Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review
Abstract
:1. Introduction
2. Lipid Physiology in Pregnancy
3. Hyperlipidemia and Possible Adverse Maternal and Neonatal Outcomes
Lipid Metabolism and Pregestational Conditions
Pre-Gestation | During Pregnancy | |
---|---|---|
Healthy women [9,83] | Normal lipid parameters | TC: +30–50% (≈250 mg/dL) LDL-C: +30–50% (140 mg/dL) HDL-C: +20–40% (≈65 mg/dL) TG: +50–100% (≈250 mg/dL) |
Primary dyslipidemias | ||
Heterozygous familial hypercholesterolemia [94] | LDL-C: ≈200–250 mg/dL | LDL-C: +25–40% (≈250-350 mg/dL) |
Homozygous familial hypercholesterolemia [95,96] | LDL-C: ≈500–600 mg/dL (untreated) ≈300–500 mg/dL (on therapy) | LDL-C: +20–60% (≈600–800 mg/dL, pre-apheresis) |
Familial hyperchylomicronemia [83,97,98] | TG: range 1300–1500 mg/dL | TG: +350% (≈5000–7500 mg/dL) |
4. Dietary and Lifestyle Approaches in Pregnancy
4.1. Macronutrients in Pregnancy
4.2. Micronutrients: Minerals and Vitamins
5. Nutritional Strategies for Managing Dyslipidemias in Pregnancy
6. Pharmacological Approach
6.1. Familial Hypercholesterolemia: Treatment in Pregnancy
6.1.1. Bile Acid Sequestrants
6.1.2. Fibrates, Nicotinic Acid, Ezetimibe
6.1.3. Statins
6.1.4. New Therapies
6.2. Lipoprotein Apheresis for Managing Dyslipidemia in Pregnancy
6.3. Severe Hypertriglyceridemia: Treatment in Pregnancy
6.3.1. Statins
6.3.2. Fibrates
6.3.3. Omega-3
6.3.4. Nicotinic Acid (Niacin)
6.3.5. Bile Acid Sequestrants
6.3.6. New Therapies
6.3.7. Plasmapheresis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roeters Van Lennep, J.E.; Tokgözoǧlu, L.S.; Badimon, L.; Dumanski, S.M.; Gulati, M.; Hess, C.N.; Holven, K.B.; Kavousi, M.; Kaylkçloǧlu, M.; Lutgens, E.; et al. Women, Lipids, and Atherosclerotic Cardiovascular Disease: A Call to Action from the European Atherosclerosis Society. Eur. Heart J. 2023, 44, 4157–4173. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, D.; Qi, Y. Global Trends in the Epidemiology and Management of Dyslipidemia. J. Clin. Med. 2022, 11, 6377. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Yoshida, H. Secondary Dyslipidemia: Its Treatments and Association with Atherosclerosis. Glob. Health Med. 2021, 3, 15–23. [Google Scholar] [CrossRef]
- Cho, S.M.J.; Lee, H.J.; Shim, J.S.; Song, B.M.; Kim, H.C. Associations between Age and Dyslipidemia Are Differed by Education Level: The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Cohort. Lipids Health Dis. 2020, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Formisano, E.; Pasta, A.; Cremonini, A.L.; Di Lorenzo, I.; Sukkar, S.G.; Pisciotta, L. Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis. Nutrients 2021, 13, 1161. [Google Scholar] [CrossRef] [PubMed]
- Schienkiewitz, A.; Truthmann, J.; Ernert, A.; Wiegand, S.; Schwab, K.O.; Scheidt-Nave, C. Age, Maturation and Serum Lipid Parameters: Findings from the German Health Survey for Children and Adolescents. BMC Public Health 2019, 19, 1627. [Google Scholar] [CrossRef]
- Sharma, J.; McAlister, J.; Aggarwal, N.R.; Wei, J.; Mehta, P.K.; Quesada, O.; Mattina, D.; Scott, N.S.; Michos, E.D.; Mahmoud, Z.; et al. Evaluation and Management of Blood Lipids through a Woman’s Life Cycle. Am. J. Prev. Cardiol. 2022, 10, 100333. [Google Scholar] [CrossRef]
- Upmeier, E.; Lavonius, S.; Heinonen, P.; Viitanen, M.; Isoaho, H.; Arve, S.; Lehtonen, A. Longitudinal Changes in Serum Lipids in Older People the Turku Elderly Study 1991–2006. Age Ageing 2011, 40, 280–283. [Google Scholar] [CrossRef]
- Mulder, J.W.C.M.; Kusters, D.M.; van Lennep, J.E.R.; Hutten, B.A. Lipid Metabolism during Pregnancy: Consequences for Mother and Child. Curr. Opin. Lipidol. 2024, 35, 133–140. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Wu, D.; Chen, Q.; Xiao, Z.; Wen, D.; Zhai, L.; Jia, L. Influence of Dietary Behaviors on Dyslipidemia in Pregnant Women and Its Effects on Physical Development of Fetuses and Infants: A Bidirectional Cohort Study. Nutrients 2021, 13, 3398. [Google Scholar] [CrossRef]
- Graves, M.; Howse, K.; Pudwell, J.; Smith, G.N. Pregnancy-Related Cardiovascular Risk Indicators: Primary Care Approach to Postpartum Management and Prevention of Future Disease. Can. Fam. Physician 2019, 65, 883–889. [Google Scholar] [PubMed]
- Tabacu, C.; Manolea, M.-M.; Novac, L.; Dijmarescu, A.L.; Boldeanu, M.V. Maternal Lipid Profile as a Risk Factor for Gestational Diabetes Mellitus in Obese Women. Curr. Health Sci. J. 2021, 47, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal Hyperlipidemia and the Risk of Preeclampsia: A Meta-Analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskina, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef] [PubMed]
- Makarem, N.; Chau, K.; Miller, E.C.; Gyamfi-Bannerman, C.; Tous, I.; Booker, W.; Catov, J.M.; Haas, D.M.; Grobman, W.A.; Levine, L.D.; et al. Association of a Mediterranean Diet Pattern With Adverse Pregnancy Outcomes Among US Women. JAMA Netw. Open 2022, 5, E2248165. [Google Scholar] [CrossRef]
- Dai, F.C.; Wang, P.; Li, Q.; Zhang, L.; Yu, L.J.; Wu, L.; Tao, R.X.; Zhu, P. Mediterranean Diet during Pregnancy and Infant Neurodevelopment: A Prospective Birth Cohort Study. Front. Nutr. 2023, 9, 1078481. [Google Scholar] [CrossRef]
- Richardson, L.A.; Izuora, K.; Basu, A. Mediterranean Diet and Its Association with Cardiovascular Disease Risk Factors: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 12762. [Google Scholar] [CrossRef]
- Escobar, C.; Anguita, M.; Arrarte, V.; Barrios, V.; Cequier, Á.; Cosín-Sales, J.; Egocheaga, I.; López de Sa, E.; Masana, L.; Pallarés, V.; et al. Recommendations to Improve Lipid Control. Consensus Document of the Spanish Society of Cardiology. Rev. Esp. Cardiol. (Engl. Ed.) 2020, 73, 161–167. [Google Scholar] [CrossRef]
- Pasta, A.; Formisano, E.; Cremonini, A.L.; Maganza, E.; Parodi, E.; Piras, S.; Pisciotta, L. Diet and Nutraceutical Supplementation in Dyslipidemic Patients: First Results of an Italian Single Center Real-World Retrospective Analysis. Nutrients 2020, 12, 2056. [Google Scholar] [CrossRef]
- Mauricio, R.; Khera, A. Statin Use in Pregnancy: Is It Time For a Paradigm Shift? Circulation 2022, 145, 496–498. [Google Scholar] [CrossRef]
- Bohn, M.K.; Adeli, K. Physiological and Metabolic Adaptations in Pregnancy: Importance of Trimester-Specific Reference Intervals to Investigate Maternal Health and Complications. Crit. Rev. Clin. Lab. Sci. 2022, 59, 76–92. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, F.; Li, S. Metabolic Adaptations in Pregnancy: A Review. Ann. Nutr. Metab. 2017, 70, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Lipid Metabolism in Pregnancy and Its Consequences in the Fetus and Newborn. Endocrine 2002, 19, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Lain, K.Y.; Catalano, P.M. Metabolic Changes in Pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Rung, E.; Friberg, P.A.; Shao, R.; Larsson, D.G.J.; Nielsen, E.C.; Svensson, P.A.; Carlsson, B.; Carlsson, L.M.S.; Billig, H. Progesterone-Receptor Antagonists and Statins Decrease de Novo Cholesterol Synthesis and Increase Apoptosis in Rat and Human Periovulatory Granulosa Cells in Vitro. Biol. Reprod. 2005, 72, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Duttaroy, A.K.; Basak, S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front. Physiol. 2022, 12, 787848. [Google Scholar] [CrossRef]
- Ghio, A.; Bertolotto, A.; Resi, V.; Volpe, L.; Di Cianni, G. Triglyceride Metabolism in Pregnancy. Adv. Clin. Chem. 2011, 55, 133–153. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Eckel, R.H.; Abumrad, N.A. Regulation of Fatty Acid Uptake into Tissues: Lipoprotein Lipase- and CD36-Mediated Pathways. J. Lipid Res. 2009, 50, S86–S90. [Google Scholar] [CrossRef]
- Bowman, C.E.; Arany, Z.; Wolfgang, M.J. Regulation of Maternal-Fetal Metabolic Communication. Cell Mol. Life Sci. 2021, 78, 1455–1486. [Google Scholar] [CrossRef]
- Herrera, E.; Desoye, G. Maternal and Fetal Lipid Metabolism under Normal and Gestational Diabetic Conditions. Horm. Mol. Biol. Clin. Investig. 2016, 26, 109–127. [Google Scholar] [CrossRef]
- Melchior, J.T.; Swertfeger, D.K.; Morris, J.; Street, S.E.; Warshak, C.R.; Welge, J.A.; Remaley, A.T.; Catov, J.M.; Davidson, W.S.; Woollett, L.A. Pregnancy Is Accompanied by Larger High Density Lipoprotein Particles and Compositionally Distinct Subspecies. J. Lipid Res. 2021, 62, 100107. [Google Scholar] [CrossRef]
- Piechota, W.; Staszewski, A. Reference Ranges of Lipids and Apolipoproteins in Pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 1992, 45, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kong, L.; Yang, Y.; Wei, Y.; Zhu, W.; Su, R.; Lin, L.; Yang, H. Recommended Reference Values for Serum Lipids during Early and Middle Pregnancy: A Retrospective Study from China. Lipids Health Dis. 2018, 17, 246. [Google Scholar] [CrossRef] [PubMed]
- Perrine, C.G.; Nelson, J.M.; Corbelli, J.; Scanlon, K.S. Lactation and Maternal Cardio-Metabolic Health. Annu. Rev. Nutr. 2016, 36, 627–645. [Google Scholar] [CrossRef]
- Lu, F.; Ferriero, D.M.; Jiang, X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr. Neuropharmacol. 2022, 20, 1400–1412. [Google Scholar] [CrossRef]
- Wong, B.; Ooi, T.C.; Keely, E. Severe Gestational Hypertriglyceridemia: A Practical Approach for Clinicians. Obstet. Med. 2015, 8, 158–167. [Google Scholar] [CrossRef]
- Dalfrà, M.G.; Burlina, S.; Ragazzi, E.; Pastrolin, S.; Sartore, G.; Lapolla, A. Lipid Profile in Women of Different Ethnicity with Gestational Diabetes: Relationship with Fetal Growth. J. Diabetes Investig. 2024, 15, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Z.; Zhang, F. Association between Maternal Lipid Levels during Pregnancy and Delivery of Small for Gestational Age: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 934505. [Google Scholar] [CrossRef] [PubMed]
- Toleikyte, I.; Retterstøl, K.; Leren, T.P.; Iversen, P.O. Pregnancy Outcomes in Familial Hypercholesterolemia: A Registry-Based Study. Circulation 2011, 124, 1606–1614. [Google Scholar] [CrossRef]
- Pasta, A.; Cremonini, A.L.; Formisano, E.; Fresa, R.; Bertolini, S.; Pisciotta, L. Long Term Follow-up of Genetically Confirmed Patients with Familial Hypercholesterolemia Treated with First and Second-Generation Statins and Then with PCSK9 Monoclonal Antibodies. Atherosclerosis 2020, 308, 6–14. [Google Scholar] [CrossRef]
- Casula, M.; Gazzotti, M.; Capra, M.E.; Olmastroni, E.; Galimberti, F.; Catapano, A.L.; Pederiva, C.; Anesi, A.; Arca, M.; Auricchio, R.; et al. Refinement of the Diagnostic Approach for the Identification of Children and Adolescents Affected by Familial Hypercholesterolemia: Evidence from the LIPIGEN Study. Atherosclerosis 2023, 385, 117231. [Google Scholar] [CrossRef]
- Graham, D.F.; Raal, F.J. Management of Familial Hypercholesterolemia in Pregnancy. Curr. Opin. Lipidol. 2021, 32, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Amundsen, Å.L.; Khoury, J.; Iversen, P.O.; Bergei, C.; Ose, L.; Tonstad, S.; Retterstøl, K. Marked Changes in Plasma Lipids and Lipoproteins during Pregnancy in Women with Familial Hypercholesterolemia. Atherosclerosis 2006, 189, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Abu-Awwad, S.A.; Craina, M.; Boscu, L.; Bernad, E.; Ciordas, P.D.; Marian, C.; Iurciuc, M.; Abu-Awwad, A.; Iurciuc, S.; Bernad, B.; et al. Lipid Profile Variations in Pregnancies with and without Cardiovascular Risk: Consequences for Both Mother and Newborn. Children 2023, 10, 1521. [Google Scholar] [CrossRef]
- Li, G.; Kong, L.; Zhang, L.; Fan, L.; Su, Y.; Rose, J.C.; Zhang, W. Early Pregnancy Maternal Lipid Profiles and the Risk of Gestational Diabetes Mellitus Stratified for Body Mass Index. Reprod. Sci. 2015, 22, 712–717. [Google Scholar] [CrossRef]
- Ryckman, K.K.; Spracklen, C.N.; Smith, C.J.; Robinson, J.G.; Saftlas, A.F. Maternal Lipid Levels during Pregnancy and Gestational Diabetes: A Systematic Review and Meta-Analysis. BJOG 2015, 122, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Rahnemaei, F.A.; Pakzad, R.; Amirian, A.; Pakzad, I.; Abdi, F. Effect of Gestational Diabetes Mellitus on Lipid Profile: A Systematic Review and Meta-Analysis. Open Med (Wars). 2021, 17, 70–86. [Google Scholar] [CrossRef]
- O’Malley, E.G.; Reynolds, C.M.E.; Killalea, A.; O’Kelly, R.; Sheehan, S.R.; Turner, M.J. Maternal Obesity and Dyslipidemia Associated with Gestational Diabetes Mellitus (GDM). Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 246, 67–71. [Google Scholar] [CrossRef]
- Hardy, O.T.; Czech, M.P.; Corvera, S. What Causes the Insulin Resistance Underlying Obesity? Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 81–87. [Google Scholar] [CrossRef]
- Stadler, J.T.; Lackner, S.; Mörkl, S.; Trakaki, A.; Scharnagl, H.; Borenich, A.; Wonisch, W.; Mangge, H.; Zelzer, S.; Meier-Allard, N.; et al. Obesity Affects HDL Metabolism, Composition and Subclass Distribution. Biomedicines 2021, 9, 242. [Google Scholar] [CrossRef]
- Formisano, E.; Proietti, E.; Borgarelli, C.; Sukkar, S.G.; Albertelli, M.; Boschetti, M.; Pisciotta, L. The Impact of Overweight on Lipid Phenotype in Different Forms of Dyslipidemia: A Retrospective Cohort Study. J. Endocrinol. Investig. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wojcik-Baszko, D.; Charkiewicz, K.; Laudanski, P. Role of Dyslipidemia in Preeclampsia—A Review of Lipidomic Analysis of Blood, Placenta, Syncytiotrophoblast Microvesicles and Umbilical Cord Artery from Women with Preeclampsia. Prostaglandins Other Lipid Mediat. 2018, 139, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Escudero, C. The Placenta in Preeclampsia. Pregnancy Hypertens. 2012, 2, 72–83. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Lv, Y.; Ding, H. Dissecting the Roles of Lipids in Preeclampsia. Metabolites 2022, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Gallos, I.D.; Sivakumar, K.; Kilby, M.D.; Coomarasamy, A.; Thangaratinam, S.; Vatish, M. Pre-Eclampsia Is Associated with, and Preceded by, Hypertriglyceridaemia: A Meta-Analysis. BJOG 2013, 120, 1321–1332. [Google Scholar] [CrossRef]
- Kleess, L.E.; Janicic, N. Severe hypertriglyceridemia in pregnancy: A case report and review of the literature. AACE Clin. Case Rep. 2019, 5, e99. [Google Scholar] [CrossRef]
- Dash, S.; Tiwari, M.; Dash, P.; Kar, K.; Mohakud, N.K. Complications of Hypertriglyceridemia in Pregnancy and Its Impact on Neonates: A Hospital-Based Study from Odisha. Cureus 2022, 14, e28399. [Google Scholar] [CrossRef]
- Wang, J.; Moore, D.; Subramanian, A.; Cheng, K.K.; Toulis, K.A.; Qiu, X.; Saravanan, P.; Price, M.J.; Nirantharakumar, K. Gestational Dyslipidaemia and Adverse Birthweight Outcomes: A Systematic Review and Meta-Analysis. Obes. Rev. 2018, 19, 1256–1268. [Google Scholar] [CrossRef]
- Calina, D.; Docea, A.O.; Golokhvast, K.S.; Sifakis, S.; Tsatsakis, A.; Makrigiannakis, A. Management of Endocrinopathies in Pregnancy: A Review of Current Evidence. Int. J. Environ. Res. Public Health 2019, 16, 781. [Google Scholar] [CrossRef]
- Alexopoulos, A.S.; Blair, R.; Peters, A.L. Management of Preexisting Diabetes in Pregnancy: A Review. JAMA 2019, 321, 1811–1819. [Google Scholar] [CrossRef]
- Hui, D.; Hladunewich, M.A. Chronic Kidney Disease and Pregnancy. Obstet. Gynecol. 2019, 133, 1182–1194. [Google Scholar] [CrossRef]
- Baumfeld, Y.; Novack, L.; Wiznitzer, A.; Sheiner, E.; Henkin, Y.; Sherf, M.; Novack, V. Pre-Conception Dyslipidemia Is Associated with Development of Preeclampsia and Gestational Diabetes Mellitus. PLoS ONE 2015, 10, e0139164. [Google Scholar] [CrossRef]
- Huhtala, M.; Rönnemaa, T.; Tertti, K. Insulin Resistance Is Associated with an Unfavorable Serum Lipoprotein Lipid Profile in Women with Newly Diagnosed Gestational Diabetes. Biomolecules 2023, 13, 470. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef]
- Toescu, V.; Nuttall, S.L.; Martin, U.; Nightingale, P.; Kendall, M.J.; Brydon, P.; Dunne, F. Changes in Plasma Lipids and Markers of Oxidative Stress in Normal Pregnancy and Pregnancies Complicated by Diabetes. Clin. Sc. (Lond.) 2004, 106, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Oros Ruiz, M.; Perejón López, D.; Serna Arnaiz, C.; Siscart Viladegut, J.; Àngel Baldó, J.; Sol, J. Maternal and Foetal Complications of Pregestational and Gestational Diabetes: A Descriptive, Retrospective Cohort Study. Sci. Rep. 2024, 14, 9017. [Google Scholar] [CrossRef]
- Malaza, N.; Masete, M.; Adam, S.; Dias, S.; Nyawo, T.; Pheiffer, C. A Systematic Review to Compare Adverse Pregnancy Outcomes in Women with Pregestational Diabetes and Gestational Diabetes. Int. J. Environ. Res. Public Health 2022, 19, 10846. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.; Cai, M.; Liu, Y.; Guo, Y. Impact of Dyslipidemia on the Cumulative Pregnancy Outcomes after First Ovarian Stimulation. Front. Endocrinol. 2022, 13, 915424. [Google Scholar] [CrossRef]
- Morón-Díaz, M.; Saavedra, P.; Alberiche-Ruano, M.P.; Rodríguez-Pérez, C.A.; López-Plasencia, Y.; Marrero-Arencibia, D.; González-Lleó, A.M.; Boronat, M. Correlation between TSH Levels and Quality of Life among Subjects with Well-Controlled Primary Hypothyroidism. Endocrine 2021, 72, 190–197. [Google Scholar] [CrossRef]
- Liu, H.; Peng, D. Update on Dyslipidemia in Hypothyroidism: The Mechanism of Dyslipidemia in Hypothyroidism. Endocr. Connect. 2022, 11, e210002. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, H.J.; Kim, H.M.; Choi, S.H.; Lim, S.; Park, Y.J.; Jang, H.C.; Cha, B.S. Decreased Expression of Hepatic Low-Density Lipoprotein Receptor–Related Protein 1 in Hypothyroidism: A Novel Mechanism of Atherogenic Dyslipidemia in Hypothyroidism. Thyroid 2013, 23, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Vella, K.; Vella, S.; Savona-Ventura, C.; Vassallo, J. Thyroid Dysfunction in Pregnancy—A Retrospective Observational Analysis of a Maltese Cohort. BMC Pregnancy Childbirth 2022, 22, 941. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Falbo, A.; Chiossi, G.; Muscogiuri, G.; Fornaciari, E.; Orio, F.; Tolino, A.; Colao, A.; La Sala, G.B.; Zullo, F. Lipid Profile in Nonobese Pregnant Women with Polycystic Ovary Syndrome: A Prospective Controlled Clinical Study. Steroids 2014, 88, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.A.; Rizzo, M.; Clifton, S.; Carmina, E. Lipid Levels in Polycystic Ovary Syndrome: Systematic Review and Meta-Analysis. Fertil. Steril. 2011, 95, 1073–1079.e11. [Google Scholar] [CrossRef]
- Farland, L.V.; Stern, J.E.; Liu, C.L.; Cabral, H.J.; Coddington, C.C.; Diop, H.; Dukhovny, D.; Hwang, S.; Missmer, S.A. Polycystic Ovary Syndrome and Risk of Adverse Pregnancy Outcomes: A Registry Linkage Study from Massachusetts. Hum. Reprod. 2022, 37, 2690–2699. [Google Scholar] [CrossRef]
- August, P. Obstetric Nephrology: Pregnancy and the Kidney--Inextricably Linked. Clin. J. Am. Soc. Nephrol. 2012, 7, 2071–2072. [Google Scholar] [CrossRef]
- Oliverio, A.L.; Hladunewich, M.A. End Stage Kidney Disease and Dialysis in Pregnancy. Adv. Chronic Kidney Dis. 2020, 27, 477–485. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Zakharova, E.; Attini, R.; Hernandez, M.I.; Guillien, A.O.; Alrukhaimi, M.; Liu, Z.H.; Ashuntantang, G.; Covella, B.; Cabiddu, G.; et al. Pregnancy in Chronic Kidney Disease: Need for Higher Awareness. A Pragmatic Review Focused on What Could Be Improved in the Different CKD Stages and Phases. J. Clin. Med. 2018, 7, 415. [Google Scholar] [CrossRef]
- Hladunewich, M.A.; Hou, S.; Odutayo, A.; Cornelis, T.; Pierratos, A.; Goldstein, M.; Tennankore, K.; Keunen, J.; Hui, D.; Chan, C.T. Intensive Hemodialysis Associates with Improved Pregnancy Outcomes: A Canadian and United States Cohort Comparison. J. Am. Soc. Nephrol. 2014, 25, 1103–1109. [Google Scholar] [CrossRef]
- Visconti, L.; Benvenga, S.; Lacquaniti, A.; Cernaro, V.; Bruzzese, A.; Conti, G.; Buemi, M.; Santoro, D. Lipid Disorders in Patients with Renal Failure: Role in Cardiovascular Events and Progression of Chronic Kidney Disease. J. Clin. Transl. Endocrinol. 2016, 6, 8–14. [Google Scholar] [CrossRef]
- Lluesa, J.H.; López-Romero, L.C.; Monzó, J.J.B.; Marugán, M.R.; Boyano, I.V.; Rodríguez-Espinosa, D.; Gómez-Bori, A.; Orient, A.S.; Such, R.D.; Perez, P.S.; et al. Lipidic Profiles of Patients Starting Peritoneal Dialysis Suggest an Increased Cardiovascular Risk beyond Classical Dyslipidemia Biomarkers. Sci. Rep. 2022, 12, 16394. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Covington, A.M.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C.; Waring, A.A.; et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 80, 1366–1418. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.; Navti, O.B.; Frcog, M.; Ahmed, B.; Konje, J.C.; Frcog, F. Hyperlipidaemia and Severe Hypertriglyceridaemia in Pregnancy. Obstet. Gynaecol. 2023, 25, 196–209. [Google Scholar] [CrossRef]
- Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute Pancreatitis: Diagnosis and Treatment. Drugs 2022, 82, 1251–1276. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, D.; Roy, M.; Laha, S.; Nandi, D.; Sengupta, R.; Chattopadhyay, A. Hyperviscosity Syndrome Revisited. Ann. Pediatr. Cardiol. 2022, 15, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, H.; Dang, Q.; Yang, Q.; Huang, D.; Zhang, Y.; Cai, X.; Yu, H. Changes in Serum TG Levels during Pregnancy and Their Association with Postpartum Hypertriglyceridemia: A Population-Based Prospective Cohort Study. Lipids Health Dis. 2021, 20, 119. [Google Scholar] [CrossRef]
- D’Erasmo, L.; Bini, S.; Casula, M.; Gazzotti, M.; Bertolini, S.; Calandra, S.; Tarugi, P.; Averna, M.; Iannuzzo, G.; Fortunato, G.; et al. Contemporary Lipid-Lowering Management and Risk of Cardiovascular Events in Homozygous Familial Hypercholesterolaemia: Insights from the Italian LIPIGEN Registry. Eur. J. Prev. Cardiol. 2024, 31, 1038–1047. [Google Scholar] [CrossRef]
- Blaha, M.; Lanska, M.; Blaha, V.; Boudys, L.; Zak, P. Pregnancy in Homozygous Familial Hypercholesterolemia--Importance of LDL-Apheresis. Atheroscler. Suppl. 2015, 18, 134–139. [Google Scholar] [CrossRef]
- Fanshawe, A.E.; Ibrahim, M. The Current Status of Lipoprotein (a) in Pregnancy: A Literature Review. J. Cardiol. 2013, 61, 99–106. [Google Scholar] [CrossRef]
- Cremonini, A.L.; Pasta, A.; Carbone, F.; Visconti, L.; Casula, M.; Elia, E.; Bonaventura, A.; Liberale, L.; Bertolotto, M.; Artom, N.; et al. Lipoprotein(a) Modulates Carotid Atherosclerosis in Metabolic Syndrome. Front. Mol. Biosci. 2022, 9, 854624. [Google Scholar] [CrossRef]
- Sattar, N.; Clark, P.; Greer, I.A.; Shepherd, J.; Packard, C.J. Lipoprotein (a) Levels in Normal Pregnancy and in Pregnancy Complicated with Pre-Eclampsia. Atherosclerosis 2000, 148, 407–411. [Google Scholar] [CrossRef]
- Golawski, M.; Lejawa, M.; Osadnik, T.; Mickiewicz, A.; Gierlotka, M.; Jozwiak, J.; Pawlas, N.; Banach, M. Genetically Determined Lipoprotein(a) Levels Do Not Cause an Increased Risk of Preeclampsia—A Two-Sample Mendelian Randomization Study. Eur. Heart J. 2023, 44, ehad655.2728. [Google Scholar] [CrossRef]
- Romagnuolo, I.; Sticchi, E.; Attanasio, M.; Grifoni, E.; Cioni, G.; Cellai, A.P.; Abbate, R.; Fatini, C. Searching for a Common Mechanism for Placenta-Mediated Pregnancy Complications and Cardiovascular Disease: Role of Lipoprotein(a). Fertil. Steril. 2016, 105, 1287–1293.e3. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, J.D. Maternal Heterozygous Familial Hypercholesterolemia and Its Consequences for Mother and Child. Circulation 2011, 124, 1599–1601. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous Familial Hypercholesterolaemia: New Insights and Guidance for Clinicians to Improve Detection and Clinical Management. A Position Paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef] [PubMed]
- Fahed, A.C.; Nassar, A.H. Pregnancy in a Woman with Homozygous Familial Hypercholesterolemia Not on Low-Density Lipoprotein Apheresis. AJP Rep. 2012, 2, 33–36. [Google Scholar] [CrossRef]
- Coronado Arroyo, J.C.; Concepción Zavaleta, M.J.; García Villasante, E.J.; Kcomt Lam, M.; Concepción Urteaga, L.A.; Zavaleta Gutiérrez, F.E. Familial Chylomicronemia Syndrome-Induced Acute Necrotizing Pancreatitis during Pregnancy. RBGO Gynecol. Obstet. 2021, 43, 220–224. [Google Scholar] [CrossRef]
- Jaafar, B.; Chaaya, J.A.; Ammar, S.; Salti, I. Acute Pancreatitis in Pregnancy and Familial Chylomicronemia Syndrome: Case Report and Literature Review. Metab. Target. Organ. Damage 2023, 3, 21. [Google Scholar] [CrossRef]
- Cetin, I.; Berti, C.; Calabrese, S. Role of Micronutrients in the Periconceptional Period. Hum. Reprod. Update 2010, 16, 80–95. [Google Scholar] [CrossRef]
- Lorite Mingot, D.; Gesteiro, E.; Bastida, S.; Sánchez-Muniz, F.J. Epigenetic Effects of the Pregnancy Mediterranean Diet Adherence on the Offspring Metabolic Syndrome Markers. J. Physiol. Biochem. 2017, 73, 495–510. [Google Scholar] [CrossRef]
- Yee, L.M.; Silver, R.M.; Haas, D.M.; Parry, S.; Mercer, B.M.; Iams, J.; Wing, D.; Parker, C.B.; Reddy, U.M.; Wapner, R.J.; et al. Quality of Periconceptional Dietary Intake and Maternal and Neonatal Outcomes. Am. J. Obstet. Gynecol. 2020, 223, 121.e1–121.e8. [Google Scholar] [CrossRef] [PubMed]
- De Giuseppe, R.; Bocchi, M.; Maffoni, S.; Del Bo, E.; Manzoni, F.; Cerbo, R.M.; Porri, D.; Cena, H. Mediterranean Diet and Lifestyle Habits during Pregnancy: Is There an Association with Small for Gestational Age Infants? An Italian Single Centre Experience. Nutrients 2021, 13, 1941. [Google Scholar] [CrossRef] [PubMed]
- Eckl, M.R.; Brouwer-Brolsma, E.M.; Küpers, L.K. Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a Priori Indexes. Nutrients 2021, 13, 582. [Google Scholar] [CrossRef] [PubMed]
- Flor-Alemany, M.; Migueles, J.H.; Alemany-Arrebola, I.; Aparicio, V.A.; Baena-García, L. Exercise, Mediterranean Diet Adherence or Both during Pregnancy to Prevent Postpartum Depression—GESTAFIT Trial Secondary Analyses. Int. J. Environ. Res. Public Health 2022, 19, 4450. [Google Scholar] [CrossRef]
- Schoenaker, D.A.J.M.; Soedamah-Muthu, S.S.; Callaway, L.K.; Mishra, G.D. Prepregnancy Dietary Patterns and Risk of Developing Hypertensive Disorders of Pregnancy: Results from the Australian Longitudinal Study on Women’s Health. Am. J. Clin. Nutr. 2015, 102, 94–101. [Google Scholar] [CrossRef]
- Winter, H.G.; Rolnik, D.L.; Mol, B.W.J.; Torkel, S.; Alesi, S.; Mousa, A.; Habibi, N.; Silva, T.R.; Oi Cheung, T.; Thien Tay, C.; et al. Can Dietary Patterns Impact Fertility Outcomes? A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2589. [Google Scholar] [CrossRef]
- Ricci, E.; Bravi, F.; Noli, S.; Somigliana, E.; Cipriani, S.; Castiglioni, M.; Chiaffarino, F.; Vignali, M.; Gallotti, B.; Parazzini, F. Mediterranean Diet and Outcomes of Assisted Reproduction: An Italian Cohort Study. Am. J. Obstet. Gynecol. 2019, 221, 627.e1–627.e14. [Google Scholar] [CrossRef]
- Esquivel, M.K. Nutritional Status and Nutrients Related to Pre-Eclampsia. Am. J. Lifestyle Med. 2023, 17, 41–45. [Google Scholar] [CrossRef]
- Gómez-Pinilla, F. Brain Foods: The Effects of Nutrients on Brain Function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Wang, P.; Xie, J.; Jiao, X.C.; Ma, S.S.; Liu, Y.; Yin, W.J.; Tao, R.X.; Hu, H.L.; Zhang, Y.; Chen, X.X.; et al. Maternal Glycemia During Pregnancy and Early Offspring Development: A Prospective Birth Cohort Study. J. Clin. Endocrinol. Metab. 2021, 106, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean Diet in the Management and Prevention of Obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef]
- Romaguera, D.; Bamia, C.; Pons, A.; Tur, J.A.; Trichopoulou, A. Food Patterns and Mediterranean Diet in Western and Eastern Mediterranean Islands. Public Health Nutr. 2009, 12, 1174–1181. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean Diet to Non-Mediterranean Countries. What Is and What Is Not the Mediterranean Diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef]
- Cruz, J.A.A. Dietary Habits and Nutritional Status in Adolescents over Europe--Southern Europe. Eur. J. Clin. Nutr. 2000, 54 (Suppl. S1), S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Fitó, M.; Chiva-Blanch, G.; Fiol, M.; Gómez-Gracia, E.; Arós, F.; Lapetra, J.; et al. Effect of a High-Fat Mediterranean Diet on Bodyweight and Waist Circumference: A Prespecified Secondary Outcomes Analysis of the PREDIMED Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2019, 7, e6–e17. [Google Scholar] [CrossRef]
- Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martínez-González, M.A.; Castañer, O.; Bulló, M.; Corella, D.; Arós, F.; Gómez-Gracia, E.; et al. Mediterranean Diets and Metabolic Syndrome Status in the PREDIMED Randomized Trial. CMAJ 2014, 186, E649–E657. [Google Scholar] [CrossRef]
- Salas-Salvadó, J.; Bulló, M.; Estruch, R.; Ros, E.; Covas, M.-I.; Ibarrola-Jurado, N.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; et al. Prevention of Diabetes with Mediterranean Diets: A Subgroup Analysis of a Randomized Trial. Ann. Intern. Med. 2014, 160, 43–46. [Google Scholar] [CrossRef]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef]
- LARN Livelli Di Assunzione Di Riferimento Di Nutrienti Ed Energia per La Popolazione Italiana; SICS Editore; IV Revisione. 2014. Available online: https://air.uniud.it/handle/11390/1041183?mode=complete (accessed on 25 July 2024).
- Rasmussen, K.M.; Yaktine, A.L. Weight Gain During Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Energy. EFSA J. 2013, 11, 3005. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; de la Cruz, J.N.; Bach-Faig, A.; Donini, L.M.; Medina, F.X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Cremer, M.; Flothkötter, M.; Graf, C.; Hauner, H.; Hellmers, C.; Kersting, M.; Krawinkel, M.; Przyrembel, H.; Röbl-Mathieu, M.; et al. Diet and Lifestyle Before and During Pregnancy—Practical Recommendations of the Germany-Wide Healthy Start—Young Family Network. Geburtshilfe Frauenheilkd. 2018, 78, 1262–1282. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.M.; Davenport, M.H.; Giroux, I.; Hillier, M.; Batada, A.; Sopper, M.M.; Hammond, J.M.S.; Mottola, M.F. Nutrition and Exercise Reduce Excessive Weight Gain in Normal-Weight Pregnant Women. Med. Sci. Sports Exerc. 2012, 44, 1419–1426. [Google Scholar] [CrossRef]
- Deierlein, A.L.; Siega-Riz, A.M.; Evenson, K.R. Physical Activity during Pregnancy and Risk of Hyperglycemia. J. Womens Health 2012, 21, 769–775. [Google Scholar] [CrossRef]
- Barakat, R.; Zhang, D.; Sánchez-Polán, M.; Silva-José, C.; Gil-Ares, J.; Franco, E. Is Exercise during Pregnancy a Risk for Gestational Age and Preterm Delivery? Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4915. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Eilander, A.; Harika, R.K.; Zock, P.L. Intake and Sources of Dietary Fatty Acids in Europe: Are Current Population Intakes of Fats Aligned with Dietary Recommendations? Eur. J. Lipid Sci. Technol. 2015, 117, 1370–1377. [Google Scholar] [CrossRef]
- Danielewicz, H.; Myszczyszyn, G.; Dębińska, A.; Myszkal, A.; Boznański, A.; Hirnle, L. Diet in Pregnancy—More than Food. Eur. J. Pediatr. 2017, 176, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Genuis, S.J.; Genuis, R.A. Preconception Care: A New Standard of Care within Maternal Health Services. Biomed. Res. Int. 2016, 2016, 6150976. [Google Scholar] [CrossRef] [PubMed]
- Alibrandi, A.; Zirilli, A.; Le Donne, M.; Giannetto, C.; Lanfranchi, M.; De Pascale, A.; Politi, C.; Incognito, G.G.; Ercoli, A.; Granese, R. Association between Fish Consumption during Pregnancy and Maternal and Neonatal Outcomes: A Statistical Study in Southern Italy. J. Clin. Med. 2024, 13, 2131. [Google Scholar] [CrossRef]
- McGuire, S. WHO Guideline: Vitamin A Supplementation in Pregnant Women. Geneva: WHO, 2011; WHO Guideline: Vitamin A Supplementation in Postpartum Women. Geneva: WHO, 2011. Adv. Nutr. 2012, 3, 215–216. [Google Scholar] [CrossRef]
- Morse, N.L. Benefits of Docosahexaenoic Acid, Folic Acid, Vitamin D and Iodine on Foetal and Infant Brain Development and Function Following Maternal Supplementation during Pregnancy and Lactation. Nutrients 2012, 4, 799. [Google Scholar] [CrossRef]
- World Health Organization Guideline: Calcium Supplementation in Pregnant Women; World Health Organization: Geneva, Switzerland, 2013; Volume 24.
- Iacone, R.; Iaccarino Idelson, P.; Russo, O.; Donfrancesco, C.; Krogh, V.; Sieri, S.; Macchia, P.E.; Formisano, P.; Lo Noce, C.; Palmieri, L.; et al. Iodine Intake from Food and Iodized Salt as Related to Dietary Salt Consumption in the Italian Adult General Population. Nutrients 2021, 13, 3486. [Google Scholar] [CrossRef] [PubMed]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health Status: An Updated Meta-Analysis and a Proposal for a Literature-Based Adherence Score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Disturbances in Lipid Metabolism in Diabetic Pregnancy—Are These the Cause of the Problem? Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 515–525. [Google Scholar] [CrossRef]
- Barbour, L.A.; Hernandez, T.L. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin. Ther. 2018, 40, 1638–1647. [Google Scholar] [CrossRef]
- Luna-Castillo, K.P.; Olivares-Ochoa, X.C.; Hernández-Ruiz, R.G.; Llamas-Covarrubias, I.M.; Rodríguez-Reyes, S.C.; Betancourt-Núñez, A.; Vizmanos, B.; Martínez-López, E.; Muñoz-Valle, J.F.; Márquez-Sandoval, F.; et al. The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean Dietary Pattern as the Diet of Choice for Non-Alcoholic Fatty Liver Disease: Evidence and Plausible Mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Flor-Alemany, M.; Acosta-Manzano, P.; Migueles, J.H.; Baena-García, L.; Aranda, P.; Aparicio, V.A. Association of Mediterranean Diet Adherence during Pregnancy with Maternal and Neonatal Lipid, Glycemic and Inflammatory Markers: The GESTAFIT Project. Matern. Child. Nutr. 2023, 19, e13454. [Google Scholar] [CrossRef]
- Melero, V.; Arnoriaga, M.; Barabash, A.; Valerio, J.; del Valle, L.; Martin O’Connor, R.; de Miguel, M.P.; Diaz, J.A.; Familiar, C.; Moraga, I.; et al. An Early Mediterranean-Based Nutritional Intervention during Pregnancy Reduces Metabolic Syndrome and Glucose Dysregulation Rates at 3 Years Postpartum. Nutrients 2023, 15, 3252. [Google Scholar] [CrossRef]
- Amati, F.; Hassounah, S.; Swaka, A. The Impact of Mediterranean Dietary Patterns During Pregnancy on Maternal and Offspring Health. Nutrients 2019, 11, 1098. [Google Scholar] [CrossRef]
- Ribeiro, M.M.; Andrade, A.; Nunes, I. Physical Exercise in Pregnancy: Benefits, Risks and Prescription. J. Perinat. Med. 2021, 50, 4–17. [Google Scholar] [CrossRef]
- Eapen, D.J.; Valiani, K.; Reddy, S.; Sperling, L. Management of Familial Hypercholesterolemia during Pregnancy: Case Series and Discussion. J. Clin. Lipidol. 2012, 6, 88–91. [Google Scholar] [CrossRef]
- Glueck, C.J.; Christopher, C.; Tsang, R.C.; Mellies, M.J. Cholesterol-Free Diet and the Physiologic Hyperlipidemia of Pregnancy in Familial Hypercholesterolemia. Metabolism 1980, 29, 949–955. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef]
- Popova, S.; Dozet, D.; Shield, K.; Rehm, J.; Burd, L. Alcohol’s Impact on the Fetus. Nutrients 2021, 13, 3452. [Google Scholar] [CrossRef]
- Do Rego, A.T.; Klop, B.; Birnie, E.; Elte, J.W.F.; Cachofeiro Ramos, V.; Walther Alvarez-Sala, L.A.; Castro Cabezas, M. Diurnal Triglyceridemia in Relation to Alcohol Intake in Men. Nutrients 2013, 5, 5114. [Google Scholar] [CrossRef]
- Williams, L.; Rhodes, K.S.; Karmally, W.; Welstead, L.A.; Alexander, L.; Sutton, L. Familial Chylomicronemia Syndrome: Bringing to Life Dietary Recommendations throughout the Life Span. J. Clin. Lipidol. 2018, 12, 908–919. [Google Scholar] [CrossRef]
- Goldberg, A.S.; Hegele, R.A. Severe Hypertriglyceridemia in Pregnancy. J. Clin. Endocrinol. Metab. 2012, 97, 2589–2596. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nath, P.V.; Mai, V.Q.; Shakir, M.K.M.; Hoang, T.D. Treatment of Severe Hypertriglyceridemia During Pregnancy With High Doses of Omega-3 Fatty Acid and Plasmapheresis. AACE Clin. Case Rep. 2021, 7, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Papamandjaris, A.A.; Macdougall, D.E.; Jones, P.J.H. Medium Chain Fatty Acid Metabolism and Energy Expenditure: Obesity Treatment Implications. Life Sci. 1998, 62, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of Medium-Chain Fatty Acids: A Concise Review. J. Food Sci. Technol. 2023, 60, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Nangrahary, M.; Graham, D.F.; Pang, J.; Barnett, W.; Watts, G.F. Familial Hypercholesterolaemia in Pregnancy: Australian Case Series and Review. Aust. N. Z. J. Obstet. Gynaecol. 2023, 63, 402–408. [Google Scholar] [CrossRef]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological Changes in Pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Mauri, M.; Calmarza, P.; Ibarretxe, D. Dyslipemias and Pregnancy, an Update. Clin. Investig. Arterioscler. 2021, 33, 41–52. [Google Scholar] [CrossRef]
- Watts, G.F.; Gidding, S.S.; Hegele, R.A.; Raal, F.J.; Sturm, A.C.; Jones, L.K.; Sarkies, M.N.; Al-Rasadi, K.; Blom, D.J.; Daccord, M.; et al. International Atherosclerosis Society Guidance for Implementing Best Practice in the Care of Familial Hypercholesterolaemia. Nat. Rev. Cardiol. 2023, 20, 845–869. [Google Scholar] [CrossRef]
- Bruckert, E.; Giral, P.; Tellier, P. Perspectives in Cholesterol-Lowering Therapy: The Role of Ezetimibe, a New Selective Inhibitor of Intestinal Cholesterol Absorption. Circulation 2003, 107, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhan, S.; Du, H.; Li, J.; Khan, S.U.; Aertgeerts, B.; Guyatt, G.; Hao, Q.; Bekkering, G.; Li, L.; et al. Safety of Ezetimibe in Lipid-Lowering Treatment: Systematic Review and Meta-Analysis of Randomised Controlled Trials and Cohort Studies. BMJ Med. 2022, 1, e000134. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.A.; Thompson, P.D. Effect of statins on skeletal muscle: Exercise, myopathy, and muscle outcomes. Exerc. Sport Sci. Rev. 2012, 40, 188–194, Erratum in Exerc. Sport Sci. Rev. 2013, 41, 71. [Google Scholar] [CrossRef] [PubMed]
- Cuchel, M.; Raal, F.J.; Hegele, R.A.; Al-Rasadi, K.; Arca, M.; Averna, M.; Bruckert, E.; Freiberger, T.; Gaudet, D.; Harada-Shiba, M.; et al. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia: New Treatments and Clinical Guidance. Eur. Heart J. 2023, 44, 2277–2291. [Google Scholar] [CrossRef]
- Harada-Shiba, M.; Ohtake, A.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; Yamamoto, Y. Guidelines for the Diagnosis and Treatment of Pediatric Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 531–557. [Google Scholar] [CrossRef]
- Döbert, M.; Varouxaki, A.N.; Mu, A.C.; Syngelaki, A.; Ciobanu, A.; Akolekar, R.; De Paco Matallana, C.; Cicero, S.; Greco, E.; Singh, M.; et al. Pravastatin Versus Placebo in Pregnancies at High Risk of Term Preeclampsia. Circulation 2021, 144, 670–679. [Google Scholar] [CrossRef]
- Edison, R.J.; Muenke, M. Central Nervous System and Limb Anomalies in Case Reports of First-Trimester Statin Exposure. N. Engl. J. Med. 2004, 350, 1579–1582. [Google Scholar] [CrossRef]
- Ghidini, A.; Sicherer, S.; Willner, J. Congenital Abnormalities (VATER) in Baby Born to Mother Using Lovastatin. Lancet 1992, 339, 1416–1417. [Google Scholar] [CrossRef]
- Bateman, B.T.; Hernandez-Diaz, S.; Fischer, M.A.; Seely, E.W.; Ecker, J.L.; Franklin, J.M.; Desai, R.J.; Allen-Coleman, C.; Mogun, H.; Avorn, J.; et al. Statins and Congenital Malformations: Cohort Study. BMJ 2015, 350, h1035. [Google Scholar] [CrossRef]
- Maierean, S.M.; Mikhailidis, D.P.; Toth, P.P.; Grzesiak, M.; Mazidi, M.; Maciejewski, M.; Banach, M. The Potential Role of Statins in Preeclampsia and Dyslipidemia during Gestation: A Narrative Review. Expert. Opin. Investig. Drugs 2018, 27, 427–435. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Makvandi, S.; Banach, M.; Reiner, Ž.; Sahebkar, A. Fetal Toxicity Associated with Statins: A Systematic Review and Meta-Analysis. Atherosclerosis 2021, 327, 59–67. [Google Scholar] [CrossRef]
- Vahedian-Azimi, A.; Bianconi, V.; Makvandi, S.; Banach, M.; Mohammadi, S.M.; Pirro, M.; Sahebkar, A. A Systematic Review and Meta-Analysis on the Effects of Statins on Pregnancy Outcomes. Atherosclerosis 2021, 336, 1–11. [Google Scholar] [CrossRef]
- Wu, T.; Shi, Y.; Zhu, B.; Li, D.; Li, Z.; Zhao, Z.; Zhang, Y. Pregnancy-Related Adverse Events Associated with Statins: A Real-World Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS). Expert. Opin. Drug Saf. 2024, 23, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Karalis, D.G.; Hill, A.N.; Clifton, S.; Wild, R.A. The Risks of Statin Use in Pregnancy: A Systematic Review. J. Clin. Lipidol. 2016, 10, 1081–1090. [Google Scholar] [CrossRef]
- Chang, J.C.; Chen, Y.J.; Chen, I.C.; Lin, W.S.; Chen, Y.M.; Lin, C.H. Perinatal Outcomes After Statin Exposure During Pregnancy. JAMA Netw. Open 2021, 4, e2141321. [Google Scholar] [CrossRef] [PubMed]
- FDA Requests Removal of Strongest Warning against Using Cholesterol-Lowering Statins during Pregnancy; Still Advises Most Pregnant Patients Should Stop Taking Statins. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-requests-removal-strongest-warning-against-using-cholesterol-lowering-statins-during-pregnancy (accessed on 20 July 2024).
- Pollack, P.S.; Shields, K.E.; Burnett, D.M.; Osborne, M.J.; Cunningham, M.L.; Stepanavage, M.E. Pregnancy Outcomes after Maternal Exposure to Simvastatin and Lovastatin. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Botha, T.C.; Pilcher, G.J.; Wolmarans, K.; Blom, D.J.; Raal, F.J. Statins and Other Lipid-Lowering Therapy and Pregnancy Outcomes in Homozygous Familial Hypercholesterolaemia: A Retrospective Review of 39 Pregnancies. Atherosclerosis 2018, 277, 502–507. [Google Scholar] [CrossRef]
- Zarek, J.; Koren, G. The Fetal Safety of Statins: A Systematic Review and Meta-Analysis. J. Obstet. Gynaecol. Can. 2014, 36, 506–509. [Google Scholar] [CrossRef]
- Grześk, G.; Dorota, B.; Wołowiec, Ł.; Wołowiec, A.; Osiak, J.; Kozakiewicz, M.; Banach, J. Safety of PCSK9 Inhibitors. Biomed. Pharmacother. 2022, 156, 113957. [Google Scholar] [CrossRef]
- Pasta, A.; Cremonini, A.L.; Pisciotta, L.; Buscaglia, A.; Porto, I.; Barra, F.; Ferrero, S.; Brunelli, C.; Rosa, G.M. PCSK9 Inhibitors for Treating Hypercholesterolemia. Expert. Opin. Pharmacother. 2020, 21, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Harada-Shiba, M.; Arai, H.; Ohmura, H.; Okazaki, H.; Sugiyama, D.; Tada, H.; Dobashi, K.; Matsuki, K.; Minamino, T.; Yamashita, S.; et al. Guidelines for the Diagnosis and Treatment of Adult Familial Hypercholesterolemia 2022. J. Atheroscler. Thromb. 2023, 30, 558–586. [Google Scholar] [CrossRef] [PubMed]
- Macchi, C.; Iodice, S.; Persico, N.; Ferrari, L.; Cantone, L.; Greco, M.F.; Ischia, B.; Dozio, E.; Corsini, A.; Sirtori, C.R.; et al. Maternal Exposure to Air Pollutants, PCSK9 Levels, Fetal Growth and Gestational Age—An Italian Cohort. Environ. Int. 2021, 149, 106163. [Google Scholar] [CrossRef] [PubMed]
- Ardissino, M.; Slob, E.A.W.; Reddy, R.K.; Morley, A.P.; Schuermans, A.; Hill, P.; Williamson, C.; Honigberg, M.C.; De Marvao, A.; Ng, F.S. Genetically Proxied Low-Density Lipoprotein Cholesterol Lowering via PCSK9-Inhibitor Drug Targets and Risk of Congenital Malformations. Eur. J. Prev. Cardiol. 2024, 31, 955–965. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Berthold, H.K. Mipomersen and Lomitapide: Two New Drugs for the Treatment of Homozygous Familial Hypercholesterolemia. Atheroscler. Suppl. 2015, 18, 28–34. [Google Scholar] [CrossRef]
- Wong, E.; Goldberg, T. Mipomersen (Kynamro): A Novel Antisense Oligonucleotide Inhibitor for the Management of Homozygous Familial Hypercholesterolemia. Pharm. Ther. 2014, 39, 119. [Google Scholar]
- Stefanutti, C.; Thompson, G.R. Lipoprotein Apheresis in the Management of Familial Hypercholesterolaemia: Historical Perspective and Recent Advances. Curr. Atheroscler. Rep. 2015, 17, 465. [Google Scholar] [CrossRef]
- Schwartz, J.; Padmanabhan, A.; Aqui, N.; Balogun, R.A.; Connelly-Smith, L.; Delaney, M.; Dunbar, N.M.; Witt, V.; Wu, Y.; Shaz, B.H. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J. Clin. Apher. 2016, 31, 149–162. [Google Scholar] [CrossRef]
- Connelly-Smith, L.; Alquist, C.R.; Aqui, N.A.; Hofmann, J.C.; Klingel, R.; Onwuemene, O.A.; Patriquin, C.J.; Pham, H.P.; Sanchez, A.P.; Schneiderman, J.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Ninth Special Issue. J. Clin. Apher. 2023, 38, 77–278. [Google Scholar] [CrossRef]
- Nugent, A.K.; Gray, J.V.; Gorby, L.K.; Moriarty, P.M. Lipoprotein Apheresis: First FDA Indicated Treatment for Elevated Lipoprotein(a). J. Clin. Cardiol. 2020, 1, 16–21. [Google Scholar] [CrossRef]
- Russi, G. Severe Dyslipidemia in Pregnancy: The Role of Therapeutic Apheresis. Transfus. Apher. Sci. 2015, 53, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Shapero, K.; Countouris, M.; Chibisov, I.; Jeyabalan, A.; Berlacher, K. Peripartum Lipid Apheresis: Novel Management of Familial Hyperlipidemia in Pregnancy. JACC Case Rep. 2023, 27, 102052. [Google Scholar] [CrossRef] [PubMed]
- Ogura, M.; Makino, H.; Kamiya, C.; Yoshimatsu, J.; Soran, H.; Eatough, R.; Perrone, G.; Harada-Shiba, M.; Stefanutti, C. Lipoprotein Apheresis Is Essential for Managing Pregnancies in Patients with Homozygous Familial Hypercholesterolemia: Seven Case Series and Discussion. Atherosclerosis 2016, 254, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Stefanutti, C.; Julius, U.; Watts, G.F.; Harada-Shiba, M.; Cossu, M.; Schettler, V.J.; De Silvestro, G.; Soran, H.; Van Lennep, J.R.; Pisciotta, L.; et al. Toward an International Consensus-Integrating Lipoprotein Apheresis and New Lipid-Lowering Drugs. J. Clin. Lipidol. 2017, 11, 858–871.e3. [Google Scholar] [CrossRef]
- Reijman, M.D.; Kusters, D.M.; Groothoff, J.W.; Arbeiter, K.; Dann, E.J.; de Boer, L.M.; de Ferranti, S.D.; Gallo, A.; Greber-Platzer, S.; Hartz, J.; et al. Clinical Practice Recommendations on Lipoprotein Apheresis for Children with Homozygous Familial Hypercholesterolaemia: An Expert Consensus Statement from ERKNet and ESPN. Atherosclerosis 2024, 392, 117525. [Google Scholar] [CrossRef]
- Gupta, M.; Liti, B.; Barrett, C.; Thompson, P.D.; Fernandez, A.B. Prevention and Management of Hypertriglyceridemia-Induced Acute Pancreatitis During Pregnancy: A Systematic Review. Am. J. Med. 2022, 135, 709–714. [Google Scholar] [CrossRef]
- Dittrich, E.; Schmaldienst, S.; Langer, M.; Jansen, M.; Hörl, W.H.; Derfler, K. Immunoadsorption and Plasma Exchange in Pregnancy. Kidney Blood Press. Res. 2002, 25, 232–239. [Google Scholar] [CrossRef]
- Lindkvist, B.; Appelros, S.; Regnér, S.; Manjer, J. A Prospective Cohort Study on Risk of Acute Pancreatitis Related to Serum Triglycerides, Cholesterol and Fasting Glucose. Pancreatology 2012, 12, 317–324. [Google Scholar] [CrossRef]
- Preiss, D.; Tikkanen, M.J.; Welsh, P.; Ford, I.; Lovato, L.C.; Elam, M.B.; LaRosa, J.C.; DeMicco, D.A.; Colhoun, H.M.; Goldenberg, I.; et al. Lipid-Modifying Therapies and Risk of Pancreatitis: A Meta-Analysis. JAMA 2012, 308, 804–811. [Google Scholar] [CrossRef]
- Toskes, P.P. Hyperlipidemic Pancreatitis. Gastroenterol. Clin. N. Am. 1990, 19, 783–791. [Google Scholar] [CrossRef]
- Berglund, L.; Brunzell, J.D.; Goldberg, A.C.; Goldberg, I.J.; Sacks, F.; Murad, M.H.; Stalenhoef, A.F.H. Evaluation and Treatment of Hypertriglyceridemia: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2012, 97, 2969–2989. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Vaz, A.J.; Fayyad, R.; Matthijs Boekholdt, S.; Kees Hovingh, G.; Kastelein, J.J.; Melamed, S.; Barter, P.; Waters, D.D.; Ray, K.K. Triglyceride-Rich Lipoprotein Cholesterol and Risk of Cardiovascular Events Among Patients Receiving Statin Therapy in the TNT Trial. Circulation 2018, 138, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Edison, R.J.; Muenke, M. Mechanistic and Epidemiologic Considerations in the Evaluation of Adverse Birth Outcomes Following Gestational Exposure to Statins. Am. J. Med. Genet. A 2004, 131, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, L.M.; Erramouspe, J.; Cleveland, K.W. Teratogenic Risk of Statins in Pregnancy. Ann. Pharmacother. 2012, 46, 1419–1424. [Google Scholar] [CrossRef]
- Visseren, F.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Poornima, I.G.; Pulipati, V.P.; Brinton, E.A.; Wild, R.A. Update on Statin Use in Pregnancy. Am. J. Med. 2023, 136, 12–14. [Google Scholar] [CrossRef]
- Costantine, M.M.; Cleary, K. Pravastatin for the Prevention of Preeclampsia in High-Risk Pregnant Women. Obstet. Gynecol. 2013, 121, 349–353. [Google Scholar] [CrossRef]
- Klevmoen, M.; Bogsrud, M.P.; Retterstøl, K.; Svilaas, T.; Vesterbekkmo, E.K.; Hovland, A.; Berge, C.; Roeters van Lennep, J.; Holven, K.B. Loss of Statin Treatment Years during Pregnancy and Breastfeeding Periods in Women with Familial Hypercholesterolemia. Atherosclerosis 2021, 335, 8–15. [Google Scholar] [CrossRef]
- Holmsen, S.T.; Bakkebø, T.; Seferowicz, M.; Retterstøl, K. Statins and Breastfeeding in Familial Hypercholesterolaemia. Tidsskr. Nor. Laegeforen 2017, 137, 686–687. [Google Scholar] [CrossRef]
- Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; Hegele, R.A. Clinical Review on Triglycerides. Eur. Heart J. 2020, 41, 99–109. [Google Scholar] [CrossRef]
- Brunzell, J.D. Clinical Practice. Hypertriglyceridemia. N. Engl. J. Med. 2007, 357, 1009–1017. [Google Scholar] [CrossRef]
- Magarian, G.J.; Lucas, L.M.; Colley, C. Gemfibrozil-Induced Myopathy. Arch. Intern. Med. 1991, 151, 1873–1874. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Response by Ward et al. to Letter Regarding Article, “Statin Toxicity: Mechanistic Insights and Clinical Implications”. Circ. Res. 2019, 124, e121–e122. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.B.; Spence, J.D. Clinical Pharmacokinetics of Fibric Acid Derivatives (Fibrates). Clin. Pharmacokinet. 1998, 34, 155–162. [Google Scholar] [CrossRef]
- Pierce, L.R.; Wysowski, D.K.; Gross, T.P. Myopathy and Rhabdomyolysis Associated With Lovastatin-Gemfibrozil Combination Therapy. JAMA 1990, 264, 71–75. [Google Scholar] [CrossRef]
- Jones, P.H.; Davidson, M.H. Reporting Rate of Rhabdomyolysis with Fenofibrate + Statin versus Gemfibrozil + Any Statin. Am. J. Cardiol. 2005, 95, 120–122. [Google Scholar] [CrossRef]
- Tsai, E.C.; Brown, J.A.; Veldee, M.Y.; Anderson, G.J.; Chait, A.; Brunzell, J.D. Potential of Essential Fatty Acid Deficiency with Extremely Low Fat Diet in Lipoprotein Lipase Deficiency during Pregnancy: A Case Report. BMC Pregnancy Childbirth 2004, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Abu Musa, A.A.; Usta, I.M.; Rechdan, J.B.; Nassar, A.H. Recurrent Hypertriglyceridemia-Induced Pancreatitis in Pregnancy: A Management Dilemma. Pancreas 2006, 32, 227–228. [Google Scholar] [CrossRef]
- Saadi, H.F.; Kurlander, D.J.; Erkins, J.M.; Hoogwerf, B.J. Severe Hypertriglyceridemia and Acute Pancreatitis during Pregnancy: Treatment with Gemfibrozil. Endocr. Pract. 1999, 5, 33–36. [Google Scholar] [CrossRef]
- Goldenberg, I.; Benderly, M.; Goldbourt, U. Update on the use of fibrates: Focus on bezafibrate. Vasc Health Risk Manag. 2008, 4, 131–141. [Google Scholar] [CrossRef]
- Bachmann, C.M.; Janitschke, D.; Lauer, A.A.; Erhardt, T.; Hartmann, T.; Grimm, M.O.W.; Grimm, H.S. Gemfibrozil-Induced Intracellular Triglyceride Increase in SH-SY5Y, HEK and Calu-3 Cells. Int. J. Mol. Sci. 2023, 24, 2972. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Connor, W.E.; Illingworth, D.R.; Rothrock, D.W.; Foster, D.M. Effects of Fish Oil on VLDL Triglyceride Kinetics in Humans. J. Lipid Res. 1990, 31, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Simha, V. Management of Hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.W.F.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation 2019, 140, E673–E691. [Google Scholar] [CrossRef]
- Bays, H.E.; Ballantyne, C.M.; Kastelein, J.J.; Isaacsohn, J.L.; Braeckman, R.A.; Soni, P.N. Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Patients with Very High Triglyceride Levels (from the Multi-Center, PlAcebo-Controlled, Randomized, Double-BlINd, 12-Week Study with an Open-Label Extension [MARINE] Trial). Am. J. Cardiol. 2011, 108, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, A.S.; Kim, E.J.; Esan, O.; Ramachandran, R. Hypertriglyceridaemia: An Update. J. Clin. Pathol. 2022, 75, 798–806. [Google Scholar] [CrossRef]
- Nordgren, T.M.; Lyden, E.; Anderson-Berry, A.; Hanson, C. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency? Nutrients 2017, 9, 197. [Google Scholar] [CrossRef]
- Emmett, P.M.; Jones, L.R.; Golding, J. Pregnancy Diet and Associated Outcomes in the Avon Longitudinal Study of Parents and Children. Nutr. Rev. 2015, 73 (Suppl. S3), 154–174. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 Fatty Acid Addition during Pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Olsen, S.F.; Secher, N.J. A Possible Preventive Effect of Low-Dose Fish Oil on Early Delivery and Pre-Eclampsia: Indications from a 50-Year-Old Controlled Trial. Br. J. Nutr. 1990, 64, 599–609. [Google Scholar] [CrossRef]
- Olsen, S.F.; Østerdal, M.L.; Salvig, J.D.; Weber, T.; Tabor, A.; Secher, N.J. Duration of Pregnancy in Relation to Fish Oil Supplementation and Habitual Fish Intake: A Randomised Clinical Trial with Fish Oil. Eur. J. Clin. Nutr. 2007, 61, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.F.; Secher, N.J. Low Consumption of Seafood in Early Pregnancy as a Risk Factor for Preterm Delivery: Prospective Cohort Study. BMJ 2002, 324, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of Eicosapentaenoic Acid on Major Coronary Events in Hypercholesterolaemic Patients (JELIS): A Randomised Open-Label, Blinded Endpoint Analysis. Lancet 2007, 369, 1090–1098. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine N-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Nakao, J.; Ohba, T.; Takaishi, K.; Katabuchi, H. Omega-3 Fatty Acids for the Treatment of Hypertriglyceridemia during the Second Trimester. Nutrition 2015, 31, 409–412. [Google Scholar] [CrossRef]
- Goldie, C.; Taylor, A.J.; Nguyen, P.; McCoy, C.; Zhao, X.Q.; Preiss, D. Niacin Therapy and the Risk of New-Onset Diabetes: A Meta-Analysis of Randomised Controlled Trials. Heart 2016, 102, 198–203. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; The National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- Rader, J.I.; Calvert, R.J.; Hathcock, J.N. Hepatic Toxicity of Unmodified and Time-Release Preparations of Niacin. Am. J. Med. 1992, 92, 77–81. [Google Scholar] [CrossRef]
- Lewek, J.; Bielecka-Dabrowa, A.; Toth, P.P.; Banach, M. Dyslipidaemia Management in Pregnant Patients: A 2024 Update. Eur. Heart J. Open 2024, 4, oeae032. [Google Scholar] [CrossRef]
- Crouse, J.R. Hypertriglyceridemia: A Contraindication to the Use of Bile Acid Binding Resins. Am. J. Med. 1987, 83, 243–248. [Google Scholar] [CrossRef]
- Tsuang, W.; Navaneethan, U.; Ruiz, L.; Palascak, J.B.; Gelrud, A. Hypertriglyceridemic Pancreatitis: Presentation and Management. Am. J. Gastroenterol. 2009, 104, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Basar, R.; Uzum, A.K.; Canbaz, B.; Dogansen, S.C.; Kalayoglu-Besisik, S.; Altay-Dadin, S.; Aral, F.; Ozbey, N.C. Therapeutic Apheresis for Severe Hypertriglyceridemia in Pregnancy. Arch. Gynecol. Obstet. 2013, 287, 839–843. [Google Scholar] [CrossRef]
- Papadakis, E.P.; Sarigianni, M.; Mikhailidis, D.P.; Mamopoulos, A.; Karagiannis, V. Acute Pancreatitis in Pregnancy: An Overview. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 159, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, X.; Zhang, M.; Han, N.; Ning, Y. Rapid Reduction in Triglyceride Levels by Therapeutic Plasma Exchange in Patients with Hypertriglyceridemic Pancreatitis. J. Clin. Apher. 2022, 37, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Stefanutti, C.; Labbadia, G.; Morozzi, C. Severe Hypertriglyceridemia-Related Acute Pancreatitis. Ther. Apher. Dial. 2013, 17, 130–137. [Google Scholar] [CrossRef]
- Ewald, N.; Kloer, H.U. Treatment Options for Severe Hypertriglyceridemia (SHTG): The Role of Apheresis. Clin. Res. Cardiol. Suppl. 2012, 7, 31–35. [Google Scholar] [CrossRef]
- Syed, H.; Bilusic, M.; Rhondla, C.; Tavaria, A. Plasmapheresis in the Treatment of Hypertriglyceridemia-Induced Pancreatitis: A Community Hospital’s Experience. J. Clin. Apher. 2010, 25, 229–234. [Google Scholar] [CrossRef]
- Gavva, C.; Sarode, R.; Agrawal, D.; Burner, J. Therapeutic Plasma Exchange for Hypertriglyceridemia Induced Pancreatitis: A Rapid and Practical Approach. Transfus. Apher. Sci. 2016, 54, 99–102. [Google Scholar] [CrossRef]
- Kadikoylu, G.; Yavasoglu, I.; Bolaman, Z. Plasma Exchange in Severe Hypertriglyceridemia a Clinical Study. Transfus. Apher. Sci. 2006, 34, 253–257. [Google Scholar] [CrossRef]
- Lennertz, A.; Parhofer, K.G.; Samtleben, W.; Bosch, T. Therapeutic Plasma Exchange in Patients with Chylomicronemia Syndrome Complicated by Acute Pancreatitis. Ther. Apher. 1999, 3, 227–233. [Google Scholar] [CrossRef]
- Yeh, J.H.; Chen, J.H.; Chiu, H.C. Plasmapheresis for Hyperlipidemic Pancreatitis. J. Clin. Apher. 2003, 18, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, A.; Coşkun, A.; Yavaşoğlu, İ.; Bolaman, Z.; Ünübol, M.; Yaşa, M.H.; Kadıköylü, G. Therapeutic Plasma Exchange for Hypertriglyceridemia Induced Acut Pancreatitis: The 33 Cases Experience from a Tertiary Reference Center in Turkey. Turk. J. Gastroenterol. 2018, 29, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Piolot, A.; Nadler, F.; Cavallero, E.; Coquard, J.L.; Jacotot, B. Prevention of Recurrent Acute Pancreatitis in Patients with Severe Hypertriglyceridemia: Value of Regular Plasmapheresis. Pancreas 1996, 13, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Wind, M.; Gaasbeek, A.G.A.; Oosten, L.E.M.; Rabelink, T.J.; van Lith, J.M.M.; Sueters, M.; Teng, Y.K.O. Therapeutic Plasma Exchange in Pregnancy: A Literature Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 29–36. [Google Scholar] [CrossRef]
- Perrone, G.; Brunelli, R.; Marcoccia, E.; Zannini, I.; Candelieri, M.; Gozzer, M.; Stefanutti, C. Therapeutic Apheresis in Pregnancy: Three Differential Indications With Positive Maternal and Fetal Outcome. Ther. Apher. Dial. 2016, 20, 677–685. [Google Scholar] [CrossRef]
- Perrone, S.; Brunelli, R.; Perrone, G.; Zannini, I.; Galoppi, P.; Di Giacomo, S.; Morozzi, C.; Pisciotta, L.; Stefanutti, C. A Successful Term Pregnancy with Severe Hypertriglyceridaemia and Acute Pancreatitis. Clinical Management and Review of the Literature. Atheroscler. Suppl. 2019, 40, 117–121. [Google Scholar] [CrossRef]
- Altun, D.; Eren, G.; Cukurova, Z.; Hergünsel, O.; Yasar, L. An Alternative Treatment in Hypertriglyceridemia-Induced Acute Pancreatitis in Pregnancy: Plasmapheresis. J. Anaesthesiol. Clin. Pharmacol. 2012, 28, 252–254. [Google Scholar] [CrossRef]
- Safi, F.; Toumeh, A.; Qadan, M.A.A.; Karaz, R.; AlAkdar, B.; Assaly, R. Management of Familial Hypertriglyceridemia-Induced Pancreatitis during Pregnancy with Therapeutic Plasma Exchange: A Case Report and Review of Literature. Am. J. Ther. 2014, 21, e134–e136. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Thandra, K.C.; Gaduputi, V. Hypertriglyceridemia-Induced Pancreatitis: Updated Review of Current Treatment and Preventive Strategies. Clin. J. Gastroenterol. 2018, 11, 441–448. [Google Scholar] [CrossRef]
Food Group | Serving in g [123] | Serving/Day |
---|---|---|
Bread, cereals, rice, pasta, etc. | 50 to 80 g | 9 |
Vegetables | 80 to 200 g | 4 |
Fruits | 150 g | 3 |
Milk, yogurt, fresh cheese | 100 to 125 g | 2–3 |
Meat, fish, dried beans, eggs, nuts: | 50 to 150 g | 1–2 |
BMI Pre-Pregnancy | Weight Gain in the Second and Third Trimester on Average in Single Pregnancy (Expressed in kg/Week) | Desirable Weight Gain at the End of Single Gestation (Expressed in kg) | Desirable Weight Gain at the End of Twin Gestation (Expressed in kg) |
---|---|---|---|
Underweight (BMI: <18.5 kg/m2) | 0.51 (0.44–0.58) | 12.5–18 | Not available |
Normal weight (BMI: 18.5–24.9 kg/m2) | 0.42 (0.35–0.50) | 11.5–16 | 17–24.5 |
Overweight (BMI: 25–29.9 kg/m2) | 0.28 (0.23–0.33) | 7–11.5 | 14–22.7 |
Obesity (BMI: > 30 kg/m2) | 0.22 (1.17–0.27) | 5–9 | 11.5–19 |
Calories | +350 kcal/Day in the II Trimester +460 kcal/Day in the III Trimester |
Protein | +1 g/day in the I trimester +8 g/day in the II trimester +26 g in the III trimester |
Carbohydrates | 45–60% of total kcal, with an intake of simple sugars not exceeding 10–15% |
Lipids | ≈35% of total kcal, saturated fatty acids <10%. DHA +100–200 mg/day |
Fiber | 25–30 g/day |
Water | +350 mL/day (compared to the pre-pregnancy period) |
Sodium | 1.5 g/day, the adequate intake corresponds to that defined for the general adult population |
Calcium | 1200 mg/day |
Iron | 27 mg/day |
Iodine | 200–250 μg/day |
Folic acid | 400 µg/day or 500 µg/day in the case of women who have given birth to fetuses with neural tube defects or who have a history of neurological malformations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, E.; Proietti, E.; Perrone, G.; Demarco, V.; Galoppi, P.; Stefanutti, C.; Pisciotta, L. Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review. Nutrients 2024, 16, 2927. https://doi.org/10.3390/nu16172927
Formisano E, Proietti E, Perrone G, Demarco V, Galoppi P, Stefanutti C, Pisciotta L. Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review. Nutrients. 2024; 16(17):2927. https://doi.org/10.3390/nu16172927
Chicago/Turabian StyleFormisano, Elena, Elisa Proietti, Giuseppina Perrone, Valentina Demarco, Paola Galoppi, Claudia Stefanutti, and Livia Pisciotta. 2024. "Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review" Nutrients 16, no. 17: 2927. https://doi.org/10.3390/nu16172927
APA StyleFormisano, E., Proietti, E., Perrone, G., Demarco, V., Galoppi, P., Stefanutti, C., & Pisciotta, L. (2024). Characteristics, Physiopathology and Management of Dyslipidemias in Pregnancy: A Narrative Review. Nutrients, 16(17), 2927. https://doi.org/10.3390/nu16172927