Investigation of the Vitamin D Metabolite Ratio (VMR) as a Marker of Functional Vitamin D Deficiency: Findings from the SarcoPhAge Cohort
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Laboratory Measurements
2.3. Assessment of Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D Supplementation and Prevention of Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and Regional Prevalence of Vitamin D Deficiency in Population-Based Studies from 2000 to 2022: A Pooled Analysis of 7.9 Million Participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, S.; Barbieri, V.; Di Pierro, A.M.; Rossi, F.; Widmann, T.; Lucchiari, M.; Pusceddu, I.; Pilz, S.; Obermayer-Pietsch, B.; Herrmann, M. LC–MS/MS Based 25(OH)D Status in a Large Southern European Outpatient Cohort: Gender- and Age-Specific Differences. Eur. J. Nutr. 2019, 58, 2511–2520. [Google Scholar] [CrossRef]
- Cashman, K.D. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106, 14–29. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef]
- Giustina, A.; Bilezikian, J.P.; Adler, R.A.; Banfi, G.; Bikle, D.D.; Binkley, N.C.; Bollerslev, J.; Bouillon, R.; Brandi, M.L.; Casanueva, F.F.; et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr. Rev. 2024, 45, bnae009. [Google Scholar] [CrossRef]
- Yao, P.; Bennett, D.; Mafham, M.; Lin, X.; Chen, Z.; Armitage, J.; Clarke, R. Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2019, 2, e1917789. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.P. Effect of Four Monthly Oral Vitamin D3 (Cholecalciferol) Supplementation on Fractures and Mortality in Men and Women Living in the Community: Randomised Double Blind Controlled Trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [PubMed]
- Priemel, M.; Von Domarus, C.; Klatte, T.O.; Kessler, S.; Schlie, J.; Meier, S.; Proksch, N.; Pastor, F.; Netter, C.; Streichert, T.; et al. Bone Mineralization Defects and Vitamin D Deficiency: Histomorphometric Analysis of Iliac Crest Bone Biopsies and Circulating 25-Hydroxyvitamin D in 675 Patients. J. Bone Miner. Res. 2010, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Farwell, W.R.; Kermah, D.; Taylor, E.N. Racial Differences in the Relationship between Vitamin D, Bone Mineral Density, and Parathyroid Hormone in the National Health and Nutrition Examination Survey. Osteoporos. Int. 2011, 22, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A.; et al. Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef]
- Máčová, L.; Bičíková, M. Vitamin D: Current Challenges between the Laboratory and Clinical Practice. Nutrients 2021, 13, 1758. [Google Scholar] [CrossRef]
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D Metabolites: Analytical Challenges and Clinical Relevance. Calcif. Tissue Int. 2022, 112, 158–177. [Google Scholar] [CrossRef]
- Cavalier, E.; Huyghebaert, L.; Rousselle, O.; Bekaert, A.-C.; Kovacs, S.; Vranken, L.; Peeters, S.; Goff, C.L.; Ladang, A. Simultaneous Measurement of 25(OH)-Vitamin D and 24,25(OH)2-Vitamin D to Define Cut-Offs for CYP24A1 Mutation and Vitamin D Deficiency in a Population of 1200 Young Subjects. Clin. Chem. Lab. Med. CCLM 2020, 58, 197–201. [Google Scholar] [CrossRef]
- Herrmann, M.; Zelzer, S.; Cavalier, E.; Kleber, M.; Drexler-Helmberg, C.; Schlenke, P.; Curcic, P.; Keppel, M.H.; Enko, D.; Scharnagl, H.; et al. Functional Assessment of Vitamin D Status by a Novel Metabolic Approach: The Low Vitamin D Profile Concept. Clin. Chem. 2023, 69, 1307–1316. [Google Scholar] [CrossRef]
- Berg, A.H.; Powe, C.E.; Evans, M.K.; Wenger, J.; Ortiz, G.; Zonderman, A.B.; Suntharalingam, P.; Lucchesi, K.; Powe, N.R.; Karumanchi, S.A.; et al. 24,25-Dihydroxyvitamin D3 and Vitamin D Status of Community-Dwelling Black and White Americans. Clin. Chem. 2015, 61, 877–884. [Google Scholar] [CrossRef]
- Beaudart, C.; Reginster, J.Y.; Petermans, J.; Gillain, S.; Quabron, A.; Locquet, M.; Slomian, J.; Buckinx, F.; Bruyère, O. Quality of Life and Physical Components Linked to Sarcopenia: The SarcoPhAge Study. Exp. Gerontol. 2015, 69, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Fabregat-Cabello, N.; Farre-Segura, J.; Huyghebaert, L.; Peeters, S.; Le Goff, C.; Souberbielle, J.-C.; Cavalier, É. A Fast and Simple Method for Simultaneous Measurements of 25(OH)D, 24,25(OH)2D and the Vitamin D Metabolite Ratio (VMR) in Serum Samples by LC-MS/MS. Clin. Chim. Acta Int. J. Clin. Chem. 2017, 473, 116–123. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, D.; Demonceau, C.; Bruyère, O.; Cavalier, E.; Reginster, J.-Y.; Beaudart, C. Intrinsic Capacity and Risk of Death: Focus on the Impact of Using Different Diagnostic Criteria for the Nutritional Domain. Maturitas 2023, 176, 107817. [Google Scholar] [CrossRef] [PubMed]
- Zelzer, S.; Le Goff, C.; Peeters, S.; Calaprice, C.; Meinitzer, A.; Enko, D.; Goessler, W.; Herrmann, M.; Cavalier, E. Comparison of Two LC-MS/MS Methods for the Quantification of 24,25-Dihydroxyvitamin D3 in Patients and External Quality Assurance Samples. Clin. Chem. Lab. Med. 2022, 60, 74–81. [Google Scholar] [CrossRef]
- Dugar, A.; Hoofnagle, A.N.; Sanchez, A.P.; Ward, D.M.; Corey-Bloom, J.; Cheng, J.H.; Ix, J.H.; Ginsberg, C. The Vitamin D Metabolite Ratio (VMR) Is a Biomarker of Vitamin D Status That Is Not Affected by Acute Changes in Vitamin D Binding Protein. Clin. Chem. 2023, 69, 718–723. [Google Scholar] [CrossRef]
- Ginsberg, C.; Hoofnagle, A.N.; Katz, R.; Becker, J.O.; Kritchevsky, S.B.; Shlipak, M.G.; Sarnak, M.J.; Ix, J.H. The Vitamin D Metabolite Ratio Is Independent of Vitamin D Binding Protein Concentration. Clin. Chem. 2021, 67, 385–393. [Google Scholar] [CrossRef]
- Ginsberg, C.; Katz, R.; De Boer, I.H.; Kestenbaum, B.R.; Chonchol, M.; Shlipak, M.G.; Sarnak, M.J.; Hoofnagle, A.N.; Rifkin, D.E.; Garimella, P.S.; et al. The 24,25 to 25-Hydroxyvitamin D Ratio and Fracture Risk in Older Adults: The Cardiovascular Health Study. Bone 2018, 107, 124–130. [Google Scholar] [CrossRef]
- Ginsberg, C.; Hoofnagle, A.N.; Katz, R.; Hughes-Austin, J.; Miller, L.M.; Becker, J.O.; Kritchevsky, S.B.; Shlipak, M.G.; Sarnak, M.J.; Ix, J.H. The Vitamin D Metabolite Ratio Is Associated With Changes in Bone Density and Fracture Risk in Older Adults. J. Bone Miner. Res. 2020, 36, 2343–2350. [Google Scholar] [CrossRef]
- Bansal, N.; Katz, R.; Appel, L.; Denburg, M.; Feldman, H.; Go, A.S.; He, J.; Hoofnagle, A.; Isakova, T.; Kestenbaum, B.; et al. Vitamin D Metabolic Ratio and Risks of Death and CKD Progression. Kidney Int. Rep. 2019, 4, 1598–1607. [Google Scholar] [CrossRef]
- Toribio, M.J.; Priego-Capote, F.; Pérez-Gómez, B.; Fernández De Larrea-Baz, N.; Ruiz-Moreno, E.; Castelló, A.; Lucas, P.; Sierra, M.Á.; Pino, M.N.; Martínez-Cortés, M.; et al. Factors Associated with Serum Vitamin D Metabolites and Vitamin D Metabolite Ratios in Premenopausal Women. Nutrients 2021, 13, 3747. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.H.M.; Butler, A.E.; Dargham, S.R.; Latif, A.; Chidiac, O.M.; Atkin, S.L.; Abi Khalil, C. Vitamin D3 Metabolite Ratio as an Indicator of Vitamin D Status and Its Association with Diabetes Complications. BMC Endocr. Disord. 2020, 20, 161. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Chung, H.J.; Jung, S.; Jang, H.N.; Chang, S.-H.; Kim, H.-J.; Cho, M.-C. 24,25-Dihydroxy Vitamin D and Vitamin D Metabolite Ratio as Biomarkers of Vitamin D in Chronic Kidney Disease. Nutrients 2023, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Hanwell, H.E.; Schnabl, K.; Yazdanpanah, M.; Kimball, S.; Fu, L.; Sidhom, G.; Rousseau, D.; Cole, D.E.C.; Vieth, R. The Ratio of Serum 24,25-Dihydroxyvitamin D3 to 25-Hydroxyvitamin D3 Is Predictive of 25-Hydroxyvitamin D3 Response to Vitamin D3 Supplementation. J. Steroid Biochem. Mol. Biol. 2011, 126, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Francic, V.; Ursem, S.R.; Dirks, N.F.; Keppel, M.H.; Theiler-Schwetz, V.; Trummer, C.; Pandis, M.; Borzan, V.; Grübler, M.R.; Verheyen, N.D.; et al. The Effect of Vitamin D Supplementation on Its Metabolism and the Vitamin D Metabolite Ratio. Nutrients 2019, 11, 2539. [Google Scholar] [CrossRef]
- Lehmann, U.; Riedel, A.; Hirche, F.; Brandsch, C.; Girndt, M.; Ulrich, C.; Seibert, E.; Henning, C.; Glomb, M.A.; Dierkes, J.; et al. Vitamin D3 Supplementation: Response and Predictors of Vitamin D3 Metabolites—A Randomized Controlled Trial. Clin. Nutr. 2016, 35, 351–358. [Google Scholar] [CrossRef]
- Aloia, J.; Fazzari, M.; Shieh, A.; Dhaliwal, R.; Mikhail, M.; Hoofnagle, A.N.; Ragolia, L. The Vitamin D Metabolite Ratio (VMR) as a Predictor of Functional Biomarkers of Bone Health. Clin. Endocrinol. 2017, 86, 674–679. [Google Scholar] [CrossRef]
- Zelzer, S.; Meinitzer, A.; Enko, D.; Keppel, M.H.; Herrmann, M.; Theiler-Schwetz, V.; Trummer, C.; Schmitt, L.; Tomaschitz, A.; Sadoghi, P.; et al. Classification of Vitamin D Status Based on Vitamin D Metabolism: A Randomized Controlled Trial in Hypertensive Patients. Nutrients 2024, 16, 839. [Google Scholar] [CrossRef]
VMR | 24,25(OH)2D | 25(OH)D | |||||||
---|---|---|---|---|---|---|---|---|---|
Normal | Low (≤4) | p-Value | Normal | Low (≤1.2 ng/mL) | p-Value | Normal | Low (≤20 ng/mL) | p-Value | |
n | 185 | 14 | 164 | 40 | 173 | 31 | |||
M/W | 89/96 | 9/5 | 0.2442 | 75/89 | 26/13 | 0.0084 | 81/92 | 20/10 | 0.0085 |
Age (years) | 74.2 (9.4) | 71.7 (7.8) | 0.3297 | 74.3 (9.2) | 72.0 (6.7) | 0.3636 | 74.2 (9.0) | 72.3 (7.3) | 0.5643 |
BMI (kg/m2) | 26.7 (5.3) | 28.0 (7.4) | 0.3681 | 26.4 (5.3) | 28.2 (5.4) | 0.0599 | 26.7 (5.1) | 28.4 (7.8) | 0.1493 |
PTH (ng/L) | 23.8 (10.8) | 24.2 (19.1) | 0.6842 | 23.2 (10.9) | 26.6 (12) | 0.1719 | 23.6 (11.3) | 24.9 (10.0) | 0.5226 |
CTXS (ng/L) | 252.8 (244.7) | 223.7 (459.4) | 0.6587 | 251.0 (259.8) | 223.7 (244.6) | 0.6864 | 252.8 (263.6) | 209.0 (227.6) | 0.3595 |
PINP (ng/mL) | 43.2 (28) | 36.2 (39.7) | 0.5347 | 44.0 (30) | 39.9 (25.7) | 0.2633 | 43.2 (29.2) | 42.8 (21.5) | 0.4972 |
Death at 9 years | 36 | 6 | 0.0391 | 32 | 11 | 0.2261 | 32 | 11 | 0.0332 |
VMR | 24,25(OH)2VTD | 25(OH)VTD | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (years) | 1.11 (1.05–1.16) | 0.0001 | 1.09 (1.04–1.14) | 0.0003 | 1.10 (1.04–1.15) | 0.0002 |
BMI (kg/m2) | 0.94 (0.88–1.01) | 0.0854 | 0.92 (0.86–0.99) | 0.0362 | 0.92 (0.86–0.99) | 0.0272 |
Sex | 1.75 (0.91–3.35) | 0.0930 | 1.85 (0.97–3.54) | 0.0629 | 1.84 (0.97–3.52) | 0.0626 |
Low profile | 3.74 (1.50–9.31) | 0.0046 | 1.68 (0.82–3.44) | 0.1558 | 2.41 (1.19–4.89) | 0.0142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladang, A.; Gendebien, A.-S.; Kovacs, S.; Demonceau, C.; Beaudart, C.; Peeters, S.; Alokail, M.S.; Al-Daghri, N.M.; Le Goff, C.; Reginster, J.-Y.; et al. Investigation of the Vitamin D Metabolite Ratio (VMR) as a Marker of Functional Vitamin D Deficiency: Findings from the SarcoPhAge Cohort. Nutrients 2024, 16, 3224. https://doi.org/10.3390/nu16193224
Ladang A, Gendebien A-S, Kovacs S, Demonceau C, Beaudart C, Peeters S, Alokail MS, Al-Daghri NM, Le Goff C, Reginster J-Y, et al. Investigation of the Vitamin D Metabolite Ratio (VMR) as a Marker of Functional Vitamin D Deficiency: Findings from the SarcoPhAge Cohort. Nutrients. 2024; 16(19):3224. https://doi.org/10.3390/nu16193224
Chicago/Turabian StyleLadang, Aurélie, Anne-Sophie Gendebien, Stéphanie Kovacs, Céline Demonceau, Charlotte Beaudart, Stéphanie Peeters, Majed S. Alokail, Nasser M. Al-Daghri, Caroline Le Goff, Jean-Yves Reginster, and et al. 2024. "Investigation of the Vitamin D Metabolite Ratio (VMR) as a Marker of Functional Vitamin D Deficiency: Findings from the SarcoPhAge Cohort" Nutrients 16, no. 19: 3224. https://doi.org/10.3390/nu16193224
APA StyleLadang, A., Gendebien, A. -S., Kovacs, S., Demonceau, C., Beaudart, C., Peeters, S., Alokail, M. S., Al-Daghri, N. M., Le Goff, C., Reginster, J. -Y., Bruyere, O., & Cavalier, E. (2024). Investigation of the Vitamin D Metabolite Ratio (VMR) as a Marker of Functional Vitamin D Deficiency: Findings from the SarcoPhAge Cohort. Nutrients, 16(19), 3224. https://doi.org/10.3390/nu16193224