Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects
Abstract
:1. Introduction
Characteristics | |
---|---|
gene name | MCM6 (Minichromosome maintenance complex component 6) |
ID SNP/Cytogenetic: | rs4988235, 2q21.3 |
HGVS | NC_000002.12:g.135851076G>A, Ref. sequence: GRCh38.p14 chr 2 |
alternative name | NM_002299.2 (LCT): c.-13907C>T, IVS13, C/T |
locus and function | The region, located in intron 13 of MCM6 and surrounding the rs4988235 variant, acts as a promoter for the LCT lactase gene. The intron variant is located 13.9 kb upstream of the lactase gene LCT |
type of inheritance | Autosomal dominant (AD) |
allele frequencies | Africans: G 88.2%, A 11.8%; Asians: G 99.3%, A 7%; Caucasians: G 45.7%, A 54.3% |
clinical significance | Allele G associated with lactose intolerance, Reported in ClinVar RCV000008124.14 |
GWAS (genome-wide association study) effects |
Allele G:
Allele A:
|
2. Materials and Methods
2.1. Study Group
2.2. Bone Mineral Density Measurement
2.3. Biochemical and Genetic Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF Diabetes Atlas 10th Edition. Available online: https://diabetesatlas.org/atlas/tenth-edition/ (accessed on 20 July 2024).
- Palui, R.; Pramanik, S.; Mondal, S.; Ray, S. Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus. World J. Diabetes 2021, 12, 706–729. [Google Scholar] [CrossRef]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Sahni, S.; Tucker, K.L.; Kiel, D.P.; Quach, L.; Casey, V.A.; Hannan, M.T. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: The Framingham Offspring Study. Arch. Osteoporos. 2013, 8, 119. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Gary, T.L.; Caballero, B.H.; Lawrence, R.S.; Cheskin, L.J.; Wang, Y. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1914–1925. [Google Scholar] [CrossRef]
- Chen, G.C.; Szeto, I.M.; Chen, L.H.; Han, S.F.; Li, Y.J.; van Hekezen, R.; Qin, L.Q. Dairy products consumption and metabolic syndrome in adults: Systematic review and meta-analysis of observational studies. Sci. Rep. 2015, 5, 14606. [Google Scholar] [CrossRef]
- Biver, E.; Herrou, J.; Larid, G.; Legrand, M.A.; Gonnelli, S.; Annweiler, C.; Chapurlat, R.; Coxam, V.; Fardellone, P.; Thomas, T.; et al. Dietary recommendations in the prevention and treatment of osteoporosis. Jt. Bone Spine 2023, 90, 105521. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y.; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef]
- Chin, E.L.; Huang, L.; Bouzid, Y.Y.; Kirschke, C.P.; Durbin-Johnson, B.; Baldiviez, L.M.; Bonnel, E.L.; Keim, N.L.; Korf, I.; Stephensen, C.B.; et al. Association of Lactase Persistence Genotypes (rs4988235) and Ethnicity with Dairy Intake in a Healthy U.S. Population. Nutrients 2019, 11, 1860. [Google Scholar] [CrossRef]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Annu. Rev. Genom. Hum. Genet. 2017, 18, 297–319. [Google Scholar] [CrossRef]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef]
- Bácsi, K.; Kósa, J.P.; Lazáry, A.; Balla, B.; Horváth, H.; Kis, A.; Nagy, Z.; Takács, I.; Lakatos, P.; Speer, G. LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporos Int. 2009, 4, 639–645. [Google Scholar] [CrossRef]
- Swallow, D.M. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 2003, 37, 197–219. [Google Scholar] [CrossRef]
- Ingram, C.J.; Raga, T.O.; Tarekegn, A.; Browning, S.L.; Elamin, M.F.; Bekele, E.; Thomas, M.G.; Weale, M.E.; Bradman, N.; Swallow, D.M. Multiple rare variants as a cause of a common phenotype: Several different lactase persistence associated alleles in a single ethnic group. J. Mol. Evol. 2009, 69, 579–588. [Google Scholar] [CrossRef]
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef]
- Ingram, C.J.E.; Elamin, M.F.; Mulcare, C.A.; Weale, M.E.; Tarekegn, A.; Raga, T.O.; Bekele, E.; Elamin, F.M.; Thomas, M.G.; Bradman, N.; et al. A novel polymorphism associated with lactose tolerance in Africa: Multiple causes for lactase persistence? Hum. Genet. 2007, 120, 779–788. [Google Scholar] [CrossRef]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, regional, and global estimates for lactose malabsorption in adults: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Zhou, A.; Cavadino, A.; Hyppönen, E. Evidence for a causal association between milk intake and cardiometabolic disease outcomes using a two-sample Mendelian Randomization analysis in up to 1,904,220 individuals. Int. J. Obes. 2021, 45, 1751–1762. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/snp/?term=rs4988235 (accessed on 20 July 2024).
- Available online: https://omim.org/entry/601806 (accessed on 20 July 2024).
- Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/7685/ (accessed on 20 July 2024).
- Available online: https://varsome.com/variant/hg38/rs4988235?annotation-mode=germline (accessed on 20 July 2024).
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; on behalf of the World Health Organization Scientific Group. Assessment of Osteoporosis at the Primary Health Care Level; Technical Report; World Health Organization Collaborating Center for Metabolic Bone Diseases: Geneva, Switzerland; University of Sheffield: Sheffield, UK, 2007. [Google Scholar]
- Assessment of Osteoporosis at the Primary Health Care Level. Report of a WHO Scientific Group. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://frax.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf&ved=2ahUKEwjf1fmEwJyIAxXyBdsEHcwmEigQFnoECBMQAQ&usg=AOvVaw1cnRH_D5oY-QJ1fKzDzfJk (accessed on 31 August 2024).
- Kowalówka, M.; Kosewski, G.; Lipiński, D.; Przysławski, J. A Comprehensive Look at the -13910 C>T LCT Gene Polymorphism as a Molecular Marker for Vitamin D and Calcium Levels in Young Adults in Central and Eastern Europe: A Preliminary Study. Int. J. Mol. Sci. 2023, 24, 10191. [Google Scholar] [CrossRef]
- Popadowska, A.; Kempinska-Podhorodecka, A. Relation of the C/T-13910 LCT Polymorphism with Body Composition Measures and Their Modulation by Dairy Products in a Caucasian Men. Am. J. Men’s Health 2021, 15, 15579883211007272. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Chen, G.-C.; Zhang, Y.; Moon, J.-Y.; Xing, J.; Peters, B.A.; Usyk, M.; Wang, Z.; Hu, G.; Li, J.; et al. Variant of the lactase LCT gene explains association between milk intake and incident type 2 diabetes. Nat. Metab. 2024, 6, 169–186. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Izaola, O.; Primo, D. The lactase rs4988235 is associated with obesity related variables and diabetes mellitus in menopausal obese females. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 932–940. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary prevention of obesity and cardio- metabolic disease. Nat. Rev. Endocrinol. 2015, 11, 448–449. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.P.; Gagnon, J.; Labonté, M.È.; Desroches, S.; Charest, A.; Grenier, G.; Dodin, S.; Lemieux, S.; Couture, P.; Lamarche, B. Impact of milk consumption on cardiometabolic risk in postmenopausal women with abdominal obesity. Nutr. J. 2015, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Bueno, C.; Cavero-Redondo, I.; Martinez-Vizcaino, V.; Sotos-Prieto, M.; Ruiz, J.R.; Gil, A. Effects of Milk and Dairy Product Consumption on Type 2 Diabetes: Overview of Systematic Reviews and Meta-Analyses. Adv. Nutr. 2019, 10 (Suppl. S2), S154–S163. [Google Scholar] [CrossRef]
- Anguita-Ruiz, A.; Aguilera, C.M.; Gil, A. Genetics of lactose intolerance: An updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients 2020, 12, 2689. [Google Scholar] [CrossRef]
- Kable, M.E.; Chin, E.L.; Huang, L.; Stephensen, C.B.; Lemay, D.G. Association of Estimated Daily Lactose Consumption, Lactase Persistence Genotype (rs4988235), and Gut Microbiota in Healthy Adults in the United States. J. Nutr. 2023, 153, 2163–2173. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, S.L.; Yeung, S.L.A.; Kwok, M.K.; Xu, L.; Leung, G.M.; Schooling, C.M. Genetically predicted milk consumption and bone health, ischemic heart disease and type 2 diabetes: A Mendelian randomization study. Eur. J. Clin. Nutr. 2017, 71, 1008–1012. [Google Scholar] [CrossRef]
- Mitri, J.; Yusof, B.-N.M.; Maryniuk, M.; Schrager, C.; Hamdy, O.; Salsberg, V. Dairy intake and type 2 diabetes risk factors: A narrative review. Diabetes Metab. Syndr. 2019, 13, 2879–2887. [Google Scholar] [CrossRef]
- Jarczak, J.; Grochowalski, Ł.; Marciniak, B.; Lach, J.; Słomka, M.; Sobalska-Kwapis, M.; Lorkiewicz, W.; Pułaski, Ł.; Strapagiel, D. Mitochondrial DNA variability of the Polish population. Eur. J. Hum. Genet. 2019, 27, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |||
---|---|---|---|
General | the number of subjects, n (%) | 607 | (100.00) |
the age [years], median ± QD | 65.60 | 6.28 | |
the age range [years], n (%) | |||
| 165 | (27.18) | |
| 238 | (39.21) | |
| 175 | (28.83) | |
| 29 | (4.78) | |
years after menopause [years], median ± QD | 16.46 | 6.61 | |
BMI [kg/m2], median ± QD | 30.82 | 3.95 | |
overweight/obesity [BMI ≥ 25], n (%) | 529 | (87.15) | |
obesity [BMI ≥ 30], n (%) | 330 | (54.37) | |
waist circumference [cm], median ± QD | 94.00 | 8.50 | |
abdominal obesity [WC ≥ 88 cm], n (%) | 389 | (64.09) | |
cigarette smokers, n (%) | 71 | (11.70) | |
alcohol consumption [≥3 units/day], n (%) | 4 | (0.66) | |
calcium supplementation, n (%) | 88 | (14.50) | |
vitamin-D3 supplementation, n (%) | 78 | (12.85) | |
vitamin D3 [ng/mL], median ± QD | 7.49 | 2.76 | |
BMD parameters | BMD FN [mg/cm2], median ± QD | 855.00 | 84.5 |
BMD FN T-score, median ± QD | −1.30 | 0.60 | |
normal BMD [T-score > −1], n (%) | 211 | (34.76) | |
osteopenia [T-score ≤ −1, >−2.5], n (%) | 339 | (55.85) | |
osteoporosis [T-score ≤ −2.5], n (%) | 57 | (9.39) | |
BMD TH [mg/cm2], median ± QD | 941.00 | 90.50 | |
BMD TH T-score, median ± QD | −0.50 | 0.70 | |
normal BMD [T-score > −1], n (%) | 401 | (66.06) | |
osteopenia [T-score ≤ −1, >−2.5], n (%) | 183 | (30.15) | |
osteoporosis [T-score ≤ −2.5], n (%) | 23 | (3.79) | |
BMD TR [mg/cm2], median ± QD | 766.00 | 87.00 | |
BMD TR T-score, median ± QD | −0.70 | 0.75 | |
Comorbidities and medications affecting bone mineral density | DM type 2, n (%) | 94 | (15.49) |
glucocoticosteroid therapy, n (%) | 28 | (4.61) | |
rheumatoid arthritis, n (%) | 40 | (6.59) | |
thyroid gland diseases, n (%) | 6 | (0.99) | |
chronic kidney disease, n (%) | 6 | (0.99) |
SNP | Position | Genotypes | n (%) | Alleles | n (%) | HWE p Value |
---|---|---|---|---|---|---|
rs4988235 | chr2:135851076 | AA | 106 (17.46) | A | 516 (42.50) | 0.370 |
AG | 304 (50.08) | G | 698 (57.50) | |||
GG | 197 (32.46) | |||||
AA+AG | 410 (67.54) | |||||
AG+GG | 501 (82.54) |
Parameter | Median | ±QD | Median | ±QD | p Mann-Whitney U Test |
---|---|---|---|---|---|
GG | AA/AG | ||||
BMD FN [mg/cm2], median ± QD | 841.00 | 89.50 | 859.50 | 80.00 | 0.297 |
BMD FN T-score, median ± QD | −1.40 | 0.65 | −1.30 | 0.60 | 0.324 |
BMD TH [mg/cm2], median ± QD | 914.00 | 95.50 | 950.50 | 91.00 | 0.053 |
BMD TH T-score, median ± QD | −0.70 | 0.80 | −0.50 | 0.75 | 0.133 |
BMD TR [mg/cm2], median ± QD | 751.00 | 79.00 | 781.00 | 89.50 | 0.037 |
BMD TR T-score, median ± QD | −0.90 | 0.75 | −0.60 | 0.80 | 0.057 |
Parameter | GG | AA/AG | p |
---|---|---|---|
BMD FN [mg/cm2], median ± QD | −0.46 | −0.33 | 0.038 |
BMD FN T-score, median ± QD | −0.44 | −0.32 | 0.054 |
BMD TH [mg/cm2], median ± QD | −0.41 | −0.29 | 0.058 |
BMD TH T-score, median ± QD | −0.39 | −0.30 | 0.120 |
BMD TR [mg/cm2], median ± QD | −0.30 | −0.22 | 0.162 |
BMD TR T-score, median ± QD | −0.32 | −0.22 | 0.108 |
Characteristics | GG | AA/AG | ||||
---|---|---|---|---|---|---|
Median | ±QD | Median | ±QD | p Mann-Whitney U Test | ||
age [years], median ± QD | 66.25 | 5.97 | 65.47 | 6.49 | 0.592 | |
BMI [kg/m2], median ± QD | 30.13 | 3.54 | 31.14 | 4.07 | 0.099 | |
waist circumference [cm], median ± QD | 92.00 | 8.00 | 95.00 | 9.00 | 0.194 | |
n | % | n | % | p χ2 test | ||
obesity [BMI ≥ 30] | Yes | 101 | 51.27 | 229 | 55.85 | 0.288 |
No | 96 | 48.73 | 181 | 44.15 | ||
abdominal obesity [WC ≥ 88 cm] | Yes | 123 | 67.96 | 226 | 69.82 | 0.655 |
No | 58 | 32.04 | 115 | 30.18 | ||
DM type 2 | Yes | 40 | 20.30 | 54 | 13.17 | 0.023 |
No | 157 | 79.70 | 356 | 86.83 | ||
RA | Yes | 15 | 7.61 | 25 | 6.10 | 0.481 |
No | 182 | 92.39 | 385 | 93.90 | ||
Calcium supplementation | Yes | 39 | 19.80 | 49 | 11.95 | 0.010 |
No | 158 | 80.20 | 361 | 88.05 | ||
vitamin-D3 supplementation | Yes | 34 | 17.26 | 44 | 10.73 | 0.010 |
No | 163 | 82.74 | 366 | 89.27 | ||
anti-osteoporotic therapy | Yes | 38 | 19.29 | 53 | 12.93 | 0.040 |
No | 159 | 80.71 | 357 | 87.07 | ||
history of fractures > 40 year | Yes | 54 | 27.41 | 115 | 28.05 | 0.870 |
No | 143 | 72.59 | 295 | 71.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górczyńska-Kosiorz, S.; Cichocka, E.; Niemiec, P.; Trautsolt, W.; Pluskiewicz, W.; Gumprecht, J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients 2024, 16, 3002. https://doi.org/10.3390/nu16173002
Górczyńska-Kosiorz S, Cichocka E, Niemiec P, Trautsolt W, Pluskiewicz W, Gumprecht J. Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients. 2024; 16(17):3002. https://doi.org/10.3390/nu16173002
Chicago/Turabian StyleGórczyńska-Kosiorz, Sylwia, Edyta Cichocka, Paweł Niemiec, Wanda Trautsolt, Wojciech Pluskiewicz, and Janusz Gumprecht. 2024. "Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects" Nutrients 16, no. 17: 3002. https://doi.org/10.3390/nu16173002
APA StyleGórczyńska-Kosiorz, S., Cichocka, E., Niemiec, P., Trautsolt, W., Pluskiewicz, W., & Gumprecht, J. (2024). Bone Mineral Density and the Risk of Type-2 Diabetes in Postmenopausal Women: rs4988235 Polymorphism Associated with Lactose Intolerance Effects. Nutrients, 16(17), 3002. https://doi.org/10.3390/nu16173002