Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Interventions and the Alcohol Challenge Test
2.4. Assessment of Hangover Severity
2.5. Safety
2.6. Alcohol and Acetaldehyde Analysis in Serum
2.7. Statistical Analysis
3. Results
3.1. Enrollment
3.2. General Participant Characteristics
3.3. Biochemical Parameters
3.4. Change in Alcohol and Acetaldehyde Levels
3.5. Survey of Hangover Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khamis, A.A.; Salleh, S.Z.; Ab Karim, M.S.; Mohd Rom, N.A.; Janasekaran, S.; Idris, A.; Abd Rashid, R.B. Alcohol Consumption Patterns: A Systematic Review of Demographic and Sociocultural Influencing Factors. Int. J. Environ. Res. Public Health 2022, 19, 8103. [Google Scholar] [CrossRef]
- Ilhan, M.N.; Yapar, D. Alcohol Consumption and Alcohol Policy. Turk. J. Med. Sci. 2020, 50, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, C.; Verster, J.C.; Scholey, A.; Benson, S. Associations between Mental Resilience, Mood, Coping, Personality, and Hangover Severity. J. Clin. Med. 2022, 11, 2240. [Google Scholar] [CrossRef] [PubMed]
- Verster, J.C.; Scholey, A.; van de Loo, A.J.A.E.; Benson, S.; Stock, A.-K. Updating the Definition of the Alcohol Hangover. J. Clin. Med. 2020, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Urbistondo, D.; Perez-Diaz-Del-Campo, N.; Landecho, M.F.; Martínez, J.A. Alcohol Drinking Impacts on Adiposity and Steatotic Liver Disease: Concurrent Effects on Metabolic Pathways and Cardiovascular Risks. Curr. Obes. Rep. 2024, 13, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Moan, I.S.; Halkjelsvik, T. Socio-Demographic Differences in Alcohol-Related Work Impairment. Addiction 2021, 116, 771–779. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Zhang, Y.-J.; Zhou, Y.; Li, S.; Li, H.-B. Natural Products for the Prevention and Treatment of Hangover and Alcohol Use Disorder. Molecules 2016, 21, 64. [Google Scholar] [CrossRef]
- Jayawardena, R.; Thejani, T.; Ranasinghe, P.; Fernando, D.; Verster, J.C. Interventions for Treatment and/or Prevention of Alcohol Hangover: Systematic Review. Human Psychopharmacol. Clin. Exp. 2017, 32, e2600. [Google Scholar] [CrossRef]
- Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int. J. Mol. Sci. 2021, 22, 5717. [Google Scholar] [CrossRef]
- Paquot, N. The metabolism of alcohol. Rev. Med. Liege 2019, 74, 265–267. [Google Scholar]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and Its Metabolites: Update on Toxicity, Benefits, and Focus on Immunomodulatory Effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, T.; Kusumanchi, P.; Han, S.; Yang, Z.; Liangpunsakul, S. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, M.; Matsumoto, A.; Wang, Y.; Thompson, D.C.; Vasiliou, V. Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis. Adv. Exp. Med. Biol. 2018, 1032, 37–53. [Google Scholar]
- Anni, H.; Pristatsky, P.; Israel, Y. Binding of Acetaldehyde to a Glutathione Metabolite: Mass Spectrometric Characterization of an Acetaldehyde-Cysteinylglycine Conjugate. Alcohol. Clin. Exp. Res. 2003, 27, 1613–1621. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2023, 33, 151. [Google Scholar] [CrossRef]
- Franklin, C.C.; Backos, D.S.; Mohar, I.; White, C.C.; Forman, H.J.; Kavanagh, T.J. Structure, Function, and Post-Translational Regulation of the Catalytic and Modifier Subunits of Glutamate Cysteine Ligase. Mol. Asp. Med. 2009, 30, 86–98. [Google Scholar] [CrossRef]
- Bajic, V.P.; Van Neste, C.; Obradovic, M.; Zafirovic, S.; Radak, D.; Bajic, V.B.; Essack, M.; Isenovic, E.R. Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. Oxidative Med. Cell. Longev. 2019, 2019, 5028181. [Google Scholar] [CrossRef] [PubMed]
- Guneidy, R.A.; Zaki, E.R.; Gad, A.A.M.; Saleh, N.S.E.-D.; Shokeer, A. Evaluation of Phenolic Content Diversity along with Antioxidant/Pro-Oxidant, Glutathione Transferase Inhibition, and Cytotoxic Potential of Selected Commonly Used Plants. Prev. Nutr. Food Sci. 2022, 27, 282–298. [Google Scholar] [CrossRef]
- Matsufuji, Y.; Yamamoto, K.; Yamauchi, K.; Mitsunaga, T.; Hayakawa, T.; Nakagawa, T. Novel Physiological Roles for Glutathione in Sequestering Acetaldehyde to Confer Acetaldehyde Tolerance in Saccharomyces Cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97, 297–303. [Google Scholar] [CrossRef]
- Singh, S.; Brocker, C.; Koppaka, V.; Chen, Y.; Jackson, B.C.; Matsumoto, A.; Thompson, D.C.; Vasiliou, V. Aldehyde Dehydrogenases in Cellular Responses to Oxidative/Electrophilicstress. Free Radic. Biol. Med. 2013, 56, 89–101. [Google Scholar] [CrossRef]
- Kera, Y.; Kiriyama, T.; Komura, S. Conjugation of Acetaldehyde with Cysteinylglycine, the First Metabolite in Glutathione Breakdown by Gamma-Glutamyltranspeptidase. Agents Actions 1985, 17, 48–52. [Google Scholar] [CrossRef] [PubMed]
- The Ministry of Food and Drug Safety in Korea. Guidelines for Human Clinical Trials of Hangover Cure Claims; The Ministry of Food and Drug Safety in Korea: Cheongju, Republic of Korea, 2023. [Google Scholar]
- The Ministry of Food and Drug Safety in Korea. Food Additives Code; The Ministry of Food and Drug Safety in Korea: Cheongju, Republic of Korea, 2024. [Google Scholar]
- Lapenna, D. Glutathione and Glutathione-Dependent Enzymes: From Biochemistry to Gerontology and Successful Aging. Ageing Res. Rev. 2023, 92, 102066. [Google Scholar] [CrossRef] [PubMed]
- Umansky, C.; Morellato, A.E.; Rieckher, M.; Scheidegger, M.A.; Martinefski, M.R.; Fernández, G.A.; Pak, O.; Kolesnikova, K.; Reingruber, H.; Bollini, M.; et al. Endogenous Formaldehyde Scavenges Cellular Glutathione Resulting in Redox Disruption and Cytotoxicity. Nat. Commun. 2022, 13, 745. [Google Scholar] [CrossRef]
- Exner, R.; Wessner, B.; Manhart, N.; Roth, E. Therapeutic Potential of Glutathione. Wien. Klin. Wochenschr. 2000, 112, 610–616. [Google Scholar]
- Dickinson, D.A.; Forman, H.J. Glutathione in Defense and Signaling. Ann. N. Y. Acad. Sci. 2002, 973, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Setshedi, M.; Wands, J.R.; de la Monte, S.M. Acetaldehyde Adducts in Alcoholic Liver Disease. Oxid. Med. Cell Longev. 2010, 3, 178–185. [Google Scholar] [CrossRef]
- Tuma, D.J.; Casey, C.A. Dangerous Byproducts of Alcohol Breakdown—Focus on Adducts. Alcohol. Res. Health 2003, 27, 285. [Google Scholar]
- Nagasawa, H.T.; Valentekovich, R.J.; Nagasawa, S.G.; Nagasawa, R.H. Sequestration and Elimination of Toxic Aldehydes. Chem. Res. Toxicol. 2020, 33, 764–768. [Google Scholar] [CrossRef]
- Kera, Y.; Komura, S.; Kiriyama, T.; Inoue, K. Effects of Gamma-Glutamyltranspeptidase Inhibitor and Reduced Glutathione on Renal Acetaldehyde Levels in Rats. Biochem. Pharmacol. 1985, 34, 3781–3783. [Google Scholar] [CrossRef]
- Jeong, I.-K.; Han, A.; Jun, J.E.; Hwang, Y.-C.; Ahn, K.J.; Chung, H.Y.; Kang, B.S.; Choung, S.-Y. A Compound Containing Aldehyde Dehydrogenase Relieves the Effects of Alcohol Consumption and Hangover Symptoms in Healthy Men: An Open-Labeled Comparative Study. Pharmaceuticals 2024, 17, 1087. [Google Scholar] [CrossRef]
Components | Contents (%, wb) |
---|---|
Moisture | 4.1 |
Total carbohydrate | 2.13 |
Total fat | 0.07 |
Protein | 72.01 |
Ash | 21.69 |
Total Contents | 100 |
Total Glutathione | 21.25 (%, wb) |
Arsenic (not more than 2 ppm) | <2 |
Heavy metals (not more than 20 ppm) | <20 |
Total plate count (not more than 3000/g) | <5 |
Mold and Yeast (not more than 100/g) | <5 |
Coliform bacteria | Negative |
Salmonella | Negative |
Staphylococcus aureus | Negative |
Bacillus cereus (not more then 100/g) | <5 |
E. coli | Negative |
Sequence | Total | ||||
---|---|---|---|---|---|
Sequence A | Sequence B | p-Value | |||
(n = 19) | (n = 17) | (n = 36) | |||
Age (Years) | Mean ± SD | 29.63 ± 4.70 | 30.06 ± 5.72 | 29.83 ± 5.14 | 0.8073 † |
Min, Max | 21.00, 38.00 | 21.00, 40.00 | 21.00, 40.00 | ||
Height (cm) | Mean ± SD | 129.63 ± 4.70 | 130.06 ± 5.72 | 171.21 ± 6.67 | 0.5673 † |
Min, Max | |||||
Weight (kg) | Mean ± SD | 65.37 ± 6.05 | 65.11 ± 9.33 | 65.24 ± 7.66 | 0.9199 † |
Min, Max | 55.50, 74.90 | 48.70, 78.00 | 48.70, 78.00 | ||
BMI (kg/m2) | Mean ± SD | 22.46 ± 1.89 | 21.95 ± 2.15 | 22.22 ± 2.00 | 0.4483 † |
Min, Max | 19.30, 24.70 | 18.70, 24.80 | 18.70, 24.80 | ||
Sex n (%) | Male | 16 (84.21) | 13 (76.47) | 29 (80.56) | 0.4335 ‡ |
Female | 3 (15.79) | 4 (23.53) | 7 (19.44) | ||
Fertility n (%) | Yes | 3 (15.79) | 4 (23.53) | 7 (19.44) | - |
No | 0 (0.00) | 0 (0.00) | 0 (0.00) | ||
Exercise n (%) | No | 6 (31.58) | 6 (35.29) | 12 (33.33) | 0.2598 ¶ |
1–2 per week | 3 (15.79) | 7 (41.18) | 10 (27.78) | ||
3–4 per week | 8 (42.11) | 3 (17.65) | 11 (30.56) | ||
5–6 per week | 1 (5.26) | 1 (5.88) | 2 (5.56) | ||
Every day | 1 (5.26) | 0 (0.00) | 1 (2.78) | ||
Smoking n (%) | Current smoker | 5 (26.32) | 5 (29.41) | 10 (27.78) | 0.0764 ¶ |
Ex-smoker | 0 (0.00) | 3 (17.65) | 3 (8.33) | ||
Non-smoker | 14 (73.68) | 9 (52.94) | 23 (63.89) |
Treatment | p-Value † | ||
---|---|---|---|
GSH | Placebo | ||
(n = 36) | (n = 36) | ||
Vital signs | |||
SBP (mmHg) | 119.58 ± 9.12 | 118.94 ± 10.93 | 0.6920 |
DBP (mmHg) | 70.39 ± 8.69 | 68.33 ± 8.55 | 0.0934 |
PR (BPM) | 65.75 ± 8.60 | 65.53 ± 7.66 | 0.8503 |
Laboratory tests | |||
AST (IU/L) | 20.47 ± 25.40 | 16.25 ± 5.30 | 0.3058 |
ALT (IU/L) | 16.39 ± 11.76 | 15.53 ± 9.43 | 0.6837 |
Total bilirubin (mg/dL) | 0.75 ± 0.23 | 0.71 ± 0.24 | 0.2557 |
ALP (IU/L) | 60.53 ± 18.72 | 60.75 ± 19.55 | 0.7893 |
γ-GTP (U/L) | 20.72 ± 19.42 | 20.58 ± 16.57 | 0.8748 |
BUN (mg/dL) | 12.00 ± 2.12 | 11.73 ± 2.19 | 0.4489 |
Creatinine (mg/dL) | 0.80 ± 0.11 | 0.80 ± 0.14 | 0.6722 |
Glucose (mg/dL) | 87.94 ± 5.68 | 88.83 ± 5.68 | 0.2721 |
Uric acid (mg/dL) | 5.65 ± 1.48 | 5.55 ± 1.38 | 0.1823 |
Treatment | GMR (90% CI) | ||||
---|---|---|---|---|---|
GSH | Placebo | p-Value † | |||
(n = 36) | (n = 36) | ||||
Alcohol | Cmax (%-10−2) | 6.53 ± 2.69 | 7.09 ± 1.93 | 0.8904 (0.7627–1.0395) | 0.3949 |
AUClast (%-10−2·h) | 26.62 ± 12.61 | 30.24 ± 11.95 | 0.8226 (0.6714–1.0077) | 0.2136 | |
Tmax (h) | 0.50 [0.25–2.00] | 0.50 [0.25–2.00] | - | - | |
Acetaldehyde | Cmax (%-10−4) | 10.77 ± 9.34 | 22.70 ± 14.21 | 0.4764 (0.3668–0.6187) | 0.0002 |
AUClast (%-10−4·h) | 48.80 ± 36.20 | 99.54 ± 62.05 | 0.5158 (0.3815–0.6975) | 0.0003 | |
Tmax (h) | 0.50 [0.25–4.00] | 0.50 [0.25–4.00] | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Han, H.; Park, S.; Sa, S.; Chung, W.; Lee, B.Y. Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial. Nutrients 2024, 16, 3262. https://doi.org/10.3390/nu16193262
Song G, Han H, Park S, Sa S, Chung W, Lee BY. Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial. Nutrients. 2024; 16(19):3262. https://doi.org/10.3390/nu16193262
Chicago/Turabian StyleSong, Gunju, Hyein Han, Seyoung Park, Soonok Sa, Wookyung Chung, and Boo Yong Lee. 2024. "Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial" Nutrients 16, no. 19: 3262. https://doi.org/10.3390/nu16193262
APA StyleSong, G., Han, H., Park, S., Sa, S., Chung, W., & Lee, B. Y. (2024). Effects of GSH on Alcohol Metabolism and Hangover Improvement in Humans: A Randomized Double-Blind Placebo-Controlled Crossover Clinical Trial. Nutrients, 16(19), 3262. https://doi.org/10.3390/nu16193262