Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Screening and Selection
2.3. Synthesis and Reference Verification
3. Results
3.1. Time-Restricted Eating
3.2. Mediterranean Diet
3.3. Dairy
3.4. Vegetarians and Pescetarians
3.5. Coffee and Tea
3.6. Iron
3.7. Carbohydrates
3.8. Diet Quality
3.9. Meat
3.10. Fruits and Vegetables
3.11. Acid Charge
3.12. Phytoestrogens
3.13. Importance of Professional Advice
3.14. Alternative Diet Advice
3.15. Heavy Metals
3.16. Micronutrients
4. Discussion
5. Limitations and Future Direction of Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACS | The American Cancer Society |
MD | Mediterranean diet |
MCC | Multicase control |
CC | Case-control |
ND | No data |
ES | Epidemiological study |
PS | Prospective study |
Ma | Meta-analysis |
OS | Observational study |
RCT | Randomized controlled trial |
PC | Prostate cancer |
BC | Breast cancer |
LC | Lung cancer |
NC | No cancer |
C | Controls |
FU | Follow-up |
CC | Colon cancer |
OC | Overall cancer |
I | Intervention |
TMAO | Trimethylamine N-oxide |
NEAP | Net endogenous acid production |
PLCO | Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial phytoestrogens |
Zn | Zinc |
Zn/Cu | Zinc/copper ratio |
Cu | Copper |
Se | Selenium |
DC | Dendritic cells |
RA | Retinoic acid |
References
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef]
- Willett, W.C.; Koplan, J.P.; Nugent, R.; Dusenbury, C.; Puska, P.; Gaziano, T.A. Prevention of chronic disease by means of diet and lifestyle changes. In Disease Control Priorities in Developing Countries, 2nd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Feingold, K.R. The effect of diet on cardiovascular disease and lipid and lipoprotein levels. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Malik, V.S.; Hu, F.B. Obesity prevention. Disease control priorities. In Cardiovascular, Respiratory, and Related Disorders, 3rd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; p. 5. [Google Scholar]
- National Research Council (US) Committee on Diet, Nutrition, and Cancer. Diet, Nutrition, and Cancer; National Academies Press: Washington, DC, USA, 1982. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy balance and obesity: What are the main drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K.; et al. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef]
- Rock, C.L.; Thomson, C.A.; Sullivan, K.R.; Howe, C.L.; Kushi, L.H.; Caan, B.J.; Neuhouser, M.L.; Bandera, E.V.; Wang, Y.; Robien, K.; et al. American Cancer Society nutrition and physical activity guideline for cancer survivors. CA Cancer J. Clin. 2022, 72, 230–262. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Diet Quality. 2018. Available online: https://www.iaea.org/topics/diet-quality#:~:text=Diet%20quality%20refers%20to%20both,activity%20and%20protection%20against%20infection (accessed on 10 November 2023).
- Kourlaba, G.; Panagiotakos, D.B. Dietary quality indices and human health: A review. Maturitas 2009, 62, 1–8. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Espinosa, A.; Straif, K.; Pérez-Gómez, B.; Papantoniou, K.; Gómez-Acebo, I.; Molina-Barceló, A.; Olmedo-Requena, R.; Alguacil, J.; Fernández-Tardón, G.; et al. The association of nighttime fasting duration and prostate cancer risk: Results from the multicase-control (MCC) study in Spain. Nutrients 2021, 13, 2662. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Carioli, G.; Bravi, F.; Ferraroni, M.; Serraino, D.; Montella, M.; Giacosa, A.; Toffolutti, F.; Negri, E.; Levi, F.; et al. Mediterranean diet and breast cancer risk. Nutrients 2018, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Hawrysz, I.; Wadolowska, L.; Slowinska, M.A.; Czerwinska, A.; Golota, J.J. Adherence to prudent and Mediterranean dietary patterns is inversely associated with lung cancer in moderate but not heavy male Polish smokers: A case-control study. Nutrients 2020, 12, 3788. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.E.; Djuric, Z.; Angiletta, C.J.; Mitchell, C.M.; Baugh, M.E.; Davy, K.P.; Neilson, A.P. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019, 10, 2138–2147. [Google Scholar] [CrossRef]
- Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021, 20, 301. [Google Scholar]
- Wu, Y.; Huang, R.; Wang, M.; Bernstein, L.; Bethea, T.N.; Chen, C.; Chen, Y.; Eliassen, A.H.; Freedman, N.D.; Gaudet, M.M.; et al. Dairy foods, calcium, and risk of breast cancer overall and for subtypes defined by estrogen receptor status: A pooled analysis of 21 cohort studies. Am. J. Clin. Nutr. 2021, 114, 450–461. [Google Scholar] [CrossRef]
- Parra-Soto, S.; Ahumada, D.; Petermann-Rocha, F.; Boonpoor, J.; Gallegos, J.L.; Anderson, J.; Sharp, L.; Malcomson, F.C.; Livingstone, K.M.; Mathers, J.C.; et al. Association of meat, vegetarian, pescatarian and fish-poultry diets with risk of 19 cancer sites and all cancer: Findings from the UK Biobank prospective cohort study and meta-analysis. BMC Med. 2022, 20, 79. [Google Scholar] [CrossRef]
- Sen, A.; Papadimitriou, N.; Lagiou, P.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; Murphy, N.; Gunter, M.; Freisling, H.; Tzoulaki, I.; et al. Coffee and tea consumption and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 2019, 144, 240–250. [Google Scholar] [CrossRef]
- Ward, H.A.; Whitman, J.; Muller, D.C.; Johansson, M.; Jakszyn, P.; Weiderpass, E.; Palli, D.; Fanidi, A.; Vermeulen, R.; Tjønneland, A.; et al. Haem iron intake and risk of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Eur. J. Clin. Nutr. 2019, 73, 1122–1132. [Google Scholar] [CrossRef]
- Qin, H.; Zeng, W.; Lou, Y. Mendelian randomization study indicates lack of causal associations between iron status and lung cancer. Medicine 2022, 101, e29879. [Google Scholar] [CrossRef]
- Ronco, A.L.; Lasalvia-Galante, E.; Calderon, J.M.; Espinosa, E. Dietary iron source and lung cancer risk: A case-control study in Uruguayan men. Multidiscip. Cancer Investig. 2019, 3, 20–36. [Google Scholar] [CrossRef]
- Cai, H.; Sobue, T.; Kitamura, T.; Ishihara, J.; Nanri, A.; Mizoue, T.; Iwasaki, M.; Yamaji, T.; Inoue, M.; Tsugane, S.; et al. Low- carbohydrate diet and risk of cancer incidence: The Japan Public Health Center-based prospective study. Cancer Sci. 2022, 113, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, I.H.; Kang, S.J.; Choi, M.; Kim, B.H.; Eom, B.W.; Kim, B.J.; Min, B.H.; Choi, C.I.; Shin, C.M.; et al. Korean practice guidelines for gastric cancer 2022: An evidence-based, multidisciplinary approach. J. Gastric Cancer 2023, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Myneni, A.A.; Giovino, G.A.; Millen, A.E.; LaMonte, M.J.; Wactawski-Wende, J.; Neuhouser, M.L.; Zhao, J.; Shikany, J.M.; Mu, L. Indices of diet quality and risk of lung cancer in the Women’s Health Initiative Observational Study. J. Nutr. 2021, 151, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Boushey, C.J.; Shvetsov, Y.B.; Wirth, M.D.; Shivappa, N.; Hébert, J.R.; Haiman, C.A.; Wilkens, L.R.; Le Marchand, L. Diet quality and risk of lung cancer in the multiethnic cohort study. Nutrients 2021, 13, 1614. [Google Scholar] [CrossRef]
- Sadeghi, A.; Parastouei, K.; Seifi, S.; Khosravi, A.; Salimi, B.; Zahedi, H.; Sadeghi, O.; Rasekhi, H.; Amini, M. Inflammatory potential of diet and odds of lung cancer: A case-control study. Nutr. Cancer 2022, 74, 2859–2867. [Google Scholar] [CrossRef]
- Wang, Q.; Hashemian, M.; Sepanlou, S.G.; Sharafkhah, M.; Poustchi, H.; Khoshnia, M.; Gharavi, A.; Pourshams, A.; Malekshah, A.F.; Kamangar, F.; et al. Dietary quality using four dietary indices and lung cancer risk: The Golestan Cohort Study (GCS). Cancer Causes Control 2021, 32, 493–503. [Google Scholar] [CrossRef]
- Männistö, S.; Harald, K.; Härkänen, T.; Maukonen, M.; Eriksson, J.G.; Heikkinen, S.; Jousilahti, P.; Kaartinen, N.E.; Kanerva, N.; Knekt, P.; et al. Association between overall diet quality and postmenopausal breast cancer risk in five Finnish cohort studies. Sci. Rep. 2021, 11, 16718. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, C.; Ji, M.; Fan, J.; Xie, J.; Huang, Y.; Jiang, X.; Xu, J.; Yin, R.; Du, L.; et al. Diet and risk of incident lung cancer: A large prospective cohort study in UK biobank. Am. J. Clin. Nutr. 2021, 114, 2043–2051. [Google Scholar] [CrossRef]
- Willemsen, R.F.; McNeil, J.; Heer, E.; Johnson, S.T.; Friedenreich, C.M.; Brenner, D.R. Dietary patterns with combined and site-specific cancer incidence in Alberta’s Tomorrow Project cohort. Eur. J. Clin. Nutr. 2022, 76, 360–372. [Google Scholar] [CrossRef]
- Ronco, A.L.; Martínez-López, W.; Calderón, J.M.; Golomar, W. Dietary acid load and lung cancer risk: A case-control study in men. Cancer Treat. Res. Commun. 2021, 28, 100382. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ru, M.; Zhang, Y.; Kurbanova, T.; Boffetta, P. Dietary phytoestrogen intake and lung cancer risk: An analysis of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Carcinogenesis 2021, 42, 1250–1259. [Google Scholar] [CrossRef]
- Botteri, E.; de Lange, T.; Tonstad, S.; Berstad, P. Exploring the effect of a lifestyle intervention on cancer risk: 43-year follow-up of the randomized Oslo diet and antismoking study. J. Intern. Med. 2018, 284, 282–291. [Google Scholar] [CrossRef]
- Berthy, F.; Brunin, J.; Allès, B.; Fezeu, L.K.; Touvier, M.; Hercberg, S.; Galan, P.; Pointereau, P.; Lairon, D.; Baudry, J.; et al. Association between adherence to the EAT-Lancet diet and risk of cancer and cardiovascular outcomes in the prospective NutriNet-Santé cohort. Am. J. Clin. Nutr. 2022, 116, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Mahamat-Saleh, Y.; Hajji-Louati, M.; Correia, E.; Oulhote, Y.; Boutron-Ruault, M.C.; Laouali, N. Palaeolithic diet score and risk of breast cancer among postmenopausal women overall and by hormone receptor and histologic subtypes. Eur. J. Clin. Nutr. 2023, 77, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, J.; Liu, C.; Luo, Y.; Chen, J.; Fu, Y.; Xu, Y.; Wu, H.; Li, X.; Wang, H. Relationships Between Biological Heavy Metals and Breast Cancer: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 838762. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Naska, A.; Kasdagli, M.; Malavolti, M.; Orsini, N.; Vinceti, M. Cadmium exposure and risk of breast cancer: A dose-response meta-analysis of cohort studies. Environ. Int. 2020, 142, 105879. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, M.; Sobhi, H.; Esrafili, A.; Farzadkia, M.; Yeganeh, M. Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food Sci. Technol. 2021, 109, 527–535. [Google Scholar] [CrossRef]
- Zambrana, L.; Weber, A.; Borresen, E.; Zarei, I.; Perez, J.; Pérez, C.; Rodriguez, I.; Becker-Dreps, S.; Yuan, L.; Vilchez, S.; et al. Daily Rice Bran Consumption for 6 Months Influences Serum Glucagon-Like Peptide 2 and Metabolite Profiles without Differences in Trace Elements and Heavy Metals in Weaning Nicaraguan Infants at 12 Months of Age. Curr. Dev. Nutr. 2021, 5, nzab101. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Antoniadis, V.; Wang, K.; Huang, Y.; Tian, H. Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil. J. Hazard. Mater. 2020, 399, 123095. [Google Scholar] [CrossRef]
- Matuszczak, M.; Kiljańczyk, A.; Marciniak, W.; Derkacz, R.; Stempa, K.; Baszuk, P.; Bryśkiewicz, M.; Sun, P.; Cheriyan, A.; Cybulski, C.; et al. Zinc and Its Antioxidant Properties: The Potential Use of Blood Zinc Levels as a Marker of Cancer Risk in BRCA1 Mutation Carriers. Antioxidants 2024, 13, 609. [Google Scholar] [CrossRef]
- Matuszczak, M.; Kiljańczyk, A.; Marciniak, W.; Derkacz, R.; Stempa, K.; Baszuk, P.; Bryśkiewicz, M.; Cybulski, C.; Dębniak, T.; Gronwald, J.; et al. Antioxidant Properties of Zinc and Copper—Blood Zinc-to Copper-Ratio as a Marker of Cancer Risk BRCA1 Mutation Carriers. Antioxidants 2024, 13, 841. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, S.; Marciniak, W.; Derkacz, R.; Matuszczak, M.; Kiljańczyk, A.; Baszuk, P.; Bryśkiewicz, M.; Sikorski, A.; Gronwald, J.; Słojewski, M.; et al. Correlation between Selenium and Zinc Levels and Survival among Prostate Cancer Patients. Nutrients 2024, 16, 527. [Google Scholar] [CrossRef] [PubMed]
- Lubinski, J.; Lener, S.; Marciniak, W.; Pietrzak, S.; Derkacz, R.; Cybulski, C.; Gronwald, J.; Dębniak, T.; Jakubowska, A.; Huzarski, T.; et al. Elementos esenciales del suero y supervivencia tras el diagnóstico de cáncer. Nutrientes 2023, 15, 2611. [Google Scholar] [CrossRef]
- Mitra, S.; Paul, S.; Roy, S.; Sutradhar, H.; Bin Emran, T.; Nainu, F.; Khandaker, M.U.; Almalki, M.; Wilairatana, P.; Mubarak, M.S. Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. Molecules 2022, 27, 555. [Google Scholar] [CrossRef] [PubMed]
- Toliopoulos, I.K.; Simos, Y.V.; Daskalou, T.A.; Verginadis, I.I.; Evangelou, A.M.; Karkabounas, S.C. Inhibition of platelet aggregation and immunomodulation of NK lymphocytes by administration of ascorbic acid. Indian J. Exp. Biol. 2011, 49, 904–908. [Google Scholar]
- Bikle, D.D. Vitamin D and immune function: Understanding common pathways. Curr. Osteoporos. Rep. 2009, 7, 58–63. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Nurmi, T.; Aro, A.; Bertone-Johnson, E.R.; Hyppönen, E.; Kröger, H.; Lamberg-Allardt, C.; Manson, J.E.; Mursu, J.; Mäntyselkä, P.; et al. Vitamin D supplementation and prevention of cardiovascular disease and cancer in the Finnish Vitamin D Trial: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 1300–1310. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Roy, S.; Awasthi, A. Vitamin A and the Immune System. In Nutrition and Immunity; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Yang, B.; McCullough, M.L.; Gapstur, S.M.; Jacobs, E.J.; Bostick, R.M.; Fedirko, V.; Flanders, W.D.; Campbell, P.T. Calcium, vitamin D, dairy products, and mortality among colorectal cancer survivors: The Cancer Prevention Study-II Nutrition Cohort. J. Clin. Oncol. 2014, 32, 2335–2343. [Google Scholar] [CrossRef]
Breast | Increases Risk | Weight gain during adult life |
Excess body fatness | ||
Alcohol consumption | ||
Weight loss | ||
Decreases Risk | Physical activity (moderate or vigorous) | |
Diets rich in plant food | ||
Diets low in animal products | ||
Diets low in refined carbohydrates | ||
Mediterranean diet | ||
May Decrease Risk | Non-starchy vegetables | |
Colorectal | Increases Risk | Excess body fatness |
Alcohol consumption | ||
Processed and red meat | ||
Low circulating levels of vitamin D | ||
Decreases Risk | Physical activity (moderate or vigorous) (only colon) | |
Whole grains, higher fiber, and less added sugar | ||
Diets higher in calcium/calcium-rich dairy foods | ||
Reducing sedentary behavior (only colon) | ||
Non-starchy vegetables | ||
Vegetables rich in carotenoids | ||
Supplemental calcium | ||
Lung | Increase Risk | High-dose beta-carotene supplementation |
Exposure to asbestos | ||
Alcohol consumption | ||
Processed and red meat | ||
Decreases Risk | Physical activity (moderate or vigorous) | |
Reducing sedentary behavior (only colon) | ||
Non-starchy vegetables | ||
Whole fruits, especially those high in vitamin C for smokers | ||
Prostate | Increases Risk | Excess body fatness |
May Increase Risk | Higher consumption of dairy products and calcium |
Overall Recommendations | Achieve and maintain healthy body weight | |
Be physically active | ||
Healthy eating pattern | Foods high in nutrients | |
Vegetables | ||
Fruits | ||
Whole grains | ||
Legumes | ||
Limit or not include intake of the following | Red and processed meats | |
Sugar-sweetened beverages | ||
Highly processed foods | ||
Refined grain products | ||
Not drink alcohol |
Diet Quality Assessment Indexes |
---|
Healthy Eating Index-2015 (HEI-2015) |
Alternative Healthy Eating Index-2010 (AHEI-2010) |
Alternative Mediterranean Diet (aMED) |
Dietary Approaches to Stop Hypertension (DASH) score |
Dietary Inflammatory Index (DII®) score |
Author | Year | Population Origin | Type | n | Population | Intervention | Cancer | Key Findings |
---|---|---|---|---|---|---|---|---|
Palomar-Cros | 2021 | Spain | MCC | 607 + 848 | PC + C | Nighttime fasting and breakfast | PC | Lower risk |
Turati | 2018 | Italy/Switzerland | CC | 3034 + 3392 | BC + C | Mediterranean diet | BC | Reduced risk |
Hawrysz | 2020 | Poland | CC | 187 + 252 | LC + NC | Dietary pattern | LC | Lower risk in moderate smokers |
Griffin | 2019 | North America | ND | 115 | Healthy | Mediterranean diet | CC | No change in fasting TMAO |
Wu | 2021 | WW | ES | 37,861 | BC | Dairy + calcium | BC | No association was observed |
Parra-Soto | 2022 | UK | PC + Ma | 409,110 | UK Biobank | Dietary pattern | OC | Lower risk |
Sen | 2019 | Europe | PS | 142,196 | 14y FU | Coffee and tea | PC | No association was observed |
Ward | 2019 | Europe | PS | 478,590 | 6.4y FU | Heme iron | LC | Association was found |
Qin | 2022 | Europe | OS | 48,972 | LC | Genetic iron status | LC | No association was observed |
Ronco | 2019 | Uruguay | CC | 843 + 1466 | LC + C | Iron intake | LC | Association was found |
Cai | 2022 | Japan | PS | 90,171 | 17y FU | Low- carbohydrate diet | OC | Association was found |
Myneni | 2021 | WW | PS | 86,090 | 17y FU | Diet quality | LC | Some associations were found |
Park | 2021 | Multiethnic | PS | 179,318 | 17.5y FU | Diet quality | LC | Lower risk |
Sadeghi | 2022 | Middle East | CC | 140 + 140 | LC + C | Diet quality | LC | Increases risk |
Wang | 2021 | Middle East | PS | 48,421 | 12y FU | Diet quality | LC | Lower risk |
Männistö | 2021 | Finnish | PS | 6374 | 10y FU | Diet quality | BC | Lower risk |
Wei | 2021 | UK | PS | 416,588 | 7y FU | Diet | LC | Lower risk |
Willemsen | 2022 | Canada | PS | 26,462 | 13.3y FU | Dietary pattern | OC | Lower risk |
Ronco | 2021 | Uruguay | CC | 843 + 1466 | LC + C | Acid load | LC | Association was found |
Virtanen | 2022 | Finnish | RCT | 2495 | 5y FU | Vitamin D | OC | No association was observed |
Wang | 2021 | USA | PS | 101,712 | 12.2y FU | Phytoestrogen | LC | Lower risk |
Botteri | 2018 | Norway | RCT | 595 + 621 | I + C | Counseling | OC | Some associations were found |
Berthy | 2022 | France | PS | 62,382 | 8.1y FU | EAT-Lancet Diet | OC | Some associations were found |
Shah | 2023 | France | PS | 65,574 | 20y FU | Paleolithic diet | BC | Lower risk |
Filippini | 2020 | USA/Japan/Europe | Ma | Cadmium exposure | BC | Some associations were found | ||
Dowlati | 2021 | Multiethnic | Ma | Healthy | Heavy metals | NC | Some associations were found | |
Zambrana | 2021 | Nicaragua | PS | 47 | 6m FU | Heavy metals | NC | No association was observed |
Ma | 2020 | China | - | - | Heavy metals | NC | ||
Liu | 2022 | Multiethnic | Ma | 4151 | BC + C | Heavy metals | BC | Some associations were found |
Lubinski | 2023 | Poland | PS | 1475 | 9.8y FU | Micronutrients | OC | Reduced risk |
Matuszczak | 2024 | PS | 989 | 7.5y FU | Micronutrients | BC/OvC | No association was observed | |
Matuszczak | 2024 | Poland | PS | 989 | 7.5y FU | Micronutrients | BC/OvC | Reduced risk |
Pietrzak | 2024 | Poland | PS | 338 | 6y FU | Micronutrients | PC | Some associations were found |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, Á.; Quintanilla, F.; Barnafi, E.; Sánchez, C.; Acevedo, F.; Walbaum, B.; Merino, T. Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines. Nutrients 2024, 16, 2897. https://doi.org/10.3390/nu16172897
Torres Á, Quintanilla F, Barnafi E, Sánchez C, Acevedo F, Walbaum B, Merino T. Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines. Nutrients. 2024; 16(17):2897. https://doi.org/10.3390/nu16172897
Chicago/Turabian StyleTorres, Álvaro, Francisca Quintanilla, Esteban Barnafi, César Sánchez, Francisco Acevedo, Benjamín Walbaum, and Tomás Merino. 2024. "Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines" Nutrients 16, no. 17: 2897. https://doi.org/10.3390/nu16172897
APA StyleTorres, Á., Quintanilla, F., Barnafi, E., Sánchez, C., Acevedo, F., Walbaum, B., & Merino, T. (2024). Dietary Interventions for Cancer Prevention: An Update to ACS International Guidelines. Nutrients, 16(17), 2897. https://doi.org/10.3390/nu16172897