Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Participants and Methods
2.1. Participants
2.2. Definition of Pulmonary Function Parameters
2.3. Serum Vitamin A and E and High-Sensitivity C-Reactive Protein Assay
2.4. Potential Confounding Variables and an Effect Modifier
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Associations between Serum Vitamin Concentrations and PF Parameters
3.3. Associations between Serum Vitamin Concentrations and PF Parameters Stratified by Serum hs-CRP Levels
3.4. Associations between Serum Vitamin Concentrations and COPD with Results Stratified by Serum hs-CRP Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I.; NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, H.; Kim, Y.; Rhee, C.K.; Min, K.H.; Hwang, Y.I.; Kim, D.K.; Park, Y.B.; Yoo, K.H.; Moon, J.-Y. Recent Prevalence of and Factors Associated with Chronic Obstructive Pulmonary Disease in a Rapidly Aging Society: Korea National Health and Nutrition Examination Survey 2015–2019. J. Korean Med Sci. 2023, 38, e108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Heris, J.A.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.-A.; et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Seyedrezazadeh, E.; Pour Moghaddam, M.; Ansarin, K.; Jafarabadi, M.A.; Sharifi, A.; Sharma, S.; Kolahdooz, F. Dietary Factors and Risk of Chronic Obstructive Pulmonary Disease: A Systemic Review and Meta-Analysis. Tanaffos 2019, 18, 294–309. [Google Scholar] [PubMed] [PubMed Central]
- Grievink, L.; Smit, H.; Veer, P.V.; Brunekreef, B.; Kromhout, D. Plasma concentrations of the antioxidants beta-carotene and α-tocopherol in relation to lung function. Eur. J. Clin. Nutr. 1999, 53, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Cassano, P.A. Antioxidant nutrients and pulmonary function: The Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Epidemiol. 2000, 151, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Grant, B.J.B.; Freudenheim, J.L.; Muti, P.; Browne, R.W.; Drake, J.A.; Klocke, R.A.; Trevisan, M. The relation of serum levels of antioxidant vitamins C and E, retinol and carotenoids with pulmonary function in the general population. Am. J. Respir. Crit. Care Med. 2001, 163, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.W.; Kim, M.B.; Kang, J.W. High serum folate level is positively associated with pulmonary function in elderly Korean men, but not in women. Sci. Rep. 2022, 12, 4523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanson, C.; Lyden, E.; Furtado, J.; Campos, H.; Sparrow, D.; Vokonas, P.; Litonjua, A.A. Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study. Clin. Nutr. 2016, 35, 169–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caram, L.M.O.; Amaral, R.A.F.; Ferrari, R.; Tanni, S.E.; Correa, C.R.; Paiva, S.A.R.; Godoy, I. Serum Vitamin A and Inflammatory Markers in Individuals with and without Chronic Obstructive Pulmonary Disease. Mediat. Inflamm. 2015, 2015, 862086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kodama, Y.; Kishimoto, Y.; Muramatsu, Y.; Tatebe, J.; Yamamoto, Y.; Hirota, N.; Itoigawa, Y.; Atsuta, R.; Koike, K.; Sato, T.; et al. Antioxidant nutrients in plasma of Japanese patients with chronic obstructive pulmonary disease, asthma-COPD overlap syndrome and bronchial asthma. Clin. Respir. J. 2017, 11, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yu, X.; Xia, Z.; Guo, Y.; Dai, Y. The Associations Between Serum Vitamins and Carotenoids with Chronic Obstructive Pulmonary Disease: Results from the NHANES. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 2985–2997. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rawal, G.; Yadav, S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Intern. Med. 2015, 3, 151–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korea Disease Control and Prevention Agency. Project Final Result Report: Education and Quality Control of Pulmonary Function Test in the 7th 2nd Year National Health and Nutrition Examination Survey 2017; Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2017. Available online: https://www.prism.go.kr/homepage/entire/researchDetail.do?researchId=1351000-201700231&menuNo=I0000002 (accessed on 20 August 2024).
- Korea Disease Control and Prevention Agency. Guideline for Raw Data Use of the Seventh Korea National Health and Nutrition Examination Survey (KNAHNES VII), 2016–2018; Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2020. Available online: https://knhanes.kdca.go.kr/knhanes/sub03/sub03_06_02.do (accessed on 20 August 2024).
- Chung, K.S.; Park, H.J.; Leem, A.Y.; Lee, S.H.; Song, J.H.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; Chung, K.S. Comorbidities in obstructive lung disease in Korea: Data from the fourth and fifth Korean National Health and Nutrition Examination Survey. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1571–1582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korea Disease Control and Prevention Agency. Project Final Result Report: Clinical Laboratory Test for the Seventh Korea National Health and Nutrition Examination Survey (2016–2018); Korea Disease Control and Prevention Agency: Cheongju, Republic of Korea, 2016. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201900000133 (accessed on 20 August 2024).
- Julia, C.; Galan, P.; Touvier, M.; Meunier, N.; Papet, I.; Sapin, V.; Cano, N.; Faure, P.; Hercberg, S.; Kesse-Guyot, E. Antioxidant status and the risk of elevated C-reactive protein 12 years later. Ann. Nutr. Metab. 2014, 65, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Vestbo, J.; Lange, P.; Bojesen, S.E.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2007, 175, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Kinnula, V.L.; Fattman, C.L.; Tan, R.J.; Oury, T.D. Oxidative stress in pulmonary fibrosis: A possible role for redox modulatory therapy. Am. J. Respir. Crit. Care Med. 2005, 172, 417–422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drost, E.M.; Skwarski, K.M.; Sauleda, J.; Soler, N.; Roca, J.; Agusti, A.; MacNee, W. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 2005, 60, 293–300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables | All | Serum Vitamin A Tertiles (T) [Median] | p Value | Serum Vitamin E Tertiles (T) [Median] | p Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
1st T [0.37] | 2nd T [0.51] | 3rd T [0.69] | 1st T [10.09] | 2nd T [13.54] | 3rd T [18.43] | |||||
Age, years | 54.0 ± 0.25 | 53.2 ± 0.45 | 54.7 ± 0.41 | 54.3 ± 0.42 | 0.091 | 53.5 ± 0.46 | 53.5 ± 0.46 | 54.6 ± 0.37 | 0.067 | |
Men, % | 48.5 | 28.4 | 49.4 | 66.2 | <0.001 | 52.8 | 50.1 | 42.6 | <0.01 | |
Residential district | Urban | 85.9 | 86.0 | 87.3 | 84.5 | 88.4 | 84.1 | 85.1 | 0.097 | |
Rural | 14.1 | 14.0 | 12.8 | 15.6 | 11.6 | 16.0 | 14.9 | |||
Educational level | ≤Middle school | 26.1 | 23.7 | 28.4 | 26.2 | 0.233 | 25.6 | 22.7 | 30.2 | <0.05 |
≥High school | 73.9 | 76.3 | 71.6 | 73.8 | 74.5 | 77.3 | 69.8 | |||
Low household income level 1, % | 35.2 | 34.9 | 37.4 | 33.4 | 0.375 | 37.4 | 32.2 | 35.8 | 0.240 | |
Body mass index, kg/m2 | 24.1 ± 0.08 | 23.8 ± 0.14 | 24.1 ± 0.13 | 24.4 ± 0.15 | <0.01 | 23.9 ± 0.16 | 24.1 ± 0.13 | 24.3 ± 0.13 | 0.129 | |
Current smoker, % | 20.1 | 8.9 | 17.3 | 33.1 | <0.001 | 21.7 | 18.0 | 20.6 | 0.362 | |
Pack-years of cigarettes 2 | 18.8 ± 0.6 | 16.6 ± 1.39 | 18.1 ± 1.04 | 20.0 ± 0.86 | 0.767 | 19.5 ± 1.11 | 18.4 ± 0.91 | 18.2 ± 1.02 | 0.311 | |
Current alcohol drinker, % | 57.7 | 45.8 | 56.9 | 69.4 | <0.001 | 58.7 | 59.2 | 55.2 | 0.378 | |
Coffee consumer, % | 57.5 | 54.1 | 58.9 | 59.4 | 0.166 | 58.8 | 56.5 | 57.2 | 0.759 | |
Regular physical activity 3, % | 47.0 | 47.2 | 47.0 | 46.7 | 0.989 | 44.9 | 47.8 | 48.3 | 0.494 | |
Total energy intake, kcal/day | 2042.6 ± 24.34 | 1904.9 ± 38.29 | 2029.3 ± 40.6 | 2181.5 ± 43.73 | <0.001 | 2073.0 ± 41.12 | 2057.3 ± 41.54 | 1996.6 ± 39.73 | 0.154 | |
Dietary supplementation, % | 55.5 | 55.3 | 55.5 | 55.5 | 0.982 | 47.1 | 57.2 | 62.5 | <0.001 | |
Serum hs-CRP, mg/L | 1.06 ± 0.05 | 1.33 ± 0.13 | 0.92 ± 0.05 | 0.93 ± 0.05 | <0.001 | 0.89 ± 0.06 | 1.05 ± 0.07 | 1.25 ± 0.11 | <0.001 | |
Impaired pulmonary disease, % | 9.94 | 10.07 | 9.82 | 9.93 | 0.990 | 11.51 | 8.14 | 10.13 | 0.169 |
Variables | Estimates ± SEs across Vitamin Concentration Tertiles (T) | p for Trend across the Tertiles | ||
---|---|---|---|---|
1st T | 2nd T | 3rd T | ||
Across serum vitamin A concentration | ||||
FEV1 | ||||
Age- and sex-adjusted model | Reference | 0.0150 ± 0.0241 | 0.0614 ± 0.0271 * | < 0.05 |
Multivariable model | Reference | 0.0165 ± 0.0238 | 0.0710 ± 0.0274 ** | < 0.01 |
FVC | ||||
Age- and sex-adjusted model | Reference | −0.0171 ± 0.0267 | 0.0555 ± 0.0312 | 0.057 |
Multivariable model | Reference | −0.0156 ± 0.0265 | 0.0560 ± 0.0321 | 0.061 |
FEV1/FVC | ||||
Age- and sex-adjusted model | Reference | 0.0088 ± 0.0056 | 0.0057 ± 0.0066 | 0.456 |
Multivariable model | Reference | 0.0089 ± 0.0056 | 0.0092 ± 0.0067 | 0.204 |
Across serum vitamin E concentration | ||||
FEV1 | ||||
Age- and sex-adjusted model | Reference | 0.0607 ± 0.0244 * | 0.0006 ± 0.0253 | 0.823 |
Multivariable model | Reference | 0.0493 ± 0.0243 * | −0.0086 ± 0.0263 | 0.580 |
FVC | ||||
Age- and sex-adjusted model | Reference | 0.0390 ± 0.0303 | −0.0031 ± 0.0276 | 0.805 |
Multivariable model | Reference | 0.0297 ± 0.0301 | −0.0112 ± 0.0286 | 0.596 |
FEV1/FVC | ||||
Age- and sex-adjusted model | Reference | 0.0113 ± 0.0058 | 0.0008 ± 0.0059 | 0.960 |
Multivariable model | Reference | 0.0101 ± 0.0058 | 0.0001 ± 0.0058 | 0.843 |
Variables | Estimates ± SEs across Vitamin Concentration Tertiles (T) | p for Trend across the Tertiles | ||
---|---|---|---|---|
1st T | 2nd T | 3rd T | ||
Across serum vitamin A concentration | ||||
hs-CRP ≤ 1 mg/L | ||||
FEV1 | Reference | 0.0194 ± 0.0271 | 0.0702 ± 0.0307 * | <0.05 |
FVC | Reference | −0.0118 ± 0.0312 | 0.0619 ± 0.0384 | 0.082 |
FEV1/FVC | Reference | 0.0104 ± 0.0058 | 0.0081 ± 0.0069 | 0.470 |
hs-CRP > 1 mg/L | ||||
FEV1 | Reference | 0.0313 ± 0.0462 | 0.0767 ± 0.0601 | 0.206 |
FVC | Reference | 0.0197 ± 0.0501 | 0.0595 ± 0.0582 | 0.302 |
FEV1/FVC | Reference | 0.0021 ± 0.0228 | 0.0240 ± 0.0165 | 0.206 |
Across serum vitamin E concentration | ||||
hs-CRP ≤ 1 mg/L | ||||
FEV1 | Reference | 0.0269 ± 0.0271 | 0.0136 ± 0.0280 | 0.701 |
FVC | Reference | 0.0205 ± 0.0348 | 0.0031 ± 0.0334 | 0.988 |
FEV1/FVC | Reference | 0.0043 ± 0.0061 | 0.0019 ± 0.0060 | 0.592 |
hs-CRP > 1 mg/L | ||||
FEV1 | Reference | 0.0812 ± 0.0547 | −0.0422 ± 0.0581 | 0.410 |
FVC | Reference | 0.0509 ± 0.0598 | −0.0598 ± 0.0547 | 0.241 |
FEV1/FVC | Reference | 0.0630 ± 0.0191 ** | 0.0157 ± 0.0221 | 0.410 |
Variables | OR (95% CI) across Vitamin Concentration Tertiles (T) | p for Trend across the Tertiles | ||
---|---|---|---|---|
1st T | 2nd T | 3rd T | ||
Across serum vitamin A concentration | ||||
Number of cases/noncases | 69/614 | 76/584 | 79/583 | 0.055 |
Age and sex-adjusted model for all | Reference | 0.63 (0.40, 1.00) | 0.59 (0.37, 0.96) * | <0.05 |
Multivariable model for all | Reference | 0.63 (0.39, 1.02) | 0.53 (0.31, 0.90) * | <0.05 |
Multivariable model for hs-CRP ≤ 1 mg/L | Reference | 0.55 (0.34, 0.91) * | 0.51 (0.30, 0.88) * | 0.450 |
Multivariable model for hs-CRP > 1 mg/L | Reference | 0.87 (0.34, 2.25) | 0.71 (0.27, 1.90) | 0.055 |
Across serum vitamin E concentration | ||||
Number of cases/noncases | 83/585 | 66/603 | 75/593 | |
Age and sex-adjusted model for all | Reference | 0.70 (0.46, 1.08) | 1.10 (0.73, 1.65) | 0.574 |
Multivariable model for all | Reference | 0.79 (0.49, 1.25) | 1.22 (0.78, 1.91) | 0.324 |
Multivariable model for hs-CRP ≤ 1 mg/L | Reference | 0.91 (0.56, 1.46) | 1.10 (0.69, 1.74) | 0.482 |
Multivariable model for hs-CRP > 1 mg/L | Reference | 0.67 (0.24, 1.91) | 0.76 (0.28, 2.04) | 0.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, W.; Baik, I. Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease. Nutrients 2024, 16, 3197. https://doi.org/10.3390/nu16183197
Noh W, Baik I. Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease. Nutrients. 2024; 16(18):3197. https://doi.org/10.3390/nu16183197
Chicago/Turabian StyleNoh, Wonjun, and Inkyung Baik. 2024. "Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease" Nutrients 16, no. 18: 3197. https://doi.org/10.3390/nu16183197
APA StyleNoh, W., & Baik, I. (2024). Associations of Serum Vitamin A and E Concentrations with Pulmonary Function Parameters and Chronic Obstructive Pulmonary Disease. Nutrients, 16(18), 3197. https://doi.org/10.3390/nu16183197