Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course
Abstract
:1. Introduction
1.1. Terrestrial Animal Source Foods (TASFs)
- eggs and egg products;
- milk and dairy products;
- meat and meat products;
- foods from hunting and wildlife farming;
- insects and insect products.
1.2. TASFs in the Life Course and Contributions to Health
1.2.1. Animal Source Foods in Hominin Evolution
1.2.2. TASFs in the Life Course
2. Methods
- Population—generally healthy populations categorized by specific life course stages with special nutrient needs. Studies were eligible if the sample populations met the following criteria for life course phase: (1) pregnant and lactating women, including fetuses and breastfeeding children up to six months of age; (2) infants and young children (6–23 months); (3) children and adolescents (2–18 years); and (4) older adults (65 years or older). Some studies reviewed encompassed samples from multiple life course phases, and their findings were discussed in the relevant sections.
- Intervention/exposure—intake of TASFs and/or their products at various levels (e.g., high versus low intake; presence versus absence; one TASF type versus another TASF type). Preference was given to experimental trials to minimize risk of bias, though high-quality observational studies were included if potential confounding factors were accounted for in analyses.
- Comparator—control group (generally represented as the usual diet); lower levels of TASFs; higher levels of TASFs; plant-based foods or other dietary patterns.
- Outcome—health outcomes including nutrition were assessed, with variations based on life course stages, including anthropometric measurements, growth indicators, biomarkers of nutritional and health status (such as hemoglobin levels and nutrient biomarkers), measures of cognitive and neurological function and development, signs of food allergies and hyper-sensitivities, rates of infectious and chronic diseases, and all-cause and cause-specific mortality rates. Effect sizes with 95% confidence intervals were included when available. Studies dating from 2000 to the present were eligible; high priority was given to studies conducted in the past five years. The criteria for exclusion were the opposite of those for inclusion. We excluded studies examining immunocompromised individuals; populations requiring therapeutic diets; medical case reports; aquatic foods only; isolated TASF components; fortified TASF products; and TASF ingredients in processed foods.
3. Results
TASFs 2 | Pregnancy & Lactation | Infants & Young Children 6–23 MO | Children 2–18 Y | Older Adults (65+ Y) |
---|---|---|---|---|
Health Outcomes | Health Outcomes | Health Outcomes | Health Outcomes | |
TASF, in general | 🡫 Maternal zinc deficiency [34] | 🡩 LAZ [35,36,37,38] 🡩 WAZ [32,34,35] 🡩 WHZ [38] 🡩 Zinc and retinol status [38] | ||
Dairy | 🡫 LBW, SGA/🡩 WAZ [36,37,38,39,40] † 🡩 Birth length/LAZ [36,37,39] † 🡩 Head circumference [38,41] † 🡩 LGA [31] | 🡩 LAZ [37] | 🡩 HAZ [42,43,44,45] 🡫 Obesity [44,45] 🡩 Bone mineral content and density [42,46] Milk 🡩 B12 concentrations [43] 🡩 MUAC and arm muscle area [43] 🡫 Overweight [43,44,47] 🡫 Obesity [43,44,47] | 🡫 Sarcopenia/🡩 Skeletal muscle mass [48,49] 🡩 Cognitive outcomes [50] 🡫 Risk of dementia/Alzheimer’s disease [51,52,53] Whole milk 🡩 Risk of prostate cancer [32] Low-fat milk 🡩 Risk of prostate cancer [32] Butter 🡩 Risk of prostate cancer [32] |
Eggs | 🡩 LAZ [37] | 🡩 Bone mineral content [53] † | ||
Red meat | 🡫 Maternal risk of anemia [54] 🡩 Maternal risk for gestational diabetes [33] | 🡩 LAZ [32,34] | 🡩 Cognitive outcomes [55] † 🡩 B12 concentrations [56,57] † 🡩 MUAC [55] † | Lean red meat 🡩 Skeletal muscle mass [58] |
Insects and insect products | Caterpillar 🡩 Hgb concentrations [59] † | Honey 🡩 LAZ [60] † 🡩 WAZ [60] † 🡩 WHZ [60] † |
3.1. Pregnant and Lactating Women, Including Fetuses and Breastfeeding Children up to Six Months of Age
3.2. Infants and Young Children (6–23 Months)
3.3. Children and Adolescents (2–18 Years)
3.4. Older Adults (Age 65 and Older)
4. Special Considerations
4.1. Food Sensitivities and Allergies
4.2. TASFs and Human Gut Microbiome
5. Discussion and Synthetic Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization; International Fund for Agricultural Development; United Nations International Children’s Emergency Fund; World Food Programme; World Health Organization. The State of Food Security and Nutrition in the World 2024—Financing to End Hunger, Food Insecurity, and Malnutrition in All Its Forms; The State of Food Security and Nutrition in the World (SOFI): Rome, Italy, 2024. [Google Scholar] [CrossRef]
- World Health Organization. Infant and Young Child Feeding; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding (accessed on 18 January 2022).
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Global Micronutrient Deficiencies Research Group. Micronutrient Deficiencies among Preschool-Aged Children and Women of Reproductive Age Worldwide: A Pooled Analysis of Individual-Level Data from Population-Representative Surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Non Communicable Diseases; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 27 June 2024).
- Food and Agriculture Organization. Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes—An Evidence and Policy Overview on the State of Knowledge and Gaps; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Rueda Garcia, A.M.; Fracassi, P.; Scherf, B.; Hamon, M.; Iannotti, L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock System. 2024; Under Review. [Google Scholar]
- Food and Agriculture Organization. Food-Based Dietary Guidelines; FAO: Rome, Italy, 2024; Available online: http://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/ (accessed on 10 September 2024).
- Eaton, J.C.; Iannotti, L.L. Genome–Nutrition Divergence: Evolving Understanding of the Malnutrition Spectrum. Nutr. Rev. 2017, 75, 934–950. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, R.; Joordens, J.; Muskiet, F. A Multidisciplinary Reconstruction of Palaeolithic Nutrition That Holds Promise for the Prevention and Treatment of Diseases of Civilisation. Nutr. Res. Rev. 2012, 25, 96–129. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.S. Animal Source Foods and Human Health during Evolution. J. Nutr. 2003, 133, 3893S–3897S. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.B.; Bunn, H.T. Meat-Eating and Human Evolution; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Pontzer, H.; Wood, B.M. Effects of Evolution, Ecology, and Economy on Human Diet: Insights from Hunter-Gatherers and Other Small-Scale Societies. Annu. Rev. Nutr. 2021, 41, 363–385. [Google Scholar] [CrossRef]
- Turner, B.L.; Thompson, A.L. Beyond the Paleolithic Prescription: Incorporating Diversity and Flexibility in the Study of Human Diet Evolution. Nutr. Rev. 2013, 71, 501–510. [Google Scholar] [CrossRef]
- Marlowe, F.W. Hunter-Gatherers and Human Evolution. Evol. Anthropol. Issues News Rev. 2005, 14, 54–67. [Google Scholar] [CrossRef]
- Iannotti, L.L.; Boshara, A.I.; Barbieri, W.A.; Fracassi, P. Just Change: Achieving Sustainable, Healthy Diets with Nutrition Equity. One Earth 2023, 6, 449–454. [Google Scholar] [CrossRef]
- Broadhurst, C.L.; Wang, Y.; Crawford, M.A.; Cunnane, S.C.; Parkington, J.E.; Schmidt, W.F. Brain-Specific Lipids from Marine, Lacustrine, or Terrestrial Food Resources: Potential Impact on Early African Homo Sapiens. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 131, 653–673. [Google Scholar] [CrossRef]
- Burini, R.C.; Leonard, W.R. The Evolutionary Roles of Nutrition Selection and Dietary Quality in the Human Brain Size and Encephalization. Nutrire 2018, 43, 19. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Crawford, M.A. Energetic and Nutritional Constraints on Infant Brain Development: Implications for Brain Expansion during Human Evolution. J. Hum. Evol. 2014, 77, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, R.S.; Luxwolda, M.F.; Dijck-Brouwer, D.A.J.; Eaton, S.B.; Crawford, M.A.; Cordain, L.; Muskiet, F.A.J. Estimated Macronutrient and Fatty Acid Intakes from an East African Paleolithic Diet. Br. J. Nutr. 2010, 104, 1666–1687. [Google Scholar] [CrossRef] [PubMed]
- Mann, N.J. A Brief History of Meat in the Human Diet and Current Health Implications. Meat Sci. 2018, 144, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodrigo, M.; Pickering, T.R.; Diez-Martín, F.; Mabulla, A.; Musiba, C.; Trancho, G.; Baquedano, E.; Bunn, H.T.; Barboni, D.; Santonja, M.; et al. Earliest Porotic Hyperostosis on a 1.5-Million-Year-Old Hominin, Olduvai Gorge, Tanzania. PLoS ONE 2012, 7, e46414. [Google Scholar] [CrossRef]
- Henneberg, M.; Sarafis, V.; Mathers, K. Human Adaptations to Meat Eating. Hum. Evol. 1998, 13, 229–234. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Hernell, O. Iron: Physiology, Dietary Sources, and Requirements. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 39–46. [Google Scholar] [CrossRef]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [PubMed]
- Chesney, R.W.; Helms, R.A.; Christensen, M.; Budreau, A.M.; Han, X.; Sturman, J.A. The Role of Taurine in Infant Nutrition. Adv. Exp. Med. Biol. 1998, 442, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Ripps, H.; Shen, W. Review: Taurine: A “Very Essential” Amino Acid. Mol. Vis. 2012, 18, 2673–2686. [Google Scholar]
- Emken, E.A.; Adlof, R.O.; Rohwedder, W.K.; Gulley, R.M. Comparison of Linolenic and Linoleic Acid Metabolism in Man: Influence of Dietary Linoleic Acid; American Oil Chemists’ Society: Urbana, IL, USA, 1993; Available online: https://scholar.google.com/scholar_lookup?title=Comparison+of+linolenic+and+linoleic+acid+metabolism+in+man%3A+influence+of+dietary+linoleic+acid&author=Emken%2C+E.A.+%28National+Center+for+Agricultural+Utilization+Research%2C+Peoria%2C+IL.%29&publication_year=1993 (accessed on 3 February 2022).
- Armelagos, G.J.; Sirak, K.; Werkema, T.; Turner, B.L. Analysis of Nutritional Disease in Prehistory: The Search for Scurvy in Antiquity and Today. Int. J. Paleopathol. 2014, 5, 9–17. [Google Scholar] [CrossRef]
- Iannotti, L.L.; Gyimah, E.A.; Reid, M.; Chapnick, M.; Cartmill, M.K.; Lutter, C.K.; Hilton, C.; Gildner, T.E.; Quinn, E.A. Child Dietary Patterns in Homo Sapiens Evolution: A Systematic Review. Evol. Med. Public Health 2022, 10, eoac027. [Google Scholar] [CrossRef]
- Sub-Committee on Nutrition. 4th Report—The World Nutrition Situation: Nutrition throughout the Life Cycle; International Food Policy Research Institute: Washington, DC, USA, 2000; p. 144. [Google Scholar]
- Pérez-Roncero, G.R.; López-Baena, M.T.; Chedraui, P.; Pérez-López, F.R. The Effect of Consuming Milk and Related Products during Human Pregnancy over Birth Weight and Perinatal Outcomes: A Systematic Review and Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 251, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wu, D.; Gao, S.; Zhou, D.; Zeng, X.; Yao, Y.; Xu, Y.; Zeng, G. The Association between Dairy Products Consumption and Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2022, 129, 1714–1731. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Zeng, M.; Jiao, Y.; Li, Y.; Xue, C.; Liu, G.; Wang, Z.; Qin, F.; He, Z.; Chen, J. Western Dietary Patterns, Foods, and Risk of Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2021, 12, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Berhe, K.; Gebrearegay, F.; Gebremariam, H. Prevalence and Associated Factors of Zinc Deficiency among Pregnant Women and Children in Ethiopia: A Systematic Review and Meta-Analysis. BMC Public Health 2019, 19, 1663. [Google Scholar] [CrossRef] [PubMed]
- Eaton, J.C.; Rothpletz-Puglia, P.; Dreker, M.R.; Iannotti, L.; Lutter, C.; Kaganda, J.; Rayco-Solon, P. Effectiveness of Provision of Animal-source Foods for Supporting Optimal Growth and Development in Children 6 to 59 Months of Age. Cochrane Database Syst. Rev. 2019, 2, CD012818. [Google Scholar] [CrossRef]
- Shapiro, M.J.; Downs, S.M.; Swartz, H.J.; Parker, M.; Quelhas, D.; Kreis, K.; Kraemer, K.; West, K.P., Jr.; Fanzo, J. A Systematic Review Investigating the Relation Between Animal-Source Food Consumption and Stunting in Children Aged 6–60 Months in Low and Middle-Income Countries. Adv. Nutr. 2019, 10, 827–847. [Google Scholar] [CrossRef] [PubMed]
- Zaharia, S.; Ghosh, S.; Shrestha, R.; Manohar, S.; Thorne-Lyman, A.; Bashaasha, B.; Kabunga, N.; Gurung, S.; Namirembe, G.; Appel, K.; et al. Sustained Intake of Animal-Sourced Foods Is Associated with Less Stunting in Young Children. Nat. Food 2021, 2, 246–254. [Google Scholar] [CrossRef]
- Zerfu, T.A.; Nguyen, G.; Duncan, A.J.; Baltenweck, I.; Brown, F.; Iannotti, L.L.; McNeill, G. Associations between Livestock Keeping, Morbidity and Nutritional Status of Children and Women in Low- and Middle-Income Countries: A Systematic Review. Nutr. Res. Rev. 2023, 36, 526–543. [Google Scholar] [CrossRef]
- Achón, M.; Úbeda, N.; García-González, Á.; Partearroyo, T.; Varela-Moreiras, G. Effects of Milk and Dairy Product Consumption on Pregnancy and Lactation Outcomes: A Systematic Review. Adv. Nutr. 2019, 10 (Suppl. 2), S74–S87. [Google Scholar] [CrossRef]
- Heppe, D.H.M.; van Dam, R.M.; Willemsen, S.P.; den Breeijen, H.; Raat, H.; Hofman, A.; Steegers, E.A.P.; Jaddoe, V.W.V. Maternal Milk Consumption, Fetal Growth, and the Risks of Neonatal Complications: The Generation R Study. Am. J. Clin. Nutr. 2011, 94, 501–509. [Google Scholar] [CrossRef]
- Hrolfsdottir, L.; Rytter, D.; Hammer Bech, B.; Brink Henriksen, T.; Danielsen, I.; Steingrimsdottir, L.; Olsen, S.F.; Halldorsson, T.I. Maternal Milk Consumption, Birth Size and Adult Height of Offspring: A Prospective Cohort Study with 20 Years of Follow-Up. Eur. J. Clin. Nutr. 2013, 67, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- de Beer, H. Dairy Products and Physical Stature: A Systematic Review and Meta-Analysis of Controlled Trials. Econ. Hum. Biol. 2012, 10, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.G.; Murphy, S.P.; Gewa, C.; Grillenberger, M.; Bwibo, N.O. Meat Supplementation Improves Growth, Cognitive, and Behavioral Outcomes in Kenyan Children. J. Nutr. 2007, 137, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, K.; Zhang, L.-L.; Rizzoli, R.; Guo, Y.-X.; Zhou, Y.; Shi, Y.-J.; Su, H.-W.; Liu, B.; Qin, L.-Q. The Effects of Dairy Product Supplementation on Bone Health Indices in Children Aged 3 to 18 Years: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1187–1196. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Zhang, D. Association of Dairy Products Consumption with Risk of Obesity in Children and Adults: A Meta-Analysis of Mainly Cross-Sectional Studies. Ann. Epidemiol. 2016, 26, 870–882.e2. [Google Scholar] [CrossRef]
- Lu, L.; Xun, P.; Wan, Y.; He, K.; Cai, W. Long-Term Association between Dairy Consumption and Risk of Childhood Obesity: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Eur. J. Clin. Nutr. 2016, 70, 414–423. [Google Scholar] [CrossRef]
- Babio, N.; Becerra-Tomás, N.; Nishi, S.K.; López-González, L.; Paz-Graniel, I.; García-Gavilán, J.; Schröder, H.; Martín-Calvo, N.; Salas-Salvadó, J. Total Dairy Consumption in Relation to Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. Obes. Rev. 2022, 23 (Suppl. 1), e13400. [Google Scholar] [CrossRef] [PubMed]
- Kouvelioti, R.; Josse, A.R.; Klentrou, P. Effects of Dairy Consumption on Body Composition and Bone Properties in Youth: A Systematic Review. Curr. Dev. Nutr. 2017, 1, e001214. [Google Scholar] [CrossRef]
- Vanderhout, S.M.; Aglipay, M.; Torabi, N.; Jüni, P.; da Costa, B.R.; Birken, C.S.; O’Connor, D.L.; Thorpe, K.E.; Maguire, J.L. Whole Milk Compared with Reduced-Fat Milk and Childhood Overweight: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2020, 111, 266–279. [Google Scholar] [CrossRef]
- Cuesta-Triana, F.; Verdejo-Bravo, C.; Fernández-Pérez, C.; Martín-Sánchez, F.J. Effect of Milk and Other Dairy Products on the Risk of Frailty, Sarcopenia, and Cognitive Performance Decline in the Elderly: A Systematic Review. Adv. Nutr. 2019, 10 (Suppl. 2), S105–S119. [Google Scholar] [CrossRef]
- Bermejo-Pareja, F.; Ciudad-Cabañas, M.J.; Llamas-Velasco, S.; Tapias-Merino, E.; Hernández Gallego, J.; Hernández-Cabria, M.; Collado-Yurrita, L.; López-Arrieta, J.M. Is Milk and Dairy Intake a Preventive Factor for Elderly Cognition (Dementia and Alzheimer’s)? A Quality Review of Cohort Surveys. Nutr. Rev. 2021, 79, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kasagi, F.; Sasaki, H.; Masunari, N.; Mimori, Y.; Suzuki, G. Association between Dementia and Midlife Risk Factors: The Radiation Effects Research Foundation Adult Health Study. J. Am. Geriatr. Soc. 2003, 51, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Ohara, T.; Ninomiya, T.; Hata, J.; Yoshida, D.; Mukai, N.; Nagata, M.; Uchida, K.; Shirota, T.; Kitazono, T.; et al. Milk and Dairy Consumption and Risk of Dementia in an Elderly Japanese Population: The Hisayama Study. J. Am. Geriatr. Soc. 2014, 62, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Q.; Song, Y.; Fang, L.; Huang, L.; Sun, Y. Nutritional Factors for Anemia in Pregnancy: A Systematic Review with Meta-Analysis. Front. Public Health 2022, 10, 1041136. [Google Scholar] [CrossRef]
- Abreu, S.; Santos, P.C.; Montenegro, N.; Mota, J. Relationship between Dairy Product Intake during Pregnancy and Neonatal and Maternal Outcomes among Portuguese Women. Obes. Res. Clin. Pract. 2017, 11, 276–286. [Google Scholar] [CrossRef]
- McLean, E.D.; Allen, L.H.; Neumann, C.G.; Peerson, J.M.; Siekmann, J.H.; Murphy, S.P.; Bwibo, N.O.; Demment, M.W. Low Plasma Vitamin B-12 in Kenyan School Children Is Highly Prevalent and Improved by Supplemental Animal Source Foods. J. Nutr. 2007, 137, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Siekmann, J.H.; Allen, L.H.; Bwibo, N.O.; Demment, M.W.; Murphy, S.P.; Neumann, C.G. Kenyan School Children Have Multiple Micronutrient Deficiencies, but Increased Plasma Vitamin B-12 Is the Only Detectable Micronutrient Response to Meat or Milk Supplementation. J. Nutr. 2003, 133 (Suppl. 2), 3972S–3980S. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Dismore, L.; Hurst, C.; Robinson, S.M.; Sayer, A.A. Myoprotective Whole Foods, Muscle Health and Sarcopenia: A Systematic Review of Observational and Intervention Studies in Older Adults. Nutrients 2020, 12, E2257. [Google Scholar] [CrossRef]
- Bauserman, M.; Lokangaka, A.; Gado, J.; Close, K.; Wallace, D.; Kodondi, K.-K.; Tshefu, A.; Bose, C. A Cluster-Randomized Trial Determining the Efficacy of Caterpillar Cereal as a Locally Available and Sustainable Complementary Food to Prevent Stunting and Anaemia. Public Health Nutr. 2015, 18, 1785–1792. [Google Scholar] [CrossRef]
- Harmiyati, H.; Soejoenoes, A.; Wahyuni, S.; Aristiati, K.; Hadisaputro, S. The Impact of Honey on Change in Nutritional Status in Children with Poor Nutrition. Belitung Nurs. J. 2017, 3, 110–119. [Google Scholar] [CrossRef]
- Allen, L.H. Pregnancy: Nutrient Requirements. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 61–67. [Google Scholar] [CrossRef]
- Barker, D.J. Maternal Nutrition, Fetal Nutrition, and Disease in Later Life. Nutrition 1997, 13, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; van Dam, R.M.; Chong, M.F.-F. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Mullany, L.C.; Hurley, K.M.; Katz, J.; Black, R.E. Nutrition and Maternal, Neonatal, and Child Health. Semin. Perinatol. 2015, 39, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K. Iron Deficiency in Pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef]
- Hacker, A.N.; Fung, E.B.; King, J.C. Role of Calcium during Pregnancy: Maternal and Fetal Needs. Nutr. Rev. 2012, 70, 397–409. [Google Scholar] [CrossRef]
- Kovacs, C.S. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol. Rev. 2016, 96, 449–547. [Google Scholar] [CrossRef]
- Generation, R. The Generation R Study; Erasmus MC: Rotterdam, The Netherlands, 2021; Available online: https://generationr.nl/researchers/ (accessed on 22 November 2021).
- Mukhopadhyay, A.; Dwarkanath, P.; Bhanji, S.; Devi, S.; Thomas, A.; Kurpad, A.V.; Thomas, T. Maternal Intake of Milk and Milk Proteins Is Positively Associated with Birth Weight: A Prospective Observational Cohort Study. Clin. Nutr. ESPEN 2018, 25, 103–109. [Google Scholar] [CrossRef]
- Bergman, N.J. Neonatal Stomach Volume and Physiology Suggest Feeding at 1-h Intervals. Acta Paediatr. 2013, 102, 773–777. [Google Scholar] [CrossRef]
- Brown, K.H.; Lutter, C.K. Potential Role of Processed Complementary Foods in the Improvement of Early Childhood Nutrition in Latin America. Food Nutr. Bull. 2000, 21, 5–11. [Google Scholar] [CrossRef]
- Iannotti, L.L. The Benefits of Animal Products for Child Nutrition in Developing Countries. Rev. Sci. Tech. Int. Off. Epizoot. 2018, 37, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Allen, L.H. Nutritional Importance of Animal Source Foods. J. Nutr. 2003, 133 (Suppl. 2), 3932S–3935S. [Google Scholar] [CrossRef] [PubMed]
- Ackland, M.L.; Michalczyk, A.A. Zinc and Infant Nutrition. Arch. Biochem. Biophys. 2016, 611, 51–57. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guideline for Complementary Feeding of Infants and Young Children 6–23 Months of Age; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Obbagy, J.E.; English, L.K.; Psota, T.L.; Wong, Y.P.; Butte, N.F.; Dewey, K.G.; Fox, M.K.; Greer, F.R.; Krebs, N.F.; Scanlon, K.S.; et al. Complementary Feeding and Micronutrient Status: A Systematic Review. Am. J. Clin. Nutr. 2019, 109 (Suppl. 7), 852S–871S. [Google Scholar] [CrossRef]
- Black, M.M.; Walker, S.P.; Fernald, L.C.H.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Lancet Early Childhood Development Series Steering Committee; et al. Early Childhood Development Coming of Age: Science through the Life Course. Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef]
- Goyal, M.S.; Iannotti, L.L.; Raichle, M.E. Brain Nutrition: A Life Span Approach. Annu. Rev. Nutr. 2018, 38, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Suchdev, P.S.; Boivin, M.J.; Forsyth, B.W.; Georgieff, M.K.; Guerrant, R.L.; Nelson, C.A. Assessment of Neurodevelopment, Nutrition, and Inflammation From Fetal Life to Adolescence in Low-Resource Settings. Pediatrics 2017, 139 (Suppl. 1), S23–S37. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Derbyshire, E. Adolescents: Requirements for Growth and Optimal Health. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 23–32. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Lappe, J.; O’Brien, K.O.; Wang, D.D.; Sahni, S.; Weaver, C.M. Dairy Intake and Bone Health across the Lifespan: A Systematic Review and Expert Narrative. Crit. Rev. Food Sci. Nutr. 2020, 61, 3661–3707. [Google Scholar] [CrossRef]
- Golden, N.H.; Abrams, S.A.; Committee on Nutrition. Optimizing Bone Health in Children and Adolescents. Pediatrics 2014, 134, e1229–e1243. [Google Scholar] [CrossRef]
- Brabin, L.; Brabin, B.J. The Cost of Successful Adolescent Growth and Development in Girls in Relation to Iron and Vitamin A Status. Am. J. Clin. Nutr. 1992, 55, 955–958. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Regalbuto, C.; Vinci, F.; Porri, D.; Verduci, E.; Mameli, C.; Zuccotti, G.V. The Role of Fetal, Infant, and Childhood Nutrition in the Timing of Sexual Maturation. Nutrients 2021, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Marín, C.; Mora-Plazas, M.; Villamor, E. Higher Childhood Red Meat Intake Frequency Is Associated with Earlier Age at Menarche123. J. Nutr. 2016, 146, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Walden, N.; Zimmerman, R.; Crenshaw, D.; Iannotti, L. Nutrition and Food Security in Adolescence. In Encyclopedia of Adolescence; Elsevier: Amsterdam, The Netherlands, 2024; pp. 251–259. [Google Scholar]
- Coheley, L.M.; Kindler, J.M.; Laing, E.M.; Oshri, A.; Hill Gallant, K.M.; Warden, S.J.; Peacock, M.; Weaver, C.M.; Lewis, R.D. Whole Egg Consumption and Cortical Bone in Healthy Children. Osteoporos. Int. 2018, 29, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Nickols-Richardson, S.M.; Khan, N.; Liu, J.; Liu, R.; Clarke, C. Impact of Beef and Beef Product Intake on Cognition in Children and Young Adults: A Systematic Review. Nutrients 2019, 11, 1797. [Google Scholar] [CrossRef]
- Gewa, C.A.; Weiss, R.E.; Bwibo, N.O.; Whaley, S.; Sigman, M.; Murphy, S.P.; Harrison, G.; Neumann, C.G. Dietary Micronutrients Are Associated with Higher Cognitive Function Gains among Primary School Children in Rural Kenya. Br. J. Nutr. 2009, 101, 1378–1387. [Google Scholar] [CrossRef]
- Hulett, J.L.; Weiss, R.E.; Bwibo, N.O.; Galal, O.M.; Drorbaugh, N.; Neumann, C.G. Animal Source Foods Have a Positive Impact on the Primary School Test Scores of Kenyan Schoolchildren in a Cluster-Randomised, Controlled Feeding Intervention Trial. Br. J. Nutr. 2014, 111, 875–886. [Google Scholar] [CrossRef]
- Whaley, S.E.; Sigman, M.; Neumann, C.; Bwibo, N.; Guthrie, D.; Weiss, R.E.; Alber, S.; Murphy, S.P. The Impact of Dietary Intervention on the Cognitive Development of Kenyan School Children. J. Nutr. 2003, 133, 3965S–3971S. [Google Scholar] [CrossRef]
- Neumann, C.G.; Jiang, L.; Weiss, R.E.; Grillenberger, M.; Gewa, C.A.; Siekmann, J.H.; Murphy, S.P.; Bwibo, N.O. Meat Supplementation Increases Arm Muscle Area in Kenyan Schoolchildren. Br. J. Nutr. 2013, 109, 1230–1240. [Google Scholar] [CrossRef]
- Neumann, C.G.; Bwibo, N.O.; Jiang, L.; Weiss, R.E. School Snacks Decrease Morbidity in Kenyan Schoolchildren: A Cluster Randomized, Controlled Feeding Intervention Trial. Public Health Nutr. 2013, 16, 1593–1604. [Google Scholar] [CrossRef]
- Solomons, N. Older People: Physiological Changes. In Encyclopedia of Human Nutrition, 3rd ed.; Caballero, B., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 400–404. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Slack, B.E.; Mellott, T.J. Neuroprotective Actions of Dietary Choline. Nutrients 2017, 9, E815. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.I.; Kim, I.-Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, E359. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Nutrient-Rich Meat Proteins in Offsetting Age-Related Muscle Loss. Meat Sci. 2012, 92, 174–178. [Google Scholar] [CrossRef]
- Rondanelli, M.; Perna, S.; Faliva, M.A.; Peroni, G.; Infantino, V.; Pozzi, R. Novel Insights on Intake of Meat and Prevention of Sarcopenia: All Reasons for An Adequate Consumption. Nutr. Hosp. 2015, 32, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Kraenzlin, M.; Levasseur, R.; Warren, M.; Whiting, S. Dairy in Adulthood: From Foods to Nutrient Interactions on Bone and Skeletal Muscle Health. J. Am. Coll. Nutr. 2013, 32, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary DHA and Health: Cognitive Function Ageing. Nutr. Res. Rev. 2016, 29, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization; World Health Organization. Ad Hoc Joint FAO/WHO Expert Consultation on Risk Assessment of Food Allergens—Part 1: Review and Validation of Codex Priority Allergen List through Risk Assessment; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/events/detail/2020/11/30/default-calendar/ad-hoc-joint-fao-who-expert-consultation-on-risk-assessment-of-food-allergens-part1 (accessed on 19 January 2022).
- European Food Safety Authority. Scientific Opinion on Lactose Thresholds in Lactose Intolerance and Galactosaemia. EFSA J. 2010, 8, 1777. [Google Scholar] [CrossRef]
- Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on Lactose Malabsorption and Intolerance: Pathogenesis, Diagnosis and Clinical Management. Gut 2019, 68, 2080–2091. [Google Scholar] [CrossRef]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, Regional, and Global Estimates for Lactose Malabsorption in Adults: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef]
- Flom, J.D.; Sicherer, S.H. Epidemiology of Cow’s Milk Allergy. Nutrients 2019, 11, 1051. [Google Scholar] [CrossRef]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr. Allergy Immunol. 2010, 21 (Suppl. 21), 1–125. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.A.; Wells, R.D.; Davis, C.M. Egg Hypersensitivity in Review. Ocean. Publ. Inc. 2013, 34, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, M.; Berni Canani, R. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Armet, A.M.; Deehan, E.C.; O’Sullivan, A.F.; Mota, J.F.; Field, C.J.; Prado, C.M.; Lucey, A.J.; Walter, J. Rethinking Healthy Eating in Light of the Gut Microbiome. Cell Host and Microbe; Elsevier: Amsterdam, The Netherlands, 2022; pp. 764–785. [Google Scholar] [CrossRef]
- Losasso, C.; Eckert, E.M.; Mastrorilli, E.; Villiger, J.; Mancin, M.; Patuzzi, I.; Di Cesare, A.; Cibin, V.; Barrucci, F.; Pernthaler, J.; et al. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study. Front. Microbiol. 2018, 9, 317. [Google Scholar] [CrossRef]
- Matijašić, B.B.; Obermajer, T.; Lipoglavšek, L.; Grabnar, I.; Avguštin, G.; Rogelj, I. Association of Dietary Type with Fecal Microbiota in Vegetarians and Omnivores in Slovenia. Eur. J. Nutr. 2014, 53, 1051–1064. [Google Scholar] [CrossRef]
- Zimmer, J.; Lange, B.; Frick, J.S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A Vegan or Vegetarian Diet Substantially Alters the Human Colonic Faecal Microbiota. Eur. J. Clin. Nutr. 2012, 66, 53–60. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Dier Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Gao, J.; Guo, X.; Wei, W.; Li, R.; Hu, K.; Liu, X.; Jiang, W.; Liu, S.; Wang, W.; Sun, H.; et al. The Association of Fried Meat Consumption with the Gut Microbiota and Fecal Metabolites and Its Impact on Glucose Homoeostasis, Intestinal Endotoxin Levels, and Systemic Inflammation: A Randomized Controlled-Feeding Trial. Diabetes Care 2021, 44, 1970–1979. [Google Scholar] [CrossRef]
- van Soest, A.P.M.; Hermes, G.D.A.; Berendsen, A.A.M.; van de Rest, O.; Zoetendal, E.G.; Fuentes, S.; Santoro, A.; Franceschi, C.; de Groot, L.C.P.G.M.; de Vos, W.M. Associations between Pro-and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults: The Nu-Age Study. Nutrients 2020, 12, 3471. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, X.; Zhao, F.; Shi, X.; Li, H.; Li, Y.; Zhu, W.; Xu, X.; Lu, C.; Zhou, G. Meat, Dairy and Plant Proteins Alter Bacterial Composition of Rat Gut Bacteria. Sci. Rep. 2015, 5, 15220. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.M.; Pan, C.; Cantor, R.M.; Tang, W.H.W.; Garcia-Garcia, J.C.; Kurtz, I.; Hazen, S.L.; Bergeron, N.; Krauss, R.M.; Lusis, A.J. Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. mBio 2018, 9, e01604–e01618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Tang, R. Changes in Mouse Gut Microbial Community in Response to the Different Types of Commonly Consumed Meat. Microorganisms 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Xuan, B.; Jeong, Y.; Han, G.; Kim, E.B. Omega-3-Rich Fish-Oil-Influenced Mouse Gut Microbiome Shaped by Intermittent Consumption of Beef. Curr. Microbiol. 2023, 80, 119. [Google Scholar] [CrossRef]
- Partula, V.; Mondot, S.; Torres, M.J.; Kesse-Guyot, E.; Deschasaux, M.; Assmann, K.; Latino-Martel, P.; Buscail, C.; Julia, C.; Galan, P.; et al. Associations between Usual Diet and Gut Microbiota Composition: Results from the Milieu Intérieur Cross-Sectional Study. Am. J. Clin. Nutr. 2019, 109, 1472–1483. [Google Scholar] [CrossRef]
- Yu, D.; Nguyen, S.M.; Yang, Y.; Xu, W.; Cai, H.; Wu, J.; Cai, Q.; Long, J.; Zheng, W.; Shu, X.O. Long-Term Diet Quality Is Associated with Gut Microbiome Diversity and Composition among Urban Chinese Adults. Am. J. Clin. Nutr. 2021, 113, 684–694. [Google Scholar] [CrossRef]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A.; et al. The Effects of Dairy and Dairy Derivatives on the Gut Microbiota: A Systematic Literature Review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef] [PubMed]
- Firmesse, O.; Rabot, S.; Bermà dez-Humarán, L.G.; Corthier, G.; Furet, J.-P. Consumption of Camembert Cheese Stimulates Commensal Enterococci in Healthy Human Intestinal Microbiota. FEMS Microbiol. Lett. 2007, 276, 189–192. [Google Scholar] [CrossRef]
- Firmesse, O.; Alvaro, E.; Mogenet, A.; Bresson, J.L.; Lemée, R.; Le Ruyet, P.; Bonhomme, C.; Lambert, D.; Andrieux, C.; Doré, J.; et al. Fate and Effects of Camembert Cheese Micro-Organisms in the Human Colonic Microbiota of Healthy Volunteers after Regular Camembert Consumption. Int. J. Food Microbiol. 2008, 125, 176–181. [Google Scholar] [CrossRef]
- Pasolli, E.; De Filippis, F.; Mauriello, I.E.; Cumbo, F.; Walsh, A.M.; Leech, J.; Cotter, P.D.; Segata, N.; Ercolini, D. Large-Scale Genome-Wide Analysis Links Lactic Acid Bacteria from Food with the Gut Microbiome. Nat. Commun. 2020, 11, 2610. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-Microbiota-Targeted Diets Modulate Human Immune Status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on Fermented Foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.; Myrmel, L.S.; Fjære, E.; Liaset, B.; Kristiansen, K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front. Physiol. 2017, 8, 1407. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef]
- Zhang, J.; Lacroix, C.; Wortmann, E.; Ruscheweyh, H.J.; Sunagawa, S.; Sturla, S.J.; Schwab, C. Gut Microbial Beta-Glucuronidase and Glycerol/Diol Dehydratase Activity Contribute to Dietary Heterocyclic Amine Biotransformation. BMC Microbiol. 2019, 19, 99. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.C.B.; Lin, C.; Naud, N.; Tache, S.; Raymond-Letron, I.; Corpet, D.E.; Pierre, F.H. Antibiotic Suppression of Intestinal Microbiota Reduces Heme-Induced Lipoperoxidation Associated with Colon Carcinogenesis in Rats. Nutr. Cancer 2015, 67, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Ijssennagger, N.; Belzer, C.; Hooiveld, G.J.; Dekker, J.; van Mil, S.W.C.; Müller, M.; Kleerebezem, M.; van der Meer, R. Gut Microbiota Facilitates Dietary Heme-Induced Epithelial Hyperproliferation by Opening the Mucus Barrier in Colon. Proc. Natl. Acad. Sci. USA 2015, 112, 10038–10043. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Vajdi, M.; Asghari-Jafarabadi, M. Gut Microbiota-Associated Metabolite Trimethylamine N-Oxide and the Risk of Stroke: A Systematic Review and Dose-Response Meta-Analysis. Nutr. J. 2020, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, R.; Ge, X.; Han, L.; Yu, P.; Gong, X.; Meng, Q.; Zhang, Y.; Fan, H.; Zheng, L.; Liu, Z.; et al. Gut Microbe–Generated Metabolite Trimethylamine N-Oxide and the Risk of Diabetes: A Systematic Review and Dose-Response Meta-Analysis. Obes. Rev. 2019, 20, 883–894. [Google Scholar] [CrossRef]
- Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut Microbiota-Derived Metabolite Trimethylamine N-Oxide (TMAO) Potentially Increases the Risk of Obesity in Adults: An Exploratory Systematic Review and Dose-Response Meta- Analysis. Obes. Rev. 2020, 21, e12993. [Google Scholar] [CrossRef]
- Park, J.E.; Miller, M.; Rhyne, J.; Wang, Z.; Hazen, S.L. Differential Effect of Short-Term Popular Diets on TMAO and Other Cardio-Metabolic Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.M.; Milan, A.M.; Mitchell, C.J.; Gillies, N.A.; D’souza, R.F.; Zeng, N.; Ramzan, F.; Sharma, P.; Knowles, S.O.; Roy, N.C.; et al. Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO). Nutrients 2019, 11, 2207. [Google Scholar] [CrossRef] [PubMed]
- Crimarco, A.; Springfield, S.; Petlura, C.; Streaty, T.; Cunanan, K.; Lee, J.; Fielding-Singh, P.; Carter, M.M.; Topf, M.A.; Wastyk, H.C.; et al. A Randomized Crossover Trial on the Effect of Plant-Based Compared with Animal-Based Meat on Trimethylamine-N-Oxide and Cardiovascular Disease Risk Factors in Generally Healthy Adults: Study with Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 2020, 112, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Sawrey-Kubicek, L.; Bardagjy, A.S.; Houts, H.; Tang, X.; Sacchi, R.; Randolph, J.M.; Steinberg, F.M.; Zivkovic, A.M. Whole Egg Consumption Increases Plasma Choline and Betaine without Affecting TMAO Levels or Gut Microbiome in Overweight Postmenopausal Women. Nutr. Res. 2020, 78, 36–41. [Google Scholar] [CrossRef]
- Wang, Z.; Bergeron, N.; Levison, B.S.; Li, X.S.; Chiu, S.; Xun, J.; Koeth, R.A.; Lin, L.; Wu, Y.; Tang, W.H.W.; et al. Impact of Chronic Dietary Red Meat, White Meat, or Non-Meat Protein on Trimethylamine N-Oxide Metabolism and Renal Excretion in Healthy Men and Women. Eur. Heart J. 2019, 40, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Burton, K.J.; Krüger, R.; Scherz, V.; Münger, L.H.; Picone, G.; Vionnet, N.; Bertelli, C.; Greub, G.; Capozzi, F.; Vergères, G. Trimethylamine-N-Oxide Postprandial Response in Plasma and Urine Is Lower after Fermented Compared to Non-Fermented Dairy Consumption in Healthy Adults. Nutrients 2020, 12, 234. [Google Scholar] [CrossRef]
- Ji, Y.; Yin, Y.; Sun, L.; Zhang, W. The Molecular and Mechanistic Insights Based on Gut–Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. Int. J. Mol. Sci. 2020, 21, 3066. [Google Scholar] [CrossRef]
- Gregory, J.C.; Buffa, J.A.; Org, E.; Wang, Z.; Levison, B.S.; Zhu, W.; Wagner, M.A.; Bennett, B.J.; Li, L.; DiDonato, J.A.; et al. Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation. J. Biol. Chem. 2015, 290, 5647–5660. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Posma, J.M.; Kinross, J.; Wahl, E.; Ruder, E.; et al. Fat, Fibre and Cancer Risk in African Americans and Rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef]
- Rodríguez-Morató, J.; Matthan, N.R.; Liu, J.; de la Torre, R.; Chen, C.Y.O. Cranberries Attenuate Animal-Based Diet-Induced Changes in Microbiota Composition and Functionality: A Randomized Crossover Controlled Feeding Trial. J. Nutr. Biochem. 2018, 62, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Le Leu, R.K.; Winter, J.M.; Christophersen, C.T.; Young, G.P.; Humphreys, K.J.; Hu, Y.; Gratz, S.W.; Miller, R.B.; Topping, D.L.; Bird, A.R.; et al. Butyrylated Starch Intake Can Prevent Red Meat-Induced O6-Methyl-2-Deoxyguanosine Adducts in Human Rectal Tissue: A Randomised Clinical Trial. Br. J. Nutr. 2015, 114, 220–230. [Google Scholar] [CrossRef] [PubMed]
- de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut Microbiome and Health: Mechanistic Insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, L.L.; Blackmore, I.; Cohn, R.; Chen, F.; Gyimah, E.A.; Chapnick, M.; Humphries, A. Aquatic Animal Foods for Nutrition Security and Child Health. Food Nutr. Bull. 2022, 43, 127–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannotti, L.; Rueda García, A.M.; Palma, G.; Fontaine, F.; Scherf, B.; Neufeld, L.M.; Zimmerman, R.; Fracassi, P. Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients 2024, 16, 3231. https://doi.org/10.3390/nu16193231
Iannotti L, Rueda García AM, Palma G, Fontaine F, Scherf B, Neufeld LM, Zimmerman R, Fracassi P. Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients. 2024; 16(19):3231. https://doi.org/10.3390/nu16193231
Chicago/Turabian StyleIannotti, Lora, Ana María Rueda García, Giulia Palma, Fanette Fontaine, Beate Scherf, Lynnette M. Neufeld, Rachel Zimmerman, and Patrizia Fracassi. 2024. "Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course" Nutrients 16, no. 19: 3231. https://doi.org/10.3390/nu16193231
APA StyleIannotti, L., Rueda García, A. M., Palma, G., Fontaine, F., Scherf, B., Neufeld, L. M., Zimmerman, R., & Fracassi, P. (2024). Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients, 16(19), 3231. https://doi.org/10.3390/nu16193231