Iron Treatment in Patients with Iron Deficiency Before and After Metabolic and Bariatric Surgery: A Narrative Review
Abstract
:1. Introduction
2. Iron Metabolism and Bioavailability and the Effect of Bariatric Surgery
2.1. Treatment of ID in PMBS Patients
2.2. Pharmacotherapy
2.2.1. Oral Iron
2.2.2. Intravenous Iron
Total iron dose (mg) = body weight (kg) × (target hemoglobin − actual hemoglobin [g/L]) × 0.24 + iron for iron store ¥ (mg) |
¥ Iron stores: body weight < 35 kg = 15 mg/kg body weight and body weight > 35 kg = 500 mg |
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lange, J.; Konigsrainer, A. Malnutrition as a Complication of Bariatric Surgery—A Clear and Present Danger? Visc. Med. 2019, 35, 305–311. [Google Scholar] [CrossRef]
- McCracken, E.; Wood, G.C.; Prichard, W.; Bistrian, B.; Still, C.; Gerhard, G.; Rolston, D.; Benotti, P. Severe anemia after Roux-en-Y gastric bypass: A cause for concern. Surg. Obes. Relat. Dis. 2018, 14, 902–909. [Google Scholar] [CrossRef]
- Ruiz-Cota, P.; Bacardi-Gascon, M.; Jimenez-Cruz, A. Long-term outcomes of metabolic and bariatric surgery in adolescents with severe obesity with a follow-up of at least 5 years: A systematic review. Surg. Obes. Relat. Dis. 2019, 15, 133–144. [Google Scholar] [CrossRef]
- Xanthakos, S.A.; Khoury, J.C.; Inge, T.H.; Jenkins, T.M.; Modi, A.C.; Michalsky, M.P.; Chen, M.K.; Courcoulas, A.P.; Harmon, C.M.; Brandt, M.L.; et al. Nutritional Risks in Adolescents After Bariatric Surgery. Clin. Gastroenterol. Hepatol. 2020, 18, 1070–1081.e5. [Google Scholar] [CrossRef]
- Shipton, M.J.; Johal, N.J.; Dutta, N.; Slater, C.; Iqbal, Z.; Ahmed, B.; Ammori, B.J.; Senapati, S.; Akhtar, K.; Summers, L.K.M.; et al. Haemoglobin and Hematinic Status Before and After Bariatric Surgery over 4 years of Follow-Up. Obes. Surg. 2021, 31, 682–693. [Google Scholar] [CrossRef]
- Zolfaghari, F.; Khorshidi, Y.; Moslehi, N.; Golzarand, M.; Asghari, G. Nutrient Deficiency After Bariatric Surgery in Adolescents: A Systematic Review and Meta-Analysis. Obes. Surg. 2023, 34, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Xiao, T.; Hu, S.; Luo, H.; Lu, Q.; Fu, H.; Liang, D. Long-Term Outcomes of Iron Deficiency Before and After Bariatric Surgery: A Systematic Review and Meta-analysis. Obes. Surg. 2023, 33, 897–910. [Google Scholar] [CrossRef]
- Johansson, K.; Svensson, P.A.; Soderling, J.; Peltonen, M.; Neovius, M.; Carlsson, L.M.S.; Sjoholm, K. Long-term risk of anaemia after bariatric surgery: Results from the Swedish Obese Subjects study. Lancet Diabetes Endocrinol. 2021, 9, 515–524. [Google Scholar] [CrossRef]
- Aguree, S.; Owora, A.; Hawkins, M.; Reddy, M.B. Iron Deficiency and Iron Deficiency Anemia in Women with and without Obesity: NHANES 2001–2006. Nutrients 2023, 15, 2272. [Google Scholar] [CrossRef]
- Ausk, K.J.; Ioannou, G.N. Is obesity associated with anemia of chronic disease? A population-based study. Obesity 2008, 16, 2356–2361. [Google Scholar] [CrossRef]
- Benotti, P.N.; Kaberi-Otarod, J.; Wood, G.C.; Gerhard, G.S.; Still, C.D.; Bistrian, B.R. Iron homeostasis in obesity and metabolic and bariatric surgery: A narrative review. Surg. Obes. Relat. Dis. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Gowanlock, Z.; Lezhanska, A.; Conroy, M.; Crowther, M.; Tiboni, M.; Mbuagbaw, L.; Siegal, D.M. Iron deficiency following bariatric surgery: A retrospective cohort study. Blood Adv. 2020, 4, 3639–3647. [Google Scholar] [CrossRef]
- Benotti, P.N.; Wood, G.C.; Dove, J.; Kaberi-Otarod, J.; Still, C.D.; Gerhard, G.S.; Bistrian, B.R. Clinical significance of iron deficiency among candidates for metabolic surgery. Surg. Obes. Relat. Dis. 2023, 19, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Taher, A.T. Iron deficiency beyond erythropoiesis: Should we be concerned? Curr. Med. Res. Opin. 2018, 34, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef]
- Igbinosa, I.; Berube, C.; Lyell, D.J. Iron deficiency anemia in pregnancy. Curr. Opin. Obstet. Gynecol. 2022, 34, 69–76. [Google Scholar] [CrossRef]
- Lozoff, B.; Wolf, A.W.; Jimenez, E. Iron-deficiency anemia and infant development: Effects of extended oral iron therapy. J. Pediatr. 1996, 129, 382–389. [Google Scholar] [CrossRef]
- Doom, J.R.; Georgieff, M.K. Striking while the iron is hot: Understanding the biological and neurodevelopmental effects of iron deficiency to optimize intervention in early childhood. Curr. Pediatr. Rep. 2014, 2, 291–298. [Google Scholar] [CrossRef]
- Munoz, M.; Gomez-Ramirez, S.; Besser, M.; Pavia, J.; Gomollon, F.; Liumbruno, G.M.; Bhandari, S.; Cladellas, M.; Shander, A.; Auerbach, M. Current misconceptions in diagnosis and management of iron deficiency. Blood Transfus. 2017, 15, 422–437. [Google Scholar]
- Vaucher, P.; Druais, P.L.; Waldvogel, S.; Favrat, B. Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: A randomized controlled trial. CMAJ 2012, 184, 1247–1254. [Google Scholar] [CrossRef]
- Sharma, R.; Stanek, J.R.; Koch, T.L.; Grooms, L.; O’Brien, S.H. Intravenous iron therapy in non-anemic iron-deficient menstruating adolescent females with fatigue. Am. J. Hematol. 2016, 91, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Benotti, P.N.; Wood, G.C.; Still, C.D.; Gerhard, G.S.; Rolston, D.D.; Bistrian, B.R. Metabolic surgery and iron homeostasis. Obes. Rev. 2019, 20, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Anvari, S.; Samarasinghe, Y.; Alotaiby, N.; Tiboni, M.; Crowther, M.; Doumouras, A.G. Iron supplementation following bariatric surgery: A systematic review of current strategies. Obes. Rev. 2021, 22, e13268. [Google Scholar] [CrossRef]
- Quilliot, D.; Coupaye, M.; Ciangura, C.; Czernichow, S.; Salle, A.; Gaborit, B.; Alligier, M.; Nguyen-Thi, P.L.; Dargent, J.; Msika, S.; et al. Recommendations for nutritional care after bariatric surgery: Recommendations for best practice and SOFFCO-MM/AFERO/SFNCM/expert consensus. J. Visc. Surg. 2021, 158, 51–61. [Google Scholar] [CrossRef]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg. Obes. Relat. Dis. 2017, 13, 727–741. [Google Scholar] [CrossRef]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef]
- Tussing-Humphreys, L.M.; Nemeth, E.; Fantuzzi, G.; Freels, S.; Holterman, A.X.; Galvani, C.; Ayloo, S.; Vitello, J.; Braunschweig, C. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity 2010, 18, 2010–2016. [Google Scholar] [CrossRef]
- Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int. J. Obes. 2020, 44, 1291–1300. [Google Scholar] [CrossRef]
- Ganz, T. Anemia of Inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
- Dutt, S.; Hamza, I.; Bartnikas, T.B. Molecular Mechanisms of Iron and Heme Metabolism. Annu. Rev. Nutr. 2022, 42, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.A. Intestinal iron absorption: Regulation by dietary & systemic factors. Int. J. Vitam. Nutr. Res. 2010, 80, 231–242. [Google Scholar]
- Sun BTan, B.; Zhang, P.; Zhu, L.; Wei, H.; Huang, T.; Li, C.; Yang, W. Iron deficiency anemia: A critical review on iron absorption, supplementation and its influence on gut microbiota. Food Funct. 2024, 15, 1144–1157. [Google Scholar]
- Cappellini, M.D.; Santini, V.; Braxs, C.; Shander, A. Iron metabolism and iron deficiency anemia in women. Fertil. Steril. 2022, 118, 607–614. [Google Scholar] [CrossRef]
- Malesza, I.J.; Bartkowiak-Wieczorek, J.; Winkler-Galicki, J.; Nowicka, A.; Dzieciolowska, D.; Blaszczyk, M.; Gajniak, P.; Slowinska, K.; Niepolski, L.; Walkowiak, J.; et al. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia-A Narrative Review. Nutrients 2022, 14, 3478. [Google Scholar] [CrossRef]
- Fikri, B.; Ridha, N.R.; Putri, S.H.; Salekede, S.B.; Juliaty, A.; Tanjung, C.; Massi, N. Effects of probiotics on immunity and iron homeostasis: A mini-review. Clin. Nutr. ESPEN 2022, 49, 24–27. [Google Scholar] [CrossRef]
- Rajagukguk, Y.V.; Arnold, M.; Gramza-Michalowska, A. Pulse Probiotic Superfood as Iron Status Improvement Agent in Active Women-A Review. Molecules 2021, 26, 2121. [Google Scholar] [CrossRef]
- Rusu, I.G.; Suharoschi, R.; Vodnar, D.C.; Pop, C.R.; Socaci, S.A.; Vulturar, R.; Istrati, M.; Morosan, I.; Farcas, A.C.; Kerezsi, A.D.; et al. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency-A Literature-Based Review. Nutrients 2020, 12, 1993. [Google Scholar] [CrossRef]
- Andrews, M.; Briones, L.; Jaramillo, A.; Pizarro, F.; Arredondo, M. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model. Biol. Trace Elem. Res. 2014, 158, 122–127. [Google Scholar] [CrossRef]
- Jaramillo, A.; Briones, L.; Andrews, M.; Arredondo, M.; Olivares, M.; Brito, A.; Pizarro, F. Effect of phytic acid, tannic acid and pectin on fasting iron bioavailability both in the presence and absence of calcium. J. Trace Elem. Med. Biol. 2015, 30, 112–117. [Google Scholar] [CrossRef]
- Bjorklund, G.; Peana, M.; Pivina, L.; Dosa, A.; Aaseth, J.; Semenova, Y.; Chirumbolo, S.; Medici, S.; Dadar, M.; Costea, D.O. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules 2021, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Teng, I.C.; Tseng, S.H.; Aulia, B.; Shih, C.K.; Bai, C.H.; Chang, J.S. Can diet-induced weight loss improve iron homoeostasis in patients with obesity: A systematic review and meta-analysis. Obes. Rev. 2020, 21, e13080. [Google Scholar] [CrossRef] [PubMed]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Timothy Garvey, W.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures—2019 Update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Obesity 2020, 28, O1–O58. [Google Scholar]
- Brolin, R.E.; Gorman, J.H.; Gorman, R.C.; Petschenik, A.J.; Bradley, L.B.; Kenler, H.A.; Cody, R.P. Prophylactic iron supplementation after Roux-en-Y gastric bypass: A prospective, double-blind, randomized study. Arch. Surg. 1998, 133, 740–744. [Google Scholar] [CrossRef]
- Lewis, C.A.; Osland, E.J.; de Jersey, S.; Hopkins, G.; Seymour, M.; Webb, L.; Chatfield, M.D.; Hickman, I.J. Monitoring for micronutrient deficiency after bariatric surgery-what is the risk? Eur. J. Clin. Nutr. 2023, 77, 1071–1083. [Google Scholar] [CrossRef]
- Brolin, R.E.; Gorman, R.C.; Milgrim, L.M.; Kenler, H.A. Multivitamin prophylaxis in prevention of post-gastric bypass vitamin and mineral deficiencies. Int. J. Obes. 1991, 15, 661–667. [Google Scholar]
- Lener, F.; Hoskuldsdottir, G.; Landin-Wilhelmsen, K.; Bjorkelund, C.; Eliasson, B.; Fandriks, L.; Wallenius, V.; Engstrom, M.; Mossberg, K. Anaemia in patients with self-reported use of iron supplements in the BAriatric surgery SUbstitution and nutrition study: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 998–1006. [Google Scholar] [CrossRef]
- Ogden, J.; Ratcliffe, D.; Snowdon-Carr, V. British Obesity Metabolic Surgery Society endorsed guidelines for psychological support pre- and post-bariatric surgery. Clin. Obes. 2019, 9, e12339. [Google Scholar] [CrossRef]
- Heber, D.; Greenway, F.L.; Kaplan, L.M.; Livingston, E.; Salvador, J.; Still, C. Endocrine and nutritional management of the post-bariatric surgery patient: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4823–4843. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21, e13087. [Google Scholar] [CrossRef]
- Mischler, R.A.; Armah, S.M.; Craig, B.A.; Rosen, A.D.; Banerjee, A.; Selzer, D.J.; Choi, J.N.; Gletsu-Miller, N. Comparison of Oral Iron Supplement Formulations for Normalization of Iron Status Following Roux-EN-y Gastric Bypass Surgery: A Randomized Trial. Obes. Surg. 2018, 28, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Gesquiere, I.; Lannoo, M.; Augustijns, P.; Matthys, C.; Van der Schueren, B.; Foulon, V. Iron deficiency after Roux-en-Y gastric bypass: Insufficient iron absorption from oral iron supplements. Obes. Surg. 2014, 24, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Zariwala, M.G.; Somavarapu, S.; Farnaud, S.; Renshaw, D. Comparison study of oral iron preparations using a human intestinal model. Sci. Pharm. 2013, 81, 1123–1139. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A.; Cohen, M. Ascorbic acid safety: Analysis of factors affecting iron absorption. Toxicol. Lett. 1990, 51, 189–201. [Google Scholar] [CrossRef]
- Skolmowska, D.; Glabska, D. Effectiveness of Dietary Intervention with Iron and Vitamin C Administered Separately in Improving Iron Status in Young Women. Int. J. Environ. Res. Public Health 2022, 19, 11877. [Google Scholar] [CrossRef]
- Johnson, D.M.; Yamaji, S.; Tennant, J.; Srai, S.K.; Sharp, P.A. Regulation of divalent metal transporter expression in human intestinal epithelial cells following exposure to non-haem iron. FEBS Lett. 2005, 579, 1923–1929. [Google Scholar] [CrossRef]
- Sharp, P.; Tandy, S.; Yamaji, S.; Tennant, J.; Williams, M.; Singh Srai, S.K. Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett. 2002, 510, 71–76. [Google Scholar] [CrossRef]
- Qadhi, A.H.; Almuqati, A.H.; Alamro, N.S.; Azhri, A.S.; Azzeh, F.S.; Azhar, W.F.; Alyamani, R.A.; Almohmadi, N.H.; Alkholy, S.O.; Alhassani, W.E.; et al. The effect of bariatric surgery on dietary Behaviour, dietary recommendation Adherence, and micronutrient deficiencies one year after surgery. Prev. Med. Rep. 2023, 35, 102343. [Google Scholar] [CrossRef]
- Mischler, R.A.; Armah, S.M.; Wright, B.N.; Mattar, S.G.; Rosen, A.D.; Gletsu-Miller, N. Influence of diet and supplements on iron status after gastric bypass surgery. Surg. Obes. Relat. Dis. 2016, 12, 651–658. [Google Scholar] [CrossRef]
- Gesquiere, I.; Foulon, V.; Augustijns, P.; Gils, A.; Lannoo, M.; Van der Schueren, B.; Matthys, C. Micronutrient intake, from diet and supplements, and association with status markers in pre- and post-RYGB patients. Clin. Nutr. 2017, 36, 1175–1181. [Google Scholar] [CrossRef]
- Moize, V.; Andreu, A.; Flores, L.; Torres, F.; Ibarzabal, A.; Delgado, S.; Lacy, A.; Rodriguez, L.; Vidal, J. Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a mediterranean population. J. Acad. Nutr. Diet. 2013, 113, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Spetz, K.; Svedjeholm, S.; Roos, S.; Grehn, S.; Olbers, T.; Andersson, E. Adherence to vitamin and mineral supplementation after bariatric surgery—A two-year cohort study. Obes. Res. Clin. Pract. 2022, 16, 407–412. [Google Scholar] [CrossRef]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef] [PubMed]
- Santiago, P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: A clinical overview. Sci. World J. 2012, 2012, 846824. [Google Scholar] [CrossRef]
- Powers, J.M.; Buchanan, G.R.; Adix, L.; Zhang, S.; Gao, A.; McCavit, T.L. Effect of Low-Dose Ferrous Sulfate vs. Iron Polysaccharide Complex on Hemoglobin Concentration in Young Children with Nutritional Iron-Deficiency Anemia: A Randomized Clinical Trial. JAMA 2017, 317, 2297–2304. [Google Scholar] [CrossRef]
- Mohd Rosli, R.R.; Norhayati, M.N.; Ismail, S.B. Effectiveness of iron polymaltose complex in treatment and prevention of iron deficiency anemia in children: A systematic review and meta-analysis. PeerJ 2021, 9, e10527. [Google Scholar] [CrossRef]
- Barraclough, K.A.; Brown, F.; Hawley, C.M.; Leary, D.; Noble, E.; Campbell, S.B.; Isbel, N.M.; Mudge, D.W.; van Eps, C.L.; Johnson, D.W. A randomized controlled trial of oral heme iron polypeptide versus oral iron supplementation for the treatment of anaemia in peritoneal dialysis patients: HEMATOCRIT trial. Nephrol. Dial. Transplant. 2012, 27, 4146–4153. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Safety of Oral and Intravenous Iron. Acta Haematol. 2019, 142, 8–12. [Google Scholar] [CrossRef]
- Puga, A.M.; Samaniego-Vaesken, M.L.; Montero-Bravo, A.; Ruperto, M.; Partearroyo, T.; Varela-Moreiras, G. Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art. Nutrients 2022, 14, 1926. [Google Scholar] [CrossRef]
- Das, N.K.; Schwartz, A.J.; Barthel, G.; Inohara, N.; Liu, Q.; Sankar, A.; Hill, D.R.; Ma, X.; Lamberg, O.; Schnizlein, M.K.; et al. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. Cell Metab. 2020, 31, 115–130.e6. [Google Scholar] [CrossRef]
- Constante, M.; Fragoso, G.; Lupien-Meilleur, J.; Calve, A.; Santos, M.M. Iron Supplements Modulate Colon Microbiota Composition and Potentiate the Protective Effects of Probiotics in Dextran Sodium Sulfate-induced Colitis. Inflamm. Bowel Dis. 2017, 23, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Gesquiere, I.; Steenackers, N.; Lannoo, M.; Foulon, V.; Mertens, A.; Gils, A.; de Hoon, J.; Augustijns, P.; Matthys, C.; Van der Schueren, B. Predicting iron absorption from an effervescent iron supplement in obese patients before and after Roux-en-Y gastric bypass: A preliminary study. J. Trace Elem. Med. Biol. 2019, 52, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Schijns, W.; Ligthart, M.A.P.; Berends, F.J.; Janssen, I.M.C.; van Laarhoven, C.; Aarts, E.O.; de Boer, H. Changes in Iron Absorption After Roux-en-Y Gastric Bypass. Obes. Surg. 2018, 28, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Amaral-Moreira, C.F.A.; Redezuk, G.; Pereira, B.G.; Borovac-Pinheiro, A.; Rehder, P.M. Iron Deficiency Anemia in Pregnancy after Bariatric Surgery: Etiology, Risk Factors, and How to Manage It. Rev. Bras. Ginecol. Obstet. 2023, 45, e562–e567. [Google Scholar] [CrossRef]
- Cancelo-Hidalgo, M.J.; Castelo-Branco, C.; Palacios, S.; Haya-Palazuelos, J.; Ciria-Recasens, M.; Manasanch, J.; Perez-Edo, L. Tolerability of different oral iron supplements: A systematic review. Curr. Med. Res. Opin. 2013, 29, 291–303. [Google Scholar] [CrossRef]
- Sahebzamani, F.M.; Berarducci, A.; Murr, M.M. Malabsorption anemia and iron supplement induced constipation in post-Roux-en-Y gastric bypass (RYGB) patients. J. Am. Assoc. Nurse Pract. 2013, 25, 634–640. [Google Scholar] [CrossRef]
- Moretti, D.; Goede, J.S.; Zeder, C.; Jiskra, M.; Chatzinakou, V.; Tjalsma, H.; Melse-Boonstra, A.; Brittenham, G.; Swinkels, D.W.; Zimmermann, M.B. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015, 126, 1981–1989. [Google Scholar] [CrossRef]
- Dostal, A.; Chassard, C.; Hilty, F.M.; Zimmermann, M.B.; Jaeggi, T.; Rossi, S.; Lacroix, C. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 2012, 142, 271–277. [Google Scholar] [CrossRef]
- Rimon, E.; Kagansky, N.; Kagansky, M.; Mechnick, L.; Mashiah, T.; Namir, M.; Levy, S. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am. J. Med. 2005, 118, 1142–1147. [Google Scholar] [CrossRef]
- Stoffel, N.U.; Zeder, C.; Brittenham, G.M.; Moretti, D.; Zimmermann, M.B. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica 2020, 105, 1232–1239. [Google Scholar] [CrossRef]
- Khoury, A.; Pagan, K.A.; Farland, M.Z. Ferric Maltol: A New Oral Iron Formulation for the Treatment of Iron Deficiency in Adults. Ann. Pharmacother. 2021, 55, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ramirez, S.; Brilli, E.; Tarantino, G.; Girelli, D.; Munoz, M. Sucrosomial® Iron: An Updated Review of Its Clinical Efficacy for the Treatment of Iron Deficiency. Pharmaceuticals 2023, 16, 847. [Google Scholar] [CrossRef] [PubMed]
- Ciudin, A.; Simo-Servat, O.; Balibrea, J.M.; Vilallonga, R.; Hernandez, C.; Simo, R.; Mesa, J. Response to oral sucrosomial iron supplementation in patients undergoing bariatric surgery. The BARI-FER study. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2018, 65, 17–20. [Google Scholar]
- Singh, R.K.; Barrand, M.A. Lipid peroxidation effects of a novel iron compound, ferric maltol. A comparison with ferrous sulphate. J. Pharm. Pharmacol. 1990, 42, 276–279. [Google Scholar] [CrossRef]
- Pergola, P.E.; Fishbane, S.; Ganz, T. Novel Oral Iron Therapies for Iron Deficiency Anemia in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 272–291. [Google Scholar] [CrossRef]
- Schmidt, C.; Ahmad, T.; Tulassay, Z.; Baumgart, D.C.; Bokemeyer, B.; Howaldt, S.; Stallmach, A.; Buning, C.; Group, A.S. Ferric maltol therapy for iron deficiency anaemia in patients with inflammatory bowel disease: Long-term extension data from a Phase 3 study. Aliment. Pharmacol. Ther. 2016, 44, 259–270. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gautam, D.; Tolani, H.; Neogi, S.B. Clinical outcome post treatment of anemia in pregnancy with intravenous versus oral iron therapy: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 179. [Google Scholar] [CrossRef]
- Lichtenstein, G.R.; Onken, J.E. Improved Hemoglobin Response with Ferric Carboxymaltose in Patients with Gastrointestinal-Related Iron-Deficiency Anemia Versus Oral Iron. Dig. Dis. Sci. 2018, 63, 3009–3019. [Google Scholar] [CrossRef]
- Auerbach, M.; Deloughery, T. Single-dose intravenous iron for iron deficiency: A new paradigm. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 57–66. [Google Scholar] [CrossRef]
- Auerbach, M.; DeLoughery, T.G. Treatment of Iron Deficiency Anemia in Adults, in Up to Date; Wolters Kluwer: Waltham, MA, USA, 2023. [Google Scholar]
- Lucas, S.; Garg, M. Intravenous iron: An update. Intern. Med. J. 2024, 54, 26–34. [Google Scholar] [CrossRef]
- Bazeley, J.W.; Wish, J.B. Recent and Emerging Therapies for Iron Deficiency in Anemia of CKD: A Review. Am. J. Kidney Dis. 2022, 79, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; Gomez-Ramirez, S.; Bhandari, S. The safety of available treatment options for iron-deficiency anemia. Expert. Opin. Drug Saf. 2018, 17, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Avni, T.; Bieber, A.; Grossman, A.; Green, H.; Leibovici, L.; Gafter-Gvili, A. The safety of intravenous iron preparations: Systematic review and meta-analysis. Mayo Clin. Proc. 2015, 90, 12–23. [Google Scholar] [CrossRef]
- Szebeni, J.; Fishbane, S.; Hedenus, M.; Howaldt, S.; Locatelli, F.; Patni, S.; Rampton, D.; Weiss, G.; Folkersen, J. Hypersensitivity to intravenous iron: Classification, terminology, mechanisms and management. Br. J. Pharmacol. 2015, 172, 5025–5036. [Google Scholar] [CrossRef]
- Auerbach, M.; Macdougall, I. The available intravenous iron formulations: History, efficacy, and toxicology. Hemodial. Int. 2017, 21, S83–S92. [Google Scholar] [CrossRef]
- Achebe, M.; DeLoughery, T.G. Clinical data for intravenous iron—Debunking the hype around hypersensitivity. Transfusion 2020, 60, 1154–1159. [Google Scholar] [CrossRef]
- Lim, W.; Afif, W.; Knowles, S.; Lim, G.; Lin, Y.; Mothersill, C.; Nistor, I.; Rehman, F.; Song, C.; Xenodemetropoulos, T. Canadian expert consensus: Management of hypersensitivity reactions to intravenous iron in adults. Vox Sang. 2019, 114, 363–373. [Google Scholar] [CrossRef]
- Rampton, D.; Folkersen, J.; Fishbane, S.; Hedenus, M.; Howaldt, S.; Locatelli, F.; Patni, S.; Szebeni, J.; Weiss, G. Hypersensitivity reactions to intravenous iron: Guidance for risk minimization and management. Haematologica 2014, 99, 1671–1676. [Google Scholar] [CrossRef]
- Wolf, M.; Rubin, J.; Achebe, M.; Econs, M.J.; Peacock, M.; Imel, E.A.; Thomsen, L.L.; Carpenter, T.O.; Weber, T.; Brandenburg, V.; et al. Effects of Iron Isomaltoside vs. Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia: Two Randomized Clinical Trials. JAMA 2020, 323, 432–443. [Google Scholar] [CrossRef]
- Schaefer, B.; Tobiasch, M.; Viveiros, A.; Tilg, H.; Kennedy, N.A.; Wolf, M.; Zoller, H. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2021, 87, 2256–2273. [Google Scholar] [CrossRef]
- Zoller, H.; Wolf, M.; Blumenstein, I.; Primas, C.; Lindgren, S.; Thomsen, L.L.; Reinisch, W.; Iqbal, T. Hypophosphataemia following ferric derisomaltose and ferric carboxymaltose in patients with iron deficiency anaemia due to inflammatory bowel disease (PHOSPHARE-IBD): A randomised clinical trial. Gut 2023, 72, 644–653. [Google Scholar] [CrossRef]
- Blumenstein, I.; Shanbhag, S.; Langguth, P.; Kalra, P.A.; Zoller, H.; Lim, W. Newer formulations of intravenous iron: A review of their chemistry and key safety aspects—Hypersensitivity, hypophosphatemia, and cardiovascular safety. Expert. Opin. Drug Saf. 2021, 20, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, L.; Steinheiser, M.; Boykin, K.; Taylor, K.J.; Menendez, M.; Auerbach, M. Expert consensus guidelines: Intravenous iron uses, formulations, administration, and management of reactions. Am. J. Hematol. 2024, 99, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Zoller, H.; Schaefer, B.; Glodny, B. Iron-induced hypophosphatemia: An emerging complication. Curr. Opin. Nephrol. Hypertens. 2017, 26, 266–275. [Google Scholar] [CrossRef]
- Yamamoto, S.; Okada, Y.; Mori, H.; Kurozumi, A.; Torimoto, K.; Arao, T.; Tanaka, Y. Iatrogenic osteomalacia: Report of two cases. J. UOEH 2013, 35, 25–31. [Google Scholar] [CrossRef]
- Sato, K.; Nohtomi, K.; Demura, H.; Takeuchi, A.; Kobayashi, T.; Kazama, J.; Ozawa, H. Saccharated ferric oxide (SFO)-induced osteomalacia: In vitro inhibition by SFO of bone formation and 1,25-dihydroxy-vitamin D production in renal tubules. Bone 1997, 21, 57–64. [Google Scholar] [CrossRef]
- Obinwanne, K.M.; Fredrickson, K.A.; Mathiason, M.A.; Kallies, K.J.; Farnen, J.P.; Kothari, S.N. Incidence, treatment, and outcomes of iron deficiency after laparoscopic Roux-en-Y gastric bypass: A 10-year analysis. J. Am. Coll. Surg. 2014, 218, 246–252. [Google Scholar] [CrossRef]
- Montano-Pedroso, J.C.; Bueno Garcia, E.; Alcantara Rodrigues de Moraes, M.; Francescato Veiga, D.; Masako Ferreira, L. Intravenous iron sucrose versus oral iron administration for the postoperative treatment of post-bariatric abdominoplasty anaemia: An open-label, randomised, superiority trial in Brazil. Lancet Haematol. 2018, 5, e310–e320. [Google Scholar] [CrossRef]
- Sandvik, J.; Hole, T.; Klockner, C.A.; Kulseng, B.E.; Wibe, A. Intravenous Iron Treatment in the Prevention of Iron Deficiency and Anaemia After Roux-en-Y Gastric Bypass. Obes. Surg. 2020, 30, 1745–1752. [Google Scholar] [CrossRef]
- Schijns, W.; Boerboom, A.; de Bruyn Kops, M.; de Raaff, C.; van Wagensveld, B.; Berends, F.J.; Janssen, I.M.C.; van Laarhoven, C.; de Boer, H.; Aarts, E.O. A randomized controlled trial comparing oral and intravenous iron supplementation after Roux-en-Y gastric bypass surgery. Clin. Nutr. 2020, 39, 3779–3785. [Google Scholar] [CrossRef]
- Kotkiewicz, A.; Donaldson, K.; Dye, C.; Rogers, A.M.; Mauger, D.; Kong, L.; Eyster, M.E. Anemia and the Need for Intravenous Iron Infusion after Roux-en-Y Gastric Bypass. Clin. Med. Insights Blood Disord. 2015, 8, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Barish, C.; He, A.; Bregman, D. Comparative review of the safety and efficacy of ferric carboxymaltose versus standard medical care for the treatment of iron deficiency anemia in bariatric and gastric surgery patients. Obes. Surg. 2013, 23, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, M.; Achebe, M.M.; Thomsen, L.L.; Derman, R.J. Efficacy and safety of ferric derisomaltose (FDI) compared with iron sucrose (IS) in patients with iron deficiency anemia after bariatric surgery. Obes. Surg. 2022, 32, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, K.V.; Blom-Hogestol, I.K.; Hewitt, S.; Risstad, H.; Moum, B.; Kristinsson, J.A.; Mala, T. Anemia following Roux-en-Y gastric bypass for morbid obesity; a 5-year follow-up study. Scand. J. Gastroenterol. 2018, 53, 917–922. [Google Scholar] [CrossRef]
- Rossler, J.; Schoenrath, F.; Seifert, B.; Kaserer, A.; Spahn, G.H.; Falk, V.; Spahn, D.R. Iron deficiency is associated with higher mortality in patients undergoing cardiac surgery: A prospective study. Br. J. Anaesth. 2020, 124, 25–34. [Google Scholar] [CrossRef]
- Munoz, M.; Acheson, A.G.; Auerbach, M.; Besser, M.; Habler, O.; Kehlet, H.; Liumbruno, G.M.; Lasocki, S.; Meybohm, P.; Rao Baikady, R.; et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 2017, 72, 233–247. [Google Scholar] [CrossRef]
- Mendez-Pino, L.; Zorrilla-Vaca, A.; Hepner, D.L. Management of Preoperative Anemia. Anesthesiol. Clin. 2024, 42, 65–73. [Google Scholar] [CrossRef]
- Kloeser, R.; Buser, A.; Bolliger, D. Treatment Strategies in Anemic Patients Before Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2023, 37, 266–275. [Google Scholar] [CrossRef]
- Dao, P.; Massin, P. Blood management in enhanced recovery after hip and knee replacement. Orthop. Traumatol. Surg. Res. 2020, 106, S1–S5. [Google Scholar] [CrossRef]
- Benotti, P.N.; Wood, G.C.; Dove, J.T.; Kaberi-Otarod, J.; Still, C.D.; Gerhard, G.S.; Bistrian, B.R. Iron deficiency is highly prevalent among candidates for metabolic surgery and may affect perioperative outcomes. Surg. Obes. Relat. Dis. 2021, 17, 1692–1699. [Google Scholar] [CrossRef]
- Khanbhai, M.; Dubb, S.; Patel, K.; Ahmed, A.; Richards, T. The prevalence of iron deficiency anaemia in patients undergoing bariatric surgery. Obes. Res. Clin. Pract. 2015, 9, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Elhag, W.; El Ansari, W. Multiple nutritional deficiencies among adolescents undergoing bariatric surgery: Who is at risk? Surg. Obes. Relat. Dis. 2022, 18, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Knight, T.; D’Sylva, L.; Moore, B.; Barish, C.F. Burden of Iron Deficiency Anemia in a Bariatric Surgery Population in the United States. J. Manag. Care Spec. Pharm. 2015, 21, 946–954. [Google Scholar] [CrossRef]
- Sandvik, J.; Bjerkan, K.K.; Graeslie, H.; Hoff, D.A.L.; Johnsen, G.; Klockner, C.; Marvik, R.; Nymo, S.; Hyldmo, A.A.; Kulseng, B.E. Iron Deficiency and Anemia 10 Years After Roux-en-Y Gastric Bypass for Severe Obesity. Front. Endocrinol. 2021, 12, 679066. [Google Scholar] [CrossRef]
- Rives-Lange, C.; Rassy, N.; Carette, C.; Phan, A.; Barsamian, C.; Thereaux, J.; Moszkowicz, D.; Poghosyan, T.; Czernichow, S. Seventy years of bariatric surgery: A systematic mapping review of randomized controlled trials. Obes. Rev. 2022, 23, e13420. [Google Scholar] [CrossRef]
Iron-Rich Food Sources | Type of Iron | |
Heme Iron Sources | Non–Heme Iron Sources | |
Grains | Fortified cereals | |
Protein foods | Oysters, mussels, duck breast, turkey, egg, beef, lamb, shrimp, organ meats, game meats | Sesame seeds, cashews |
Vegetables | Spinach, artichokes, soybeans, beans (lima beans), Swiss chard, lentils, beets, mushrooms, leeks, potato with skin | |
Fruits | Prune juice |
Different Preparations | mg Elemental/mg Common Doses | Gastrointestinal Side Effects | Notes | ||
Ferrous salts (Bivalent) | Ferrous sulfate | Tablet, capsule, suspension, extended-release preparation, enteric/film-coated | 65/325 tablet | ~33% | Ferrous salt is 3–4 times more bioavailable than ferric salts (10–15% bioavailability) Gastrointestinal side effects: constipation, nausea, heartburn, constipation and diarrhea (mostly constipation) |
Ferrous fumarate | Tablet/chewable, in combination with docusate sodium, extended release/film-coated | 106/324 | ~47% | ||
Ferrous gluconate | Tablet | 38/324 | ~31% | ||
Ferric salts (trivalent) | Iron protein succinylate | Liquid | 18/300 | ~7% | 3–4 times less bioavailability than ferrous salts. May have better tolerability than ferrous salts. May not be used in patients with milk protein hypersensitivity |
Polymaltose iron complex | Capsule, liquid, film-coated tablet | 150 mg/capsule | No data on advantage of tolerance over ferrous sulfate | Poor bioavailability, needs higher-dose intakes, less effective than ferrous sulfate, more expensive | |
Carbonyl iron | Suspension, tablet, chewable | 45 mg/tablet | No clear data on side effect/tolerance benefit over other oral iron preparations | An elemental iron. No evidence of benefit over other iron preparations | |
Heme Iron Polypeptide | Tablets derived from myoglobin/hemoglobin of animal sources | Variety of products. Example: 65 and 120 mg/tablet | No significant advantages over ferrous sulfate | Higher absorption but more expensive. No superiority to ferrous sulfate in improving hematinic levels |
Formulation Name/Abbreviation (Brand Name ® (Registered Trade Mark)) | High-Molecular Weight Dextran | Older Generation IV Iron | Older Generation IV Iron Higher Percentage of Labile Iron | Newer Generation IV Iron Less Percentage of Labile Iron Release | ||||
Low-Molecular-Weight Dextran/LMWD (INFeD®) | ferric Gluconate/FG (Ferrlecit®) | Iron Sucrose/IS (Venofer®) | Ferric Derisomaltose, Iron Isomaltoside/FDI (Monofer/Monoferric®) | Ferric Carboxymaltose-/FCM (Injectafer/Ferinject®) | Ferumoxytol-FER (Feraheme®) | |||
Notes | (OFF THE MARKET) | Needs a test dose. Can be given in one dose | Multiple doses needed. Long infusion time. Test dose is recommended if patient has a history of multiple allergies | Multiple doses needed. Long infusion time. Test dose is recommended if patient has a history of multiple allergies. Non-dextran-derived | Can be given in one dose. Dextran-derived | Can be given in one dose. Non-dextran-derived | Can be given in one dose. Dextran-derived | |
Iron content | 50 mg/mL | 12.5 mg/mL | 20 mg/mL | 100 mg/mL | 50 mg/mL | 30 mg/mL | ||
Recommended single-dosage administration | (OFF THE MARKET) | 1000 mg | 125 mg | 200–300 mg | 1000–2000 mg | 750–1000 mg | 510–1020 mg | |
Infusion time for 1000 mg | (OFF THE MARKET) | 90–150 min | 720 min | 300 min | >15 min | >15 min | >15 min | |
Risks of IV Iron | Major reaction Overall ~1/200,000 | Off the market due to high risk of anaphylactic reactions | 68/100,000 Black box: risk of anaphylactic reaction—Needs a test dose | 24/100,000 | 24/100,000 | Severe hypersensitivity: 0.8% | Severe hypersensitivity: 1.7% | 24/100,000 |
Fishbane Reaction Mild reaction | ~1/200 | ~1/200 | ~1/200 | ~1/200 | ~1/200 | ~1/200 | ||
Hypophosphatemia (Unique to newer generations) | 3.5% | Higher risk of Hypophosphatemia: ~40% Requires monitoring | 0.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaberi-Otarod, J.; Still, C.D.; Wood, G.C.; Benotti, P.N. Iron Treatment in Patients with Iron Deficiency Before and After Metabolic and Bariatric Surgery: A Narrative Review. Nutrients 2024, 16, 3350. https://doi.org/10.3390/nu16193350
Kaberi-Otarod J, Still CD, Wood GC, Benotti PN. Iron Treatment in Patients with Iron Deficiency Before and After Metabolic and Bariatric Surgery: A Narrative Review. Nutrients. 2024; 16(19):3350. https://doi.org/10.3390/nu16193350
Chicago/Turabian StyleKaberi-Otarod, Jila, Christopher D. Still, G. Craig Wood, and Peter N. Benotti. 2024. "Iron Treatment in Patients with Iron Deficiency Before and After Metabolic and Bariatric Surgery: A Narrative Review" Nutrients 16, no. 19: 3350. https://doi.org/10.3390/nu16193350
APA StyleKaberi-Otarod, J., Still, C. D., Wood, G. C., & Benotti, P. N. (2024). Iron Treatment in Patients with Iron Deficiency Before and After Metabolic and Bariatric Surgery: A Narrative Review. Nutrients, 16(19), 3350. https://doi.org/10.3390/nu16193350