Evaluation of Polyphenol Intake in Pregnant Women from South-Eastern Spain and the Effect on Anthropometric Measures at Birth and Gestational Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Design
2.2. Dietary Assessment
2.3. Quantitative Estimation of Total Polyphenol Intake
2.4. General Questionnaire, Medical Records and Anthropometric Measurements
2.5. Data Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Validity and Reproducibility of FFQ
3.3. Total Polyphenol Intake
3.4. Relationship between Polyphenol Intake and Anthropometric Measures at Birth
4. Discussion
4.1. Validation and Reproducibility
4.2. Polyphenol Intake
4.3. Relationship between Prenatal Polyphenol Intake and Birth Anthropometry and Foetal Development
4.4. Strengths and Limitations of the Present Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loy, S.-L.; Marhazlina, M.; Nor Azwany, Y.; Hamid Jan, J.M. Higher Intake of Fruits and Vegetables in Pregnancy Is Associated with Birth Size. Southeast Asian J. Trop. Med. Public Health 2011, 42, 1214. [Google Scholar] [PubMed]
- Tovar, A.; Kaar, J.L.; McCurdy, K.; Field, A.E.; Dabelea, D.; Vadiveloo, M. Maternal Vegetable Intake during and after Pregnancy. BMC Pregnancy Childbirth 2019, 19, 267. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, C.; Varì, R.; Scazzocchio, B.; Filesi, C.; Masella, R. Management of Reproduction and Pregnancy Complications in Maternal Obesity: Which Role for Dietary Polyphenols? Biofactors 2014, 40, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Simmons, K.; Meloncelli, N.; Kearney, L.; Maher, J. Low Vegetable Intake in Pregnancy and Associated Maternal Factors: A Scoping Review. Nutr. Res. 2022, 99, 78–97. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C. Phenol-Explorer 2.0: A Major Update of the Phenol-Explorer Database Integrating Data on Polyphenol Metabolism and Pharmacokinetics in Humans and Experimental Animals. Database 2012, 2012, bas031. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, Ž.; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022, 14, 5246. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Coletro, H.N.; Bressan, J.; Diniz, A.P.; Hermsdorff, H.H.M.; Pimenta, A.M.; Meireles, A.L.; Mendonca, R.d.D.; Carraro, J.C.C. Total Polyphenol Intake, Polyphenol Subtypes, and Prevalence of Hypertension in the CUME Cohort. J. Am. Coll. Nutr. 2023, 42, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Condezo-Hoyos, L.; Gazi, C.; Pérez-Jiménez, J. Design of Polyphenol-Rich Diets in Clinical Trials: A Systematic Review. Food Res. Int. 2021, 149, 110655. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of Main and Healthy Phenolic Compounds in Foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.; Baierle, M.; Charão, M.F.; Bubols, G.B.; Gravina, F.S.; Zielinsky, P.; Arbo, M.D.; Cristina Garcia, S. Polyphenol-Rich Food General and on Pregnancy Effects: A Review. Drug Chem. Toxicol. 2017, 40, 368–374. [Google Scholar] [CrossRef]
- Martín, M.A.; Goya, L.; de Pascual-Teresa, S. Effect of Cocoa and Cocoa Products on Cognitive Performance in Young Adults. Nutrients 2020, 12, 3691. [Google Scholar] [CrossRef]
- Mori, N.; Sawada, N.; Ishihara, J.; Kotemori, A.; Takachi, R.; Murai, U.; Kobori, M.; Tsugane, S. Validity of a Food Frequency Questionnaire for the Estimation of Total Polyphenol Intake Estimates and Its Major Food Sources in the Japanese Population: The JPHC FFQ Validation Study. J. Nutr. Sci. 2021, 10, e35. [Google Scholar] [CrossRef]
- Ly, C.; Yockell-Lelievre, J.; Ferraro, Z.M.; Arnason, J.T.; Ferrier, J.; Gruslin, A. The Effects of Dietary Polyphenols on Reproductive Health and Early Development. Hum. Reprod. Update 2014, 21, 228–248. [Google Scholar] [CrossRef]
- Navarrete-Muñoz, E.M.; Valera-Gran, D.; Garcia-de-la-Hera, M.; Gonzalez-Palacios, S.; Riaño, I.; Murcia, M.; Lertxundi, A.; Guxens, M.; Tardón, A.; Amiano, P. High Doses of Folic Acid in the Periconceptional Period and Risk of Low Weight for Gestational Age at Birth in a Population Based Cohort Study. Eur. J. Nutr. 2019, 58, 241–251. [Google Scholar] [CrossRef]
- Ono, K.; Nitta, A.; Tanaka, S.; Shiraishi, M.; Mizutani, A.; Matsubara, T. A Case of Premature Constriction of the Ductus Arteriosus in an Infant Caused by Intake of Rooibos Tea during Pregnancy. Dokkyo Med. J. 2022, 1, 72–75. [Google Scholar] [CrossRef]
- Sinha, M.; Sachan, D.K.; Bhattacharya, R.; Singh, P.; Parthasarathi, R. ToxDP2 Database: Toxicity Prediction of Dietary Polyphenols. Food Chem. 2022, 370, 131350. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, Food and Pharma. Current Knowledge and Directions for Future Research. Biochem. Pharmacol. 2018, 156, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Zielinsky, P.; Piccoli, A.L., Jr.; Vian, I.; Zílio, A.M.; Naujorks, A.A.; Nicoloso, L.H.; Barbisan, C.W.; Busato, S.; Lopes, M.; Klein, C. Maternal Restriction of Polyphenols and Fetal Ductal Dynamics in Normal Pregnancy: An Open Clinical Trial. Arq. Bras. Cardiol. 2013, 101, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Mocan, A.; Câmara, J.S. Is a Higher Ingestion of Phenolic Compounds the Best Dietary Strategy? A Scientific Opinion on the Deleterious Effects of Polyphenols in Vivo. Trends Food Sci. Technol. 2020, 98, 162–166. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Cayssials, V.; Jenab, M.; Rothwell, J.A.; Fedirko, V.; Aleksandrova, K.; Tjønneland, A.; Kyrø, C.; Overvad, K.; Boutron-Ruault, M.-C. Dietary Intake of Total Polyphenol and Polyphenol Classes and the Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Eur. J. Epidemiol. 2018, 33, 1063–1075. [Google Scholar] [CrossRef]
- Costa, V.; Carriço, A.; Valente, F. Constricción Prematura Del Ductus Arterioso: Consecuencias Del Consumo Excesivo de Té Negro y de Hierbas. Prog. Obstet. Ginecol. 2013, 56, 144–146. [Google Scholar] [CrossRef]
- Finn-Sell, S.L.; Cottrell, E.C.; Greenwood, S.L.; Dilworth, M.R.; Cowley, E.J.; Sibley, C.P.; Wareing, M. Pomegranate Juice Supplementation Alters Utero-Placental Vascular Function and Fetal Growth in the eNOS−/− Mouse Model of Fetal Growth Restriction. Front. Physiol. 2018, 9, 1145. [Google Scholar] [CrossRef]
- Pedra, S.R.; Zielinsky, P.; Binotto, C.N.; Martins, C.N.; da Fonseca, E.S.V.B.; Guimarães, I.C.B.; Corrêa, I.V.d.S.; Pedrosa, K.L.M.; Lopes, L.M.; Nicoloso, L.H.S. Brazilian Fetal Cardiology Guidelines-2019. Arq. Bras. Cardiol. 2019, 112, 600–648. [Google Scholar] [CrossRef]
- Tanaka, M.; Miyakoshi, K.; Yamada, M.; Kadohira, I.; Minegishi, K.; Yoshimura, Y. Functional Foods for the Fetus? Acta Obstet. Gynecol. Scand. 2011, 90, 1172–1173. [Google Scholar] [CrossRef]
- Vian, I.; Zielinsky, P.; Zilio, A.M.; Mello, A.; Lazzeri, B.; Oliveira, A.; Lampert, K.V.; Piccoli, A.; Nicoloso, L.H.; Bubols, G.B. Development and Validation of a Food Frequency Questionnaire for Consumption of Polyphenol-Rich Foods in Pregnant Women. Matern. Child. Nutr. 2015, 11, 511–524. [Google Scholar] [CrossRef]
- Zielinsky, P.; Manica, J.; Piccoli Jr, A.; Areias, J.; Nicoloso, L.; Menezes, H.; Frajndlich, R.; Busato, A.; Petracco, R.; Hagemann, L. OP18. 03: Experimental Study of the Role of Maternal Consumption of Green Tea, Mate Tea and Grape Juice on Fetal Ductal Constriction. Ultrasound Obstet. Gynecol. 2007, 30, 515. [Google Scholar] [CrossRef]
- Zielinsky, P.; Piccoli, A.L.; Manica, J.L.L.; Nicoloso, L.H.S. New Insights on Fetal Ductal Constriction: Role of Maternal Ingestion of Polyphenol-Rich Foods. Expert Rev. Cardiovasc. Ther. 2010, 8, 291–298. [Google Scholar] [CrossRef]
- Zielinsky, P.; Piccoli, A.; Manica, J.; Nicoloso, L.; Vian, I.; Bender, L.; Pizzato, P.; Pizzato, M.; Swarowsky, F.; Barbisan, C. Reversal of Fetal Ductal Constriction after Maternal Restriction of Polyphenol-Rich Foods: An Open Clinical Trial. J. Perinatol. 2012, 32, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Zielinsky, P.; Martignoni, F.V.; Vian, I. Deleterious Effects of Maternal Ingestion of Cocoa upon Fetal Ductus Arteriosus in Late Pregnancy. Front. Pharmacol. 2014, 5, 281. [Google Scholar] [CrossRef] [PubMed]
- Zielinsky, P.; Busato, S. Prenatal Effects of Maternal Consumption of Polyphenol-rich Foods in Late Pregnancy upon Fetal Ductus Arteriosus. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 256–274. [Google Scholar] [CrossRef]
- Burkholder-Cooley, N.M.; Rajaram, S.S.; Haddad, E.H.; Oda, K.; Fraser, G.E.; Jaceldo-Siegl, K. Validating Polyphenol Intake Estimates from a Food-Frequency Questionnaire by Using Repeated 24-h Dietary Recalls and a Unique Method-of-Triads Approach with 2 Biomarkers–3. Am. J. Clin. Nutr. 2017, 105, 685–694. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and Bioaccessibility of Total Polyphenols in a Whole Diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Romero-Molina, D.; Giménez-Asensio, M.J.; Gonzalez-Alzaga, B.; Lopéz-Flores, I.; de la Cueva, S.P.; Rufián-Henares, J.Á.; Hernández, A.F.; Lacasaña, M. Validity and Reproducibility of a Food Frequency Questionnaire to Assess Nutrients Intake of Pregnant Women in the South-East of Spain. Nutrients 2021, 13, 3032. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; García-Rincón, I.; Rufián-Henares, J.A.; Pastoriza, S. A Useful and Simple Tool to Evaluate and Compare the Intake of Total Dietary Polyphenols in Different Populations. Public Health Nutr. 2021, 24, 3818–3824. [Google Scholar] [CrossRef]
- De Onis, M.; Habicht, J.-P. Anthropometric Reference Data for International Use: Recommendations from a World Health Organization Expert Committee. Am. J. Clin. Nutr. 1996, 64, 650–658. [Google Scholar] [CrossRef]
- Lourenção, L.F.d.P.; de Paula, N.C.; Cardoso, M.A.; Santos, P.R.; de Oliveira, I.R.C.; Fonseca, F.L.A.; da Veiga, G.L.; Alves, B.d.C.A.; Graciano, M.M.d.C.; Pereira-Dourado, S.M. Biochemical Markers and Anthropometric Profile of Children Enrolled in Public Daycare Centers. J. Pediatr. 2022, 98, 390–398. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995; ISBN 92-4-120854-6. [Google Scholar]
- Gimenez-Asensio, M.J.; Hernandez, A.F.; Romero-Molina, D.; Gonzalez-Alzaga, B.; Luzardo, O.P.; Henríquez-Hernández, L.A.; Boada, L.D.; García-Cortés, H.; Lopez-Flores, I.; Sanchez-Piedra, M.D.; et al. Effect of Prenatal Exposure to Organophosphates and Pyrethroid Pesticides on Neonatal Anthropometric Measures and Gestational Age. Environ. Res. 2023, 232, 116410. [Google Scholar] [CrossRef] [PubMed]
- Hoge, A.; Guillaume, M.; Albert, A.; Tabart, J.; Dardenne, N.; Donneau, A.-F.; Kevers, C.; Defraigne, J.-O.; Pincemail, J. Validation of a Food Frequency Questionnaire Assessing Dietary Polyphenol Exposure Using the Method of Triads. Free Radic. Biol. Med. 2019, 130, 189–195. [Google Scholar] [CrossRef]
- Ogawa, K.; Jwa, S.-C.; Kobayashi, M.; Morisaki, N.; Sago, H.; Fujiwara, T. Validation of a Food Frequency Questionnaire for Japanese Pregnant Women with and without Nausea and Vomiting in Early Pregnancy. J. Epidemiol. 2017, 27, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Aali, Y.; Ebrahimi, S.; Shiraseb, F.; Mirzaei, K. The Association between Dietary Polyphenol Intake and Cardiometabolic Factors in Overweight and Obese Women: A Cross-Sectional Study. BMC Endocr. Disord. 2022, 22, 120. [Google Scholar] [CrossRef]
- Shahar, S.; Lin, C.H.; Haron, H. Development and Validation of Food Frequency Questionnaire (FFQ) for Estimation of the Dietary Polyphenol Intake among Elderly Individuals in Klang Valley. Malays. J. Health Sci. 2014, 12, 33–39. [Google Scholar]
- Opara, E.I.; Chohan, M. Culinary Herbs and Spices: Their Bioactive Properties, the Contribution of Polyphenols and the Challenges in Deducing Their True Health Benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef]
- Madani, Z.; Javardi, M.S.M.; Karandish, M.; Movahedi, A. Promoting and Updating Food Frequency Questionnaire Tool to Measure Food Consumption and Nutrient Intake Analysis. Int. J. Prev. Med. 2021, 12, 165. [Google Scholar]
- Pinto, P.; Cardoso, S.; Pimpao, R.C.; Tavares, L.; Ferreira, R.B.; Santos, C.N. Daily Polyphenol Intake from Fresh Fruits in Portugal: Contribution from Berry Fruits. Int. J. Food Sci. Nutr. 2013, 64, 1022–1029. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary Intake of 337 Polyphenols in French Adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef]
- Nascimento-Souza, M.A.; de Paiva, P.G.; Pérez-Jiménez, J.; Franceschini, S.d.C.C.; Ribeiro, A.Q. Estimated Dietary Intake and Major Food Sources of Polyphenols in Elderly of Viçosa, Brazil: A Population-Based Study. Eur. J. Nutr. 2018, 57, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Wisnuwardani, R.W.; De Henauw, S.; Androutsos, O.; Forsner, M.; Gottrand, F.; Huybrechts, I.; Knaze, V.; Kersting, M.; Le Donne, C.; Marcos, A. Estimated Dietary Intake of Polyphenols in European Adolescents: The HELENA Study. Eur. J. Nutr. 2018, 58, 2345–2363. [Google Scholar] [CrossRef] [PubMed]
- Alabduljabbar, S.; Zaidan, S.A.; Lakshmanan, A.P.; Terranegra, A. Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life 2021, 11, 467. [Google Scholar] [CrossRef]
- Pounis, G.; Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; Persichillo, M.; Krogh, V.; Donati, M.B.; De Gaetano, G.; Iacoviello, L. Flavonoid and Lignan Intake in a Mediterranean Population: Proposal for a Holistic Approach in Polyphenol Dietary Analysis, the Moli-Sani Study. Eur. J. Clin. Nutr. 2016, 70, 338–345. [Google Scholar] [CrossRef]
- Yahya, H.M.; Day, A.; Lawton, C.; Myrissa, K.; Croden, F.; Dye, L.; Williamson, G. Dietary Intake of 20 Polyphenol Subclasses in a Cohort of UK Women. Eur. J. Nutr. 2016, 55, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhong, C.; Zhou, X.; Chen, R.; Xiong, T.; Hong, M.; Li, Q.; Kong, M.; Xiong, G.; Han, W. Inverse Association of Total Polyphenols and Flavonoids Intake and the Intake from Fruits with the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study. Clin. Nutr. 2021, 40, 550–559. [Google Scholar] [CrossRef]
- Hoge, A.; Guillaume, M.; Donneau, A.-F.; Albert, A.; Cheramy-Bien, J.-P.; Tabart, J.; Kevers, C.; Dommes, J.; Defraigne, J.-O.; Pincemail, J. Validation Study of a Food Frequency Questionnaire for the Measurement of Food Consumption in Polyphenols: Use of a Urinary Bioamarker. Preliminary Results. Free Radic. Biol. Med. 2017, 108, S40. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Topor-Mądry, R.; Szafraniec, K.; Pająk, A. Estimated Dietary Intake and Major Food Sources of Polyphenols in the Polish Arm of the HAPIEE Study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef]
- Bondonno, N.P.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Kyrø, C.; Gislason, G.; Tjønneland, A.; Scalbert, A.; Cassidy, A.; et al. Flavonoid Intake and Its Association with Atrial Fibrillation. Clin. Nutr. 2020, 39, 3821–3828. [Google Scholar] [CrossRef]
- Mérida, D.M.; Vitelli-Storelli, F.; Moreno-Franco, B.; Rodríguez-Ayala, M.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Polyphenol Intake and Mortality: A Nationwide Cohort Study in the Adult Population of Spain. Clin. Nutr. 2023, 42, 1076–1085. [Google Scholar] [CrossRef]
- Sridharan, S.; Archer, N.; Manning, N. Premature Constriction of the Fetal Ductus Arteriosus Following the Maternal Consumption of Camomile Herbal Tea. Ultrasound Obstet. Gynecol. 2009, 34, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, C.; Vazquez-Gomez, M.; Barbero, A.; Pesantez, J.L.; Zinellu, A.; Berlinguer, F.; Gonzalez-Añover, P.; Gonzalez, J.; Encinas, T.; Torres-Rovira, L. Polyphenols and IUGR Pregnancies: Effects of Maternal Hydroxytyrosol Supplementation on Placental Gene Expression and Fetal Antioxidant Status, DNA-Methylation and Phenotype. Int. J. Mol. Sci. 2019, 20, 1187. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Chen, M.; Zhou, K.; Chen, D.; Yu, J.; Hu, W.; Song, L.; Hang, B.; Wang, X.; Xia, Y. Prenatal Lignan Exposures, Pregnancy Urine Estrogen Profiles and Birth Outcomes. Environ. Pollut. 2015, 205, 261–268. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Luo, L.; Tang, D.; Zhang, L. The What and Who of Dietary Lignans in Human Health: Special Attention to Estrogen Effects and Safety Evaluation. J. Agric. Food Chem. 2023, 71, 16419–16434. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. (%), Mean ± SD |
---|---|
Maternal characteristics | |
Maternal age | 31.05 ± 4.86 |
Education: | |
Primary education | 335 (49.3%) |
Secondary education | 162 (23.8%) |
Higher education | 183 (26.9%) |
Parity: | |
0 (primiparous) | 262 (38.5%) |
≥1 (multiparous) | 418 (61.5%) |
Repeat abortions: | |
Yes | 54 (7.9%) |
No | 626 (92.1%) |
Smoking: | |
Never | 569 (83.6%) |
Only 1st trimester | 29 (4.3%) |
During all pregnancy | 82 (12.1%) |
Alcohol consumption: | |
Never | 133 (19.5%) |
Only 1st trimester | 282 (41.5%) |
During all pregnancy | 265 (39.0%) |
Vitamin supplement intake: | |
Never | 538 (79.1%) |
Sometime during pregnancy | 129 (19.0%) |
During all pregnancy | 12 (1.8%) |
Physical exercise: | |
Never | 14 (2.1%) |
Sometime during pregnancy | 138 (20.3%) |
During all pregnancy | 528 (77.6%) |
Energy intake (Kcal): | |
1st trimester | 2404 ± 739 |
3rd trimester | 2054 ± 670 |
Pre-pregnancy BMI (kg/m2) | 24.23 ± 4.68 |
Gestational weight gain (kg) | 11.23 ± 5.42 |
Infant characteristics | |
Infant sex: | |
Male | 349 (51.3%) |
Female | 331 (48.7%) |
Length of gestation (weeks) | 39.87 ± 1.25 |
Ponderal index | 2.55 ± 0.25 |
Birth weight (g) | 3329.30 ± 427.05 |
Birth length (cm) | 50.70 ± 2.09 |
Head circumference (cm) | 33.75 ± 1.52 |
FFQ 1 | FFQ 2 | Correlation Coefficient | Agreement by Quintiles (%) a | Agreement by LOA (%) b | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Mean total polyphenol intake (mg) | 2158 ± 1023 | 1875 ± 835 | 0.303 * | 67.4 | 95.4 |
Vegetables (mg) † | 476 ± 321 | 312 ± 296 | 0.369 * | 62.8 | 93.1 |
Spices and infusions (mg) † | 7.33 ± 5.02 | 139 ± 209 | 0.326 * | 67.4 | 95.4 |
Cereals and derived products (mg) | 230 ± 131 | 234 ± 126 | 0.314 * | 69.8 | 90.7 |
Legumes (mg) † | 676 ± 408 | 219 ± 395 | 0.015 | 60.5 | 93.1 |
Fruits (mg) | 358 ± 185 | 407 ± 279 | 0.418 ** | 69.8 | 90.7 |
Fruit derivatives (mg) | 68.5 ± 30.9 | 49.3 ± 81.5 | 0.224 | 62.8 | 90.7 |
Oils (mg) † | 29.5 ± 15.8 | 12.3 ± 9.57 | −0.086 | 53.5 | 95.4 |
Nuts (mg) † | 45.9 ± 10.4 | 33.4 ± 68.8 | 0.261 | 67.4 | 95.4 |
Processed foods (mg) † | 66.8 ± 49.3 | 65.1 ± 81.1 | −0.056 | 67.4 | 90.7 |
Chocolate and coffee (mg) | 418 ± 345 | 564 ± 527 | 0.347 * | 76.7 | 93.1 |
Alcoholic beverages (mg) | 5.07 ± 2.73 | 4.87 ± 9.01 | 0.260 | 65.1 | 90.7 |
FFQ 1 | FFQ 2 | Correlation Coefficient | Agreement by Quintiles (%) a | Agreement by LOA (%) b | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Mean total polyphenol intakes | 2388 ± 905 | 2075 ± 932 | 0.355 ** | 65.2 | 94.1 |
Flavonoids | 624 ± 364 | 518 ± 353 | 0.336 ** | 69.8 | 93.5 |
Phenolic acids | 461 ± 225 | 350 ± 200 | 0.406 ** | 65.6 | 95.7 |
Lignans | 68.3 ± 45.4 | 57.8 ± 45.7 | 0.376 ** | 68.9 | 94.4 |
Stilbenes | 0.47 ± 0.53 | 0.2 ± 0.24 | 0.141 ** | 60.1 | 96.6 |
Other polyphenols | 60.5 ± 46.9 | 50.6 ± 40.9 | 0.321 ** | 67.5 | 94.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Nogueira, D.; Romero-Molina, D.; González-Alzaga, B.; Giménez-Asensio, M.J.; Hernandez, A.F.; Navajas-Porras, B.; Delgado-Osorio, A.; Gomez-Martin, A.; Pérez-Burillo, S.; Pastoriza de la Cueva, S.; et al. Evaluation of Polyphenol Intake in Pregnant Women from South-Eastern Spain and the Effect on Anthropometric Measures at Birth and Gestational Age. Nutrients 2024, 16, 3096. https://doi.org/10.3390/nu16183096
Hinojosa-Nogueira D, Romero-Molina D, González-Alzaga B, Giménez-Asensio MJ, Hernandez AF, Navajas-Porras B, Delgado-Osorio A, Gomez-Martin A, Pérez-Burillo S, Pastoriza de la Cueva S, et al. Evaluation of Polyphenol Intake in Pregnant Women from South-Eastern Spain and the Effect on Anthropometric Measures at Birth and Gestational Age. Nutrients. 2024; 16(18):3096. https://doi.org/10.3390/nu16183096
Chicago/Turabian StyleHinojosa-Nogueira, Daniel, Desirée Romero-Molina, Beatriz González-Alzaga, María José Giménez-Asensio, Antonio F. Hernandez, Beatriz Navajas-Porras, Adriana Delgado-Osorio, Antonio Gomez-Martin, Sergio Pérez-Burillo, Silvia Pastoriza de la Cueva, and et al. 2024. "Evaluation of Polyphenol Intake in Pregnant Women from South-Eastern Spain and the Effect on Anthropometric Measures at Birth and Gestational Age" Nutrients 16, no. 18: 3096. https://doi.org/10.3390/nu16183096
APA StyleHinojosa-Nogueira, D., Romero-Molina, D., González-Alzaga, B., Giménez-Asensio, M. J., Hernandez, A. F., Navajas-Porras, B., Delgado-Osorio, A., Gomez-Martin, A., Pérez-Burillo, S., Pastoriza de la Cueva, S., Lacasaña, M., & Rufián-Henares, J. Á. (2024). Evaluation of Polyphenol Intake in Pregnant Women from South-Eastern Spain and the Effect on Anthropometric Measures at Birth and Gestational Age. Nutrients, 16(18), 3096. https://doi.org/10.3390/nu16183096