Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications
Abstract
:1. Introduction
2. Historical Use of Garlic in Traditional Medicine
3. Garlic’s Broader Historical Uses
4. Traditional Beliefs about Garlic Use
5. Attitudes toward Supplementary Herbal Therapy in Hypertension
6. Phytochemical Composition of Garlic
7. Mechanisms of Action
- Oxidative Stress
- b.
- Nuclear Factor Kappa B (NF-κB)
- c.
- Hydrogen Sulfide (H2S)
- d.
- Nitric Oxide (NO)
- e.
- Renin–Angiotensin–Aldosterone System (RAAS)
- f.
- Vascular Smooth Muscle Cells (VSMCs)
Biological Factors | Physiologic Effect | Action of Garlic and Its Components |
---|---|---|
Oxidative stress | Oxidative stress can lead to endothelial dysfunction and the inability to promote vasodilation, fibrinolysis, and anti-aggregation [49]. | SAC can trap ROS and lower the activity of NADPH oxidase. AG increases the activity of superoxide dismutase. Allicin scavenges free radicals and traps OH. Both SAC and Allicin reduce Angiotensin II-induced ROS formation [5]. |
NF-κB | NF-κB can activate genes that produce pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1). These cytokines can cause inflammation in the blood vessels, which contributes to endothelial dysfunction [50]. | Pyrrolidine dithiocarbamate and SAC suppress NF-κB, which is elevated, along with ROS, in SHRs [5]. |
H2S | H2S was shown to induce vasodilation and reduce blood pressure [51]. | Garlic enhances H2S production by the catalytic effect of CSE [5]. Garlic-derived polysulfides stimulate H2S and enhance NO regulation [6,30]. |
NO | NO is a potent vasodilator and regulator of vascular tone. It helps to maintain low arterial pressure, inhibit platelet aggregation, and prevent smooth muscle cell proliferation [52]. | Garlic increases NO bioavailability and reduces the generation of ROS, such as O2−, which tends to consume NO [5,32,33]. Garlic supplementation can block L-NAME-induced hypertension by promoting NO synthesis [34]. |
RAAS | The RAAS regulates blood pressure and fluid balance. An overactive RAAS leads to hypertension [53]. | SAC and captopril synergistically inhibit ACE in guinea pigs and decrease blood pressure in rats [38]. Garlic and allicin inhibit epithelial Na channels, which leads to less sodium and water retention and a higher urine sodium concentration [5]. |
VSMCs | VSMCs regulate vascular tone and blood pressure. Changes in the function or phenotype of VSMCs can contribute to the development of hypertension [32]. | Garlic, AMS, and DAS interrupt the G0/G1 cell cycle phase and reduce EFK phosphorylation, which leads to decreased VSMC proliferation [5,41,42]. In addition, opening KATP channels by H2S and exogenous H2S donors induces systemic vasodilation [4]. |
8. Garlic’s Interaction with Antihypertensive Drugs as a Co-Administered Therapy
9. Clinical Studies on Garlic and Hypertension
- Blood Pressure Reduction
- b.
- Cholesterol Impact
10. Studies on Specific Garlic Formulations
- Aged Black Garlic Extract
- b.
- Time-Released Garlic Powder Tablets
- c.
- Raw Crushed Garlic
11. Garlic-Protein-Derived Novel Angiotensin I-Converting Enzyme Inhibitory Peptides from MDR and HDCF
- Introduction and Mechanism of Action
- b.
- Effect on Body Weight and Organ Coefficients
- c.
- Effect on Blood Pressure
12. Additional Considerations and Limitations
- Long-Term Effects
- b.
- Garlic Form Matters
- c.
- Dosage and Delivery
- d.
- Drug Interactions
- e.
- Importance of Patient Education
13. Allergies and Adverse Effects
- Garlic Allergy
- b.
- Garlic-Induced Gastroenteritis and Esophagitis
- c.
- Safety and Potential Toxicity Related to Sulfoxide Compounds
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between Hyperlipidemia, Cardiovascular Disease andStroke: A Systematic Review. CCR 2021, 17, e051121189015. [Google Scholar] [CrossRef] [PubMed]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef]
- Litwin, M. Pathophysiology of primary hypertension in children and adolescents. Pediatr. Nephrol. 2024, 39, 1725–1737. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Ried, K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J. Nutr. 2016, 146, 389S–396S. [Google Scholar] [CrossRef]
- Piragine, E.; Citi, V.; Lawson, K.; Calderone, V.; Martelli, A. Regulation of blood pressure by natural sulfur compounds: Focus on their mechanisms of action. Biochem. Pharmacol. 2022, 206, 115302. [Google Scholar] [CrossRef]
- Witkowska, A.; Gryn-Rynko, A.; Syrkiewicz, P.; Kitala-Tańska, K.; Majewski, M.S. Characterizations of White Mulberry, Sea-Buckthorn, Garlic, Lily of the Valley, Motherwort, and Hawthorn as Potential Candidates for Managing Cardiovascular Disease—In Vitro and Ex Vivo Animal Studies. Nutrients 2024, 16, 1313. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Qin, G.; Liang, S.; Yin, J.; Jiang, H.; Liu, M.; Li, X. Therapeutic potentials of allicin in cardiovascular disease: Advances and future directions. Chin. Med. 2024, 19, 93. [Google Scholar] [CrossRef]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ried, K.; Fakler, P. Potential of garlic (Allium sativum) in lowering high blood pressure: Mechanisms of action and clinical relevance. Integr. Blood Press. Control 2014, 71, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, R.S. Historical Perspective on the Use of Garlic. J. Nutr. 2001, 131, 951S–954S. [Google Scholar] [CrossRef]
- Rahman, K. Historical Perspective on Garlic and Cardiovascular Disease. J. Nutr. 2001, 131, 977S–979S. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Khan, A.; Holbert, D.; Lin, R. A double-blind crossover study in moderately hypercholesterolemic men that compared the effect of aged garlic extract and placebo administration on blood lipids. Am. J. Clin. Nutr. 1996, 64, 866–870. [Google Scholar] [CrossRef]
- Petrovska, B.; Cekovska, S. Extracts from the history and medical properties of garlic. Phcog. Rev. 2010, 4, 106. [Google Scholar] [CrossRef] [PubMed]
- Dugan, F. Seldom Just Garlic: Garlic in Magic and Medicine. Dig. J. Foodways Cult. 2016, 5, 1–60. [Google Scholar]
- Ilter, S.M.; Ovayolu, Ö. Examining the Attitudes of Hypertension Patients Toward Using Complementary Treatments. Holist. Nurs. Pract. 2024, 38, 213–219. [Google Scholar] [CrossRef]
- Bazaraliyeva, A.; Moldashov, D.; Turgumbayeva, A.; Kartbayeva, E.; Kalykova, A.; Sarsenova, L.; Issayeva, R. Chemical and biological properties of bio-active compounds from garlic (Allium sativum). Pharmacia 2022, 69, 955–964. [Google Scholar] [CrossRef]
- Tesfaye, A. Revealing the Therapeutic Uses of Garlic (Allium sativum) and Its Potential for Drug Discovery. Sci. World J. 2021, 2021, 8817288. [Google Scholar] [CrossRef]
- Rauf, A.; Abu-Izneid, T.; Thiruvengadam, M.; Imran, M.; Olatunde, A.; Shariati, M.A.; Bawazeer, S.; Naz, S.; Shirooie, S.; Sanches-Silva, A.; et al. Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties. Curr. Top. Med. Chem. 2022, 22, 957–972. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed. Pharmacother. 2020, 123, 109730. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.-Y.; Yuen, A.C.-Y.; Chan, R.Y.-K.; Chan, S.-W. A Review of the Cardiovascular Benefits and Antioxidant Properties of Allicin: CARDIOVASCULAR BENEFITS AND ANTIOXIDANT PROPERTIES OF ALLICIN. Phytother. Res. 2013, 27, 637–646. [Google Scholar] [CrossRef]
- Elvir Lazo, O.L.; White, P.F.; Lee, C.; Cruz Eng, H.; Matin, J.M.; Lin, C.; Del Cid, F.; Yumul, R. Use of herbal medication in the perioperative period: Potential adverse drug interactions. J. Clin. Anesth. 2024, 95, 111473. [Google Scholar] [CrossRef]
- Liu, W.; Xu, S.; Liang, S.; Duan, C.; Xu, Z.; Zhao, L.; Wen, F.; Li, Q.; Li, Y.; Zhang, J. Hypertensive vascular and cardiac remodeling protection by allicin in spontaneous hypertension rats via CaMK II/NF-κB pathway. Biomed. Pharmacother. 2022, 155, 113802. [Google Scholar] [CrossRef]
- Cui, T.; Liu, W.; Chen, S.; Yu, C.; Li, Y.; Zhang, J.-Y. Antihypertensive effects of allicin on spontaneously hypertensive rats via vasorelaxation and hydrogen sulfide mechanisms. Biomed. Pharmacother. 2020, 128, 110240. [Google Scholar] [CrossRef] [PubMed]
- García-Trejo, E.M.A.; Arellano-Buendía, A.S.; Argüello-García, R.; Loredo-Mendoza, M.L.; García-Arroyo, F.E.; Arellano-Mendoza, M.G.; Castillo-Hernández, M.C.; Guevara-Balcázar, G.; Tapia, E.; Sánchez-Lozada, L.G.; et al. Effects of Allicin on Hypertension and Cardiac Function in Chronic Kidney Disease. Oxidative Med. Cell. Longev. 2016, 2016, 3850402. [Google Scholar] [CrossRef] [PubMed]
- Apitz-Castro, R.; Badimon, J.J.; Badimon, L. A garlic derivative, ajoene, inhibits platelet deposition on severely damaged vessel wall in an in vivo porcine experimental model. Thromb. Res. 1994, 75, 243–249. [Google Scholar] [CrossRef]
- Ferri, N.; Yokoyama, K.; Sadilek, M.; Paoletti, R.; Apitz-Castro, R.; Gelb, M.H.; Corsini, A. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation: Ajoene cell growth protein prenylation. Br. J. Pharmacol. 2003, 138, 811–818. [Google Scholar] [CrossRef]
- Schwartz, S.M. Smooth muscle proliferation in hypertension. State-of-the-art lecture. Hypertension 1984, 6, I56–I61. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018, 114, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E.; Meister, A. Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc. Natl. Acad. Sci. USA 1983, 80, 707–711. [Google Scholar] [CrossRef]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef]
- Okajima, C.; Imakawa, N.; Nagano, K.; Arai, M.; Arisawa, M.; Muraoka, M.; Tsujino, H.; Hirata, Y.; Hirata, K. Inhibitory Activity and Proposed Binding Model of γ-Glutamyl Cysteine, the Precursor of Glutathione, on Angiotensin Converting Enzyme. BPB Rep. 2021, 4, 116–119. [Google Scholar] [CrossRef]
- Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.M.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA 2007, 104, 17977–17982. [Google Scholar] [CrossRef]
- Dhawan, V.; Jain, S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. Mol. Cell Biochem. 2004, 266, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Y.; Peng, C.; Jiao, R.; Wong, Y.M.; Yang, N.; Huang, Y. Anti-hypertensive Nutraceuticals and Functional Foods. J. Agric. Food Chem. 2009, 57, 4485–4499. [Google Scholar] [CrossRef] [PubMed]
- Ku, D.D.; Abdel-Razek, T.T.; Dai, J.; Kim-Park, S.; Fallon, M.B.; Abrams, G.A. Garlic And Its Active Metabolite Allicin Produce Endothelium- And Nitric Oxide-Dependent Relaxation In Rat Pulmonary Arteries. Clin. Exp. Pharmacol. Physiol. 2002, 29, 84–91. [Google Scholar] [CrossRef]
- Pedraza-Chaverrí, J.; Tapia, E.; Medina-Campos, O.N.; De Los Ángeles Granados, M.; Franco, M. Garlic prevents hypertension induced by chronic inhibition of nitric oxide synthesis. Life Sci. 1998, 62, PL71–PL77. [Google Scholar] [CrossRef]
- Matsutomo, T. Potential benefits of garlic and other dietary supplements for the management of hypertension (Review). Exp. Ther. Med. 2019, 19, 1479–1484. [Google Scholar] [CrossRef]
- Serrano, J.C.E.; Castro-Boqué, E.; García-Carrasco, A.; Morán-Valero, M.I.; González-Hedström, D.; Bermúdez-López, M.; Valdivielso, J.M.; Espinel, A.E.; Portero-Otín, M. Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A Randomized, Triple-Blind Controlled Trial. Nutrients 2023, 15, 3691. [Google Scholar] [CrossRef]
- Hasimun, P.; Mulyani, Y.; Rehulina, E.; Zakaria, H. Impact of Black Garlic on Biomarkers of Arterial Stiffness and Frontal QRS-T Angle on Hypertensive Animal Model. J. Young Pharm. 2020, 12, 338–342. [Google Scholar] [CrossRef]
- Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine 2010, 17, 1016–1026. [Google Scholar] [CrossRef]
- Sharifi, A.M.; Darabi, R.; Akbarloo, N. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J. Ethnopharmacol. 2003, 86, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, O.O.; Ajayi, O.B. Short-term Effects of Garlic-Based Diets on mRNA Expression of Angiotensinogen, Angiotensin-1 Converting Enzyme, and Atrial Natriuretic Peptide in Cyclosporine-Induced Prehypertensive Rats. Annu. Res. Rev. Biol. 2023, 38, 32–42. [Google Scholar] [CrossRef]
- Amann, K.; Gharehbaghi, H.; Stephan, S.; Mall, G. Hypertrophy and Hyperplasia of Smooth Muscle Cells of Small Intramyocardial Arteries in Spontaneously Hypertensive Rats. Hypertension 1995, 25, 124–131. [Google Scholar] [CrossRef]
- Heeneman, S.; Sluimer, J.C.; Daemen, M.J.A.P. Angiotensin-Converting Enzyme and Vascular Remodeling. Circ. Res. 2007, 101, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants 2023, 12, 281. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, Q.; Li, X.; Wei, R.; Ge, T.; Zheng, X.; Li, B.; Liu, K.; Cui, R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front. Endocrinol. 2022, 13, 934231. [Google Scholar] [CrossRef]
- Roy, R.; Wilcox, J.; Webb, A.J.; O’Gallagher, K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 15200. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.O. How the Renin-Angiotensin System Controls Blood Pressure. Verywell Health 2024. Available online: https://www.verywellhealth.com/what-is-the-renin-angiotensin-system-1763941 (accessed on 23 May 2024).
- Nyulas, K.-I.; Simon-Szabó, Z.; Pál, S.; Fodor, M.-A.; Dénes, L.; Cseh, M.J.; Barabás-Hajdu, E.; Csipor, B.; Szakács, J.; Preg, Z.; et al. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs—Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 6388. [Google Scholar] [CrossRef] [PubMed]
- Ried, K.; Frank, O.R.; Stocks, N.P. Aged garlic extract reduces blood pressure in hypertensives: A dose–response trial. Eur. J. Clin. Nutr. 2013, 67, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Ried, K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp. Ther. Med. 2019, 19, 1472–1478. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Qin, L.; Yang, X. Effect of Garlic on Blood Pressure: A Meta-Analysis. J. Clin. Hypertens. 2015, 17, 223–231. [Google Scholar] [CrossRef]
- Fu, Z.; Lv, J.; Gao, X.; Zheng, H.; Shi, S.; Xu, X.; Zhang, B.; Wu, H.; Song, Q. Effects of garlic supplementation on components of metabolic syndrome: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. BMC Complement. Med. Ther. 2023, 23, 260. [Google Scholar] [CrossRef]
- Soleimani, D.; Parisa Moosavian, S.; Zolfaghari, H.; Paknahad, Z. Effect of garlic powder supplementation on blood pressure and hs-C-reactive protein among nonalcoholic fatty liver disease patients: A randomized, double-blind, placebo-controlled trial. Food Sci. Nutr. 2021, 9, 3556–3562. [Google Scholar] [CrossRef]
- Varade, S.; Nadella, M.; Hirake, A.; Mungase, S.B.; Ali, A.; Adela, R. Effect of garlic on the components of metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. J. Ethnopharmacol. 2024, 318, 116960. [Google Scholar] [CrossRef]
- Rahmatinia, E.; Amidi, B.; Naderi, N.; Ahmadipour, S.; Ahmadvand, H.; Pahlevan-Fallahy, M.-T.; Ghorbanzadeh, V.; Nazari, A. Randomized, double-blind clinical trial evaluating the impact of freeze-dried garlic extract capsules on blood pressure, lipid profile, and nitric oxide levels in individuals at risk for hypertension. Horm. Mol. Biol. Clin. Investig. 2024. [Google Scholar] [CrossRef]
- Sobenin, I.A.; Andrianova, I.V.; Fomchenkov, I.V.; Gorchakova, T.V.; Orekhov, A.N. Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Hypertens. Res. 2009, 32, 433–437. [Google Scholar] [CrossRef]
- Kwak, J.S.; Kim, J.Y.; Paek, J.E.; Lee, Y.J.; Kim, H.-R.; Park, D.-S.; Kwon, O. Garlic powder intake and cardiovascular risk factors: A meta-analysis of randomized controlled clinical trials. Nutr. Res. Pract. 2014, 8, 644. [Google Scholar] [CrossRef]
- Choudhary, P.R.; Jani, R.D.; Sharma, M.S. Effect of Raw Crushed Garlic (Allium sativum L.) on Components of Metabolic Syndrome. J. Diet. Suppl. 2018, 15, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Zheng, Z.; Guo, X.; Bai, R.; Zhao, R.; Chen, H.; Qiu, Z.; Qiao, X. Two novel angiotensin I-converting enzyme inhibitory peptides from garlic protein: In silico screening, stability, antihypertensive effects in vivo and underlying mechanisms. Food Chem. 2024, 435, 137537. [Google Scholar] [CrossRef] [PubMed]
- Capraz, M.; Dilek, M.; Akpolat, T. Garlic, hypertension and patient education. Int. J. Cardiol. 2007, 121, 130–131. [Google Scholar] [CrossRef]
- Xiong, X.J.; Wang, P.Q.; Li, S.J.; Li, X.K.; Zhang, Y.Q.; Wang, J. Garlic for hypertension: A systematic review and meta-analysis of randomized controlled trials. Phytomedicine 2015, 22, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Armentia, A.; Martín-Armentia, S.; Pineda, F.; Martín-Armentia, B.; Castro, M.; Fernández, S.; Moro, A.; Castillo, M. Allergic hypersensitivity to garlic and onion in children and adults. Allergol. Et Immunopathol. 2020, 48, 232–236. [Google Scholar] [CrossRef]
- Grewal, G.; Amlani, A. Garlic-induced Esophagitis and Gastroenteritis: A Review of Four Cases. Univ. Br. Columbia Med. J. 2015, 7, 48–51. [Google Scholar]
- Rana, S.V.; Pal, R.; Vaiphei, K.; Sharma, S.K.; Ola, R.P. Garlic in health and disease. Nutr. Res. Rev. 2011, 24, 60–71. [Google Scholar] [CrossRef]
- Chidike Ezeorba, T.P.; Ezugwu, A.L.; Chukwuma, I.F.; Anaduaka, E.G.; Udenigwe, C.C. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food Chem. 2024, 435, 137632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleiman, C.; Daou, R.-M.; Al Hazzouri, A.; Hamdan, Z.; Ghadieh, H.E.; Harbieh, B.; Romani, M. Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients 2024, 16, 2895. https://doi.org/10.3390/nu16172895
Sleiman C, Daou R-M, Al Hazzouri A, Hamdan Z, Ghadieh HE, Harbieh B, Romani M. Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients. 2024; 16(17):2895. https://doi.org/10.3390/nu16172895
Chicago/Turabian StyleSleiman, Christopher, Rose-Mary Daou, Antonio Al Hazzouri, Zahi Hamdan, Hilda E. Ghadieh, Bernard Harbieh, and Maya Romani. 2024. "Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications" Nutrients 16, no. 17: 2895. https://doi.org/10.3390/nu16172895
APA StyleSleiman, C., Daou, R. -M., Al Hazzouri, A., Hamdan, Z., Ghadieh, H. E., Harbieh, B., & Romani, M. (2024). Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients, 16(17), 2895. https://doi.org/10.3390/nu16172895