Nutritional Assessment in Outpatients with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Nutritional Screening and Assessment
2.3. Body Composition Assessment
2.4. Assessment of Sarcopenia and Functionality
2.5. Other Clinical Parameters
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Nutritional Assessment
3.2. Sarcopenia and Functional Assessment
3.3. Evaluation of Body Composition
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur. Heart J. 2021, 42, 4901. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L. Epidemiology of Heart Failure: A Contemporary Perspective. Circ. Res. 2021, 128, 1421–1434. [Google Scholar] [CrossRef] [PubMed]
- Krysztofiak, H.; Wleklik, M.; Migaj, J.; Dudek, M.; Uchmanowicz, I.; Lisiak, M.; Kubielas, G.; Straburzyńska-Migaj, E.; Lesiak, M.; Kałużna-Oleksy, M. Cardiac Cachexia: A Well-Known but Challenging Complication of Heart Failure. Clin. Interv. Aging 2020, 15, 2041–2051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loncar, G.; Springer, J.; Anker, M.; Doehner, W.; Lainscak, M. Cardiac cachexia: Hic et nunc. J. Cachexia Sarcopenia Muscle 2016, 7, 246–260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Von Haehling, S.; Ebner, N.; Dos Santos, M.R.; Springer, J.; Anker, S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017, 14, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pombo, A.; Rodríguez-Carnero, G.; Castro, A.I.; Cantón-Blanco, A.; Seoane, L.M.; Casanueva, F.F.; Crujeiras, A.B.; Martínez-Olmos, M.A. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure. Clin. Nutr. 2021, 40, 5141–5155. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Testa, G.; Liguori, I.; Papillo, M.; Flocco, V.; Panicara, V.; Galizia, G.; Della-Morte, D.; Gargiulo, G.; Cacciatore, F.; et al. Sarcopenia and Heart Failure. Nutrients 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zugasti Murillo, A.; Casas Herrero, Á. Síndrome de fragilidad y estado nutricional: Valoración, prevención y tratamiento [Frailty syndrome and nutritional status: Assessment, prevention and treatment]. Nutr. Hosp. 2019, 36, 26–37. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Ru, S. The prevalence of malnutrition and its effects on the all-cause mortality among patients with heart failure: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0259300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerra-Sánchez, L.; Martinez-Rincón, C.; Fresno-Flores, M. Prevalencia de malnutrición en pacientes hospitalizados por descompensación de insuficiencia cardiaca crónica; valoración subjetiva global como indicador pronóstico [Prevalence of undernutrition in hospital patients with unbalanced heart failure; subjective global assessment like prognosis sign]. Nutr. Hosp. 2015, 31, 1757–1762. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Okoshi, M.P.; Capalbo, R.V.; Romeiro, F.G.; Okoshi, K. Cardiac Cachexia: Perspectives for Prevention and Treatment. Arq. Bras. Cardiol. 2017, 108, 74–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- von Haehling, S.; Anker, S.D. Prevalence, incidence and clinical impact of cachexia: Facts and numbers-update 2014. J. Cachexia Sarcopenia Muscle 2014, 5, 261–263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valentova, M.; Anker, S.D.; von Haehling, S. Cardiac Cachexia Revisited: The Role of Wasting in Heart Failure. Heart Fail. Clin. 2020, 16, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Ni, W.; Yuan, X.; Zhang, H.; Li, P.; Xu, J.; Zhao, Z. Sarcopenia in heart failure: A systematic review and meta-analysis. ESC Heart Fail. 2021, 8, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, R.; Xu, J.; Wang, Y.; Jiang, B.; Xu, X.; Lan, Y.; Wang, J.; Lin, X. Prevalence of sarcopenia and its association with clinical outcomes in heart failure: An updated meta-analysis and systematic review. Clin. Cardiol. 2023, 46, 260–268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandrashekhar Iyer, L.; Vaishali, K.; Babu, A.S. Prevalence of sarcopenia in heart failure: A systematic review. Indian. Heart J. 2023, 75, 36–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, M.; Sun, M.; Zhang, X.; Li, R. Nutritional status and its association with in-hospital major adverse cardiac events in patients with severe heart failure: A prospective study. Nutr. Hosp. 2022, 39, 256–265. (In English) [Google Scholar] [CrossRef] [PubMed]
- García Almeida, J.M.; García García, C.; Bellido Castañeda, V.; Bellido Guerrero, D. Nuevo enfoque de la nutrición. Valoración del estado nutricional del paciente: Función y composición corporal. Nutr. Hosp. 2018, 35, 1–14. [Google Scholar] [CrossRef]
- Cribar e Intervenir. La Nutrición Puede Hacer la Diferencia. (s/f). Available online: www.mna-elderly.com (accessed on 20 May 2024).
- Elia, M.; Russell, C.; Stratton, R.; Todorovic, V.; Evans, L.; Farrer, K. MANUAL EXPLICATIVO ‘MUST’ Guía para el ‘Instrumento Universal para el Cribado de la Malnutrición’ (‘MUST’) para Adultos. Available online: https://www.bapen.org.uk/images/pdfs/must/spanish/must-exp-bk.pdf (accessed on 20 May 2024).
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? J. Parenter. Enteral Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Boteta-Gomes, M.I.; Aibar-Almazán, A.; Hita-Contreras, F.; de Loureiro, N.E.M.; Brandão-Loureiro, V.A.F. Cross-Cultural Adaptation and Validation of the Portuguese Version of the SARC-F in Community-Dwelling Older Adults. Diagnostics 2024, 14, 1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christensen, H.M.; Kistorp, C.; Schou, M.; Keller, N.; Zerahn, B.; Frystyk, J.; Schwarz, P.; Faber, J. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine 2013, 43, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Carson, M.A.; Reid, J.; Hill, L.; Dixon, L.; Donnelly, P.; Slater, P.; Hill, A.; Piper, S.E.; McDonagh, T.A.; Fitzsimons, D. Exploring the prevalence, impact and experience of cardiac cachexia in patients with advanced heart failure and their caregivers: A sequential phased study. Palliat. Med. 2022, 36, 1118–1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerra-Sánchez, L.; Martínez-Rincón, C.; Fresno-Flores, M. Cribado nutricional en pacientes con insuficiencia cardiaca: Análisis de 5 métodos. Nutr. Hosp. 2015, 31, 890–899. [Google Scholar] [CrossRef]
- Guerra-Sánchez, L.; Fresno-Flores, M.; Martínez-Rincón, C. Effect of a double nutritional intervention on the nutritional status, functional capacity, and quality of life of patients with chronic heart failure: 12-month results from a randomized clinical trial. Nutr. Hosp. 2020, 34, 422–431. [Google Scholar] [CrossRef]
- Barbosa, J.S.; Souza, M.F.C.d.; Costa, J.O.; Alves, L.V.S.; Oliveira, L.M.S.M.d.; Almeida, R.R.d.; Oliveira, V.B.; Pereira, L.M.C.; Rocha, R.M.S.; Costa, I.M.N.B.d.C.; et al. Assessment of Malnutrition in Heart Failure and Its Relationship with Clinical Problems in Brazilian Health Services. Int. J. Environ. Res. Public. Health 2022, 19, 10090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duarte, R.R.P.; Gonzalez, M.C.; Oliveira, J.F.; Goulart, M.R.; Castro, I. Is there an association between the nutritional and functional parameters and congestive heart failure severity? Clin. Nutr. 2021, 40, 3354–3359. [Google Scholar] [CrossRef]
- Hirose, S.; Matsue, Y.; Kamiya, K.; Kagiyama, N.; Hiki, M.; Dotare, T.; Sunayama, T.; Konishi, M.; Saito, H.; Saito, K.; et al. Prevalence and prognostic implications of malnutrition as defined by GLIM criteria in elderly patients with heart failure. Clin. Nutr. 2021, 40, 4334–4340. [Google Scholar] [CrossRef] [PubMed]
- Joaquín, C.; Alonso, N.; Lupón, J.; Gastelurrutia, P.; Pérez-Monstesdeoca, A.; Domingo, M.; Zamora, E.; Socias, G.; Ramos, A.; Bayes-Genis, A.; et al. Nutritional Status According to the GLIM Criteria in Patients with Chronic Heart Failure: Association with Prognosis. Nutrients 2022, 14, 2244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kootaka, Y.; Kamiya, K.; Hamazaki, N.; Nozaki, K.; Ichikawa, T.; Nakamura, T.; Yamashita, M.; Maekawa, E.; Reed, J.L.; Yamaoka-Tojo, M.; et al. The GLIM criteria for defining malnutrition can predict physical function and prognosis in patients with cardiovascular disease. Clin. Nutr. 2021, 40, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Ito, R.; Hiraiwa, H.; Araki, T.; Mizutani, T.; Kazama, S.; Kimura, Y.; Oishi, H.; Kuwayama, T.; Kondo, T.; Morimoto, R.; et al. Prognostic value of malnutrition evaluated using the Global Leadership Initiative on Malnutrition criteria and its association with psoas muscle volume in non-ischemic dilated cardiomyopathy. Heart Vessels 2022, 37, 2002–2012, Erratum in Heart Vessels 2022, 37, 2013. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Kato, T.; Morimoto, T.; Yaku, H.; Inuzuka, Y.; Tamaki, Y.; Ozasa, N.; Shiba, M.; Yamamoto, E.; Yoshikawa, Y.; et al. Weight loss during follow-up in patients with acute heart failure: From the KCHF registry. PLoS ONE 2023, 18, e0287637. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okuhara, Y.; Asakura, M.; Orihara, Y.; Naito, Y.; Tsujino, T.; Ishihara, M.; Masuyama, T.; J-MELODIC Study Investigators. Effects of Weight Loss in Outpatients with Mild Chronic Heart Failure: Findings From the J-MELODIC Study. J. Card. Fail. 2019, 25, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Trullàs, J.C.; Formiga, F.; Montero, M.; Carrera-Izquierdo, M.; Grau-Amorós, J.; Chivite-Guillén, D.; Manzano, L.; RICA Investigators. Impact of weight loss on mortality in chronic heart failure: Findings from the RICA Registry. Int. J. Cardiol. 2013, 168, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Gámez-López, A.L.; Bonilla-Palomas, J.L.; López-Ibáñez, M.C.; Moreno-Conde, M.; Anguita-Sánchez, M.; Villar-Ráez, A. Valoración de la composición corporal y su influencia pronóstica en insuficiencia cardiaca crónica. Más allá de la «paradoja de la obesidad». Arch. Cardiol. México 2016, 86, 319–325. [Google Scholar] [CrossRef]
- Scicchitano, P.; Ciccone, M.M.; Passantino, A.; Valle, R.; De Palo, M.; Sasanelli, P.; Sanasi, M.; Piscopo, A.; Guida, P.; Caldarola, P.; et al. Congestion and nutrition as determinants of bioelectrical phase angle in heart failure. Heart Lung 2020, 49, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.; Barros, A.J.; Wang, J.; Heymsfield, S.B.; Pierson, R.N., Jr. Bioelectrical impedance analysis: Population reference values for phase angle by age and sex. Am. J. Clin. Nutr. 2005, 82, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, F.; Petrella, L.; Cavaliere, G.; Ambrosio, K.; Trinchese, G.; Monda, V.; D’Angelo, M.; Di Giacomo, C.; Sacconi, A.; Messina, G.; et al. A Bioelectrical Impedance Analysis in Adult Subjects: The Relationship between Phase Angle and Body Cell Mass. J. Funct. Morphol. Kinesiol. 2023, 8, 107. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Ye, T.; Wang, Z.; Yao, Y. Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients 2023, 15, 3941. [Google Scholar] [CrossRef]
- de Luis Roman, D.; García Almeida, J.M.; Bellido Guerrero, D.; Guzmán Rolo, G.; Martín, A.; Primo Martín, D.; García-Delgado, Y.; Guirado-Peláez, P.; Palmas, F.; Tejera Pérez, C.; et al. Ultrasound Cut-Off Values for Rectus Femoris for Detecting Sarcopenia in Patients with Nutritional Risk. Nutrients 2024, 16, 1552. [Google Scholar] [CrossRef]
- Fuentes-Abolafio, I.J.; Bernal-López, M.R.; Gómez-Huelgas, R.; Ricci, M.; Cuesta-Vargas, A.I.; Pérez-Belmonte, L.M. Relationship between quadriceps femoris muscle architecture and muscle strength and physical function in older adults with heart failure with preserved ejection fraction. Sci. Rep. 2022, 12, 21660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marín-Baselga, R.; Sanz-Ortega, C.; Platero-Dueñas, L.; Sorriguieta-Torre, R.; Palma-Milla, S.; Tung-Chen, Y. Nutritional assessment by ultrasound of the rectus femoris and preperitoneal adipose tissue as predictors of hospitalized patient complications. Rev. Clin. Esp. 2023, 223, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Angulo, A.; Galán-Mercant, A.; Cuesta-Vargas, A.I. Ultrasound Muscle Assessment and Nutritional Status in Institutionalized Older Adults: A Pilot Study. Nutrients 2019, 11, 1247. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Cardiovascular Risk Factor | All Patients (n = 121) | Males (n = 79) | Females (n = 42) |
---|---|---|---|
HT | 79 (65.3%) | 49 (62%) | 30 (71.4%) |
LD | 73 (60.3%) | 50 (63.3%) | 23 (54.8%) |
DM type 2 | 44 (36.4%) | 30 (38%) | 14 (33.3%) |
Obesity | 40 (33.1%) | 24 (30.4%) | 16 (38.1%) |
BMI (kg/m2) | All Patients (n = 121) | Males (n = 79) | Females (n = 42) |
---|---|---|---|
Total | 28.3 ± 5.4 | 27.7 ± 5 | 28.2 ± 6.2 |
Overweight | 27.4 ± 1.6 | 26.9 ± 1.5 | 27.7 ± 7.6 |
Obesity | 34.6 ± 3.4 | 33.8 ± 3.3 | 34.3 ± 4 |
GLIM Criteria | All Patients (n = 121) | Males (n = 79) | Females (n = 42) |
---|---|---|---|
No malnutrition | 53 (43.8%) | 36 (45.5%) | 17 (40.4%) |
Malnutrition | 68 (56.2%) | 43 (54.4%) | 25 (59.5%) |
Moderate malnutrition | 55 (87.3%) | 37 (86%) | 18 (72%) |
Severe malnutrition | 13 (20.6%) | 6 (14%) | 7 (28%) |
Screening Test | GLIM Criteria | p-Value | |||
---|---|---|---|---|---|
No Malnutrition | Malnutrition | Severe Malnutrition | |||
MNA | No malnutrition | 25 (75.7%) | 19 (65.5%) | 0 (0%) | <0.001 |
Moderate risk of malnutrition | 7 (21.2%) | 10 (34.4%) | 4 (50%) | ||
High risk of malnutrition | 1 (3%) | 0 (0%) | 4 (50%) | ||
MUST | No malnutrition | 47 (88.7%) | 44 (80%) | 1 (7.6%) | <0.001 |
Moderate risk of malnutrition | 8 (14.5%) | 8 (14.5%) | 6 (46.1%) | ||
High risk of malnutrition | 0 (0%) | 3 (5.4%) | 6 (46.1%) | ||
SGA | No malnutrition | 43 (81.1%) | 39 (70.9%) | 1 (7.6%) | <0.001 |
Moderate risk of malnutrition | 10 (18.8%) | 14 (25.4%) | 5 (38.4%) | ||
High risk of malnutrition | 0 (0%) | 2 (3.6%) | 7 (53.8%) |
NYHA I–II (n = 92) | NYHA III–IV (n = 29) | p-Value | |
---|---|---|---|
Glim criteria | 0.246 | ||
No malnutrition (n = 53) | 43 (81.1%) | 10 (18.8%) | |
Malnutrition (n = 68) | 49 (72%) | 19 (27.9%) | |
SARC-F | <0.001 | ||
Low risk of sarcopenia (n= 91) | 78 (85.7%) | 13 (14.3%) | |
High risk of sarcopenia (n = 30) | 14 (46.6%) | 16 (53.4%) |
BIVA Parameter | Mean ± SD | Minimum | Maximum |
---|---|---|---|
Total body water (L) | 42 ± 9 | 25.6 | 64.4 |
Extracellular water (L) | 19.6 ± 3.9 | 10 | 31.6 |
Intracellular water (L) | 23.2 ± 4.6 | 9.6 | 36.1 |
Extracellular water ratio | 0.4 ± 0 | 0.3 | 0.6 |
Resistance (Ohm) | 535.2 ± 88.2 | 366.3 | 871.1 |
Reactance (Ohm) | 49.2 ± 11 | 28 | 75.3 |
Phase angle (PA) (°) | 5.1 ± 1 | 3.2 | 7.2 |
Lean mass (kg) | 49.4 ± 14.6 | 23.3 | 80.9 |
Fat-free mass index (kg/m2) | 19.2 ± 2.5 | 11.9 | 27.3 |
Musculoskeletal mass index (kg/m2) | 8.8 ± 1.2 | 5.8 | 12.5 |
Fat mass (kg) | 24.2 ± 9.2 | 6.1 | 51.6 |
Fat mass (%) | 28.9 ± 7.9 | 9.5 | 47 |
Cell mass (BCM) (kg) | 31.6 ± 7 | 12.6 | 51.8 |
ASMI (kg) | 22.6 ± 3.5 | 12.5 | 32.4 |
Hydration (%) | 73.7 ± 1.9 | 69.1 | 83.4 |
BIVA Parameter | Mean ± DS | Minimum | Maximum |
---|---|---|---|
Total body water (L) | 30.7 ± 4,4 | 22.9 | 42.3 |
Extracellular water (L) | 14.7 ± 3.2 | 8.9 | 26.7 |
Intracellular water (L) | 15.9 ± 3.2 | 10.3 | 25.2 |
Extracellular water ratio | 0.477 ± 0.07 | 0.376 | 0.631 |
Resistance a (Ohm) | 620.3 ± 98.6 | 362 | 788 |
Reactance (Ohm) | 52.6 ± 12.7 | 20.6 | 84.7 |
Phase angle (PA) (°) | 4.7 ± 0.8 | 2.9 | 6.4 |
Lean mass (kg) | 35.1 ± 9.5 | 16.5 | 48.2 |
Fat-free mass index (kg/m2) | 16.7 ± 2.9 | 8.1 | 21.4 |
Musculoskeletal mass index (kg/m2) | 6.7 ± 1.1 | 5 | 10.9 |
Fat mass (kg) | 26.2 ± 11.3 | 5.4 | 50.4 |
Fat mass (%) | 36.9 ± 10.3 | 13.2 | 51.1 |
Cell mass (BCM) (kg) | 21.8 ± 4.9 | 13.8 | 36.1 |
ASMI (kg) | 14.6 ± 2.4 | 10 | 20.6 |
Hydration (%) | 73.6 ± 2.8 | 66.6 | 89 |
Males | Females | |
---|---|---|
Measurement location (cm) | 10 ± 2.2 | 9 ± 2 |
Total adipose tissue (mm) | 15.5 (9.9–23.5) | 20.1 (13.1–27) |
Superficial adipose tissue (mm) | 6.7 (4.2–9.2) | 9 (5.2–14.7) |
Preperitoneal adipose tissue (mm) | 4.9 (3.4–7.9) | 5 (3.4–5.9) |
Males | Females | |
---|---|---|
Measurement location (cm) | 16.8 ± 1.3 | 16.3 ± 1.4 |
X axis (mm) | 32.1 (27.2–35.5) | 30.6 (24.7–33.9) |
Y axis (mm) | 9 (7–12.8) | 9 (7–11) |
Area (cm2) | 2.4 ± 1.5 | 1.9 ± 1.1 |
Adipose tissue (mm) | 5.5 (3.8–7.6) | 11.6 (8.1–17.4) |
Low Risk of Sarcopenia (SARC-F) | High Risk of Sarcopenia (SARC-F) | p-Value | ||
---|---|---|---|---|
Contraction >15% | Yes (n = 38) | 33 (86.8%) | 5 (13.1%) | 0.045 |
No (n = 51) | 35 (68.6%) | 16 (31.3%) | ||
Contraction >20% | Yes (n = 33) | 29 (87.8%) | 4 (12.1%) | 0.050 |
No (n = 56) | 39 (69.6%) | 17 (30.3%) | ||
Contraction >30% | Yes (n = 21) | 20 (95.2%) | 1 (4.7%) | 0.020 |
No (n = 68) | 48 (70.5%) | 20 (29.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Guillén, R.; Argente Pla, M.; Micó García, A.; Dura de Miguel, Á.; Gascó Santana, E.; Martín Sanchis, S.; Merino Torres, J.F. Nutritional Assessment in Outpatients with Heart Failure. Nutrients 2024, 16, 2853. https://doi.org/10.3390/nu16172853
López Guillén R, Argente Pla M, Micó García A, Dura de Miguel Á, Gascó Santana E, Martín Sanchis S, Merino Torres JF. Nutritional Assessment in Outpatients with Heart Failure. Nutrients. 2024; 16(17):2853. https://doi.org/10.3390/nu16172853
Chicago/Turabian StyleLópez Guillén, Regina, María Argente Pla, Andrea Micó García, Ángela Dura de Miguel, Eva Gascó Santana, Silvia Martín Sanchis, and Juan Francisco Merino Torres. 2024. "Nutritional Assessment in Outpatients with Heart Failure" Nutrients 16, no. 17: 2853. https://doi.org/10.3390/nu16172853
APA StyleLópez Guillén, R., Argente Pla, M., Micó García, A., Dura de Miguel, Á., Gascó Santana, E., Martín Sanchis, S., & Merino Torres, J. F. (2024). Nutritional Assessment in Outpatients with Heart Failure. Nutrients, 16(17), 2853. https://doi.org/10.3390/nu16172853