0.27; 1.27] | 0.49 [0.03; 1.01] | 0.26 [0.18; 0.35] | 34.3 (17.7; 89.8)% p = 0.002 |
SF36 physical | 0.75 [0.23; 1.25] | 0.44 [−0.10; 0.94] | 0.31 [0.19; 0.44] | 41.0 (19.7; 121.7)% p = 0.014 |
SF36 mental | 0.75 [0.24; 1.24] | 0.74 [0.24; 1.24] | 0.006 [−0.006; 0.025] | 0.8 (−0.8; 4.2)% p = 0.036 |
ALL | 0.72 [0.23; 1.28] | 0.25 [−0.29; 0.78] | 0.48 [0.31; 0.70] | 66.3 (34.6; 212.6)% p = 0.002 |
SES Trajectories | |||||||||
---|---|---|---|---|---|---|---|---|---|
Stable High (N = 891) | Education Downward (N = 198) | Material Downward (N = 590) | Education and Material Downward (N = 703) | Education and Material Upward (N = 426) | Material Upward (N = 289) | Education Upward (N = 282) | Stable Low (N = 1393) | p-Value | |
LIS score (mean; SD) | 0.43; 0.79 | 0.68; 0.76 | 0.47; 0.74 | 0.63; 0.77 | 0.52; 0.77 | 0.63; 0.70 | 0.56; 0.77 | 0.71; 0.70 | <0.0001 |
DIS score (mean; SD) | −0.37; 2.27 | −0.01; 2.24 | 0.03; 2.13 | 0.20; 2.34 | −0.23; 2.02 | −0.18; 2.13 | −0.03; 1.98 | 0.20; 1.98 | <0.0001 |
MDS (mean; SD) | 4.5; 1.7 | 4.5; 1.7 | 4.3; 1.6 | 4.3; 1.6 | 4.5; 1.7 | 4.3; 1.6 | 4.5; 1.7 | 4.2; 1.6 | 0.005 |
Smoking status (%) | <0.0001 | ||||||||
Non-smoker | 47.1 | 42.9 | 51.0 | 50.6 | 42.2 | 48.4 | 39.7 | 57.5 | |
Smoker | 27.3 | 32.3 | 23.2 | 23.5 | 34.7 | 36.3 | 29.8 | 26.1 | |
Former | 25.6 | 24.7 | 25.8 | 25.9 | 23.0 | 15.2 | 30.5 | 16.4 | |
Physical activity (mean; SD) | 3.2; 3.4 | 3.9; 4.4 | 3.2; 3.4 | 3.4; 4.3 | 3.2; 3.2 | 3.7; 3.9 | 3.3; 3.6 | 3.8; 4.6 | 0.005 |
Alcohol drinking (%) | <0.0001 | ||||||||
Non-responder | 1.3 | 2.5 | 2.0 | 4.3 | 2.1 | 4.1 | 3.2 | 8.0 | |
Former drinker | 4.4 | 6.1 | 2.7 | 4.5 | 4.7 | 7.3 | 2.5 | 5.5 | |
Lifetime abstainer | 32.7 | 40.9 | 35.9 | 38.7 | 26.8 | 32.5 | 38.6 | 33.4 | |
Moderate | 54.3 | 29.8 | 48.3 | 27.7 | 54.5 | 38.4 | 35.1 | 28.1 | |
Heavy | 7.3 | 20.7 | 11.0 | 24.7 | 12.0 | 17.6 | 20.6 | 25.1 | |
BMI (mean; SD) | 27.1; 4.5 | 28.6; 4.6 | 27.4; 4.6 | 28.8; 5.1 | 27.8; 4.2 | 28.7; 4.4 | 27.7; 4.4 | 29.2; 5.0 | <0.0001 |
SF36 physical (mean; SD) | 48.5; 4.8 | 46.3; 5.3 | 47.6; 5.1 | 45.1; 5.7 | 47.7; 5.8 | 45.8; 5.9 | 47.3; 4.7 | 44.6; 6.1 | <0.0001 |
SF36 mental (mean; SD) | 47.1; 8.8 | 47.1; 8.7 | 46.9; 9.4 | 47.3; 8.8 | 46.9; 10.7 | 47.6; 8.4 | 46.5; 9.6 | 46.5; 8.9 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, S.; Bonaccio, M.; Di Castelnuovo, A.; Ruggiero, E.; Persichillo, M.; Magnacca, S.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing. Nutrients 2024, 16, 3353. https://doi.org/10.3390/nu16193353
Esposito S, Bonaccio M, Di Castelnuovo A, Ruggiero E, Persichillo M, Magnacca S, De Curtis A, Cerletti C, Donati MB, de Gaetano G, et al. Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing. Nutrients. 2024; 16(19):3353. https://doi.org/10.3390/nu16193353
Chicago/Turabian StyleEsposito, Simona, Marialaura Bonaccio, Augusto Di Castelnuovo, Emilia Ruggiero, Mariarosaria Persichillo, Sara Magnacca, Amalia De Curtis, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, and et al. 2024. "Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing" Nutrients 16, no. 19: 3353. https://doi.org/10.3390/nu16193353
APA StyleEsposito, S., Bonaccio, M., Di Castelnuovo, A., Ruggiero, E., Persichillo, M., Magnacca, S., De Curtis, A., Cerletti, C., Donati, M. B., de Gaetano, G., Iacoviello, L., Gialluisi, A., & on behalf of the Moli-Sani Study Investigators. (2024). Life-Course Socioeconomic Trajectories and Biological Aging: The Importance of Lifestyles and Physical Wellbeing. Nutrients, 16(19), 3353. https://doi.org/10.3390/nu16193353