The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Flavoring and Maceration of Coffee Beans
2.2.1. Maceration in Wine
2.2.2. Maceration in Fruit Pulps
2.2.3. Flavoring with Aroma Oils
2.2.4. Preparation of Coffee Extracts
2.3. Analysis of Phenolic and Organic Acid, Caffeine, HMF, and Acrylamide (UHPLC-ESI-MS)
Determination of the Content of Organic Acids: Lactic, Citric, Malic, and Acetic
2.4. Total Antioxidant Capacity Test
2.5. α-Amylase Inhibitory Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Content of the Hydroxycinnamic and Organic Acid, Caffeine, HMF, and Acrylamide
3.2. Concentration of Organic Acids
3.3. Antioxidant Potential
3.4. α-Amylase Inhibitory Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pszczola, D.E. Beverage Flavors ‘Spill Over’ Into Foods. Food Technology Magazine. pp. 1–31. Available online: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2009/february/columns/ingredients (accessed on 1 August 2024).
- F 1ebrianto, N.A.; Zhu, F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem. 2023, 412, 135489. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.M.C.; Shellie, R.A.; Keast, R. Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2380–2420. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K.; Tomizawa, Y.; Shimizu, N.; Manome, Y. Description of coffee aroma with the electronic nose which learned wine aromas, Le nez du vin. In Proceedings of the of the 1st International Electronic Conference on Sensors and Applications, Sciforum Electronic Conference Series, online, 1–16 June 2014. [Google Scholar] [CrossRef]
- Vezzulli, F.; Lambri, M.; Bertuzzi, T. Volatile compounds in green and roasted arabica specialty coffee: Discrimination of origins, post-harvesting processes, and roasting level. Foods 2023, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Barea-Ramos, J.D.; Cascos, G.; Mesías, M.; Lozano, J.; Martín-Vertedor, D. Evaluation of the olfactory quality of roasted coffee beans using a digital nose. Sensors 2022, 22, 8654. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Wang, D.; He, Z.; Gong, J.; Tan, C. Effects of different probiotics on the volatile components of fermented coffee were analyzed based on headspace-gas chromatography-ion mobility spectrometry. Foods 2023, 12, 2015. [Google Scholar] [CrossRef]
- Shen, X.; Zi, C.; Yang, Y.; Wang, Q.; Zhang, Z.; Shao, J.; Zhao, P.; Liu, K.; Li, X.; Fan, J. Effects of different primary processing methods on the flavor of coffea arabica beans by metabolomics. Fermentation 2023, 9, 717. [Google Scholar] [CrossRef]
- Partida-Sedas, J.G.; Muñoz Ferreiro, M.N.; Vázquez-Odériz, L.; Romero-Rodríguez, M.Á.; Pérez-Portilla, E. Influence of the postharvest processing of the “Garnica” coffee variety on the sensory characteristics and overall acceptance of the beverage. J. Sens. Stud. 2019, 34, e12502. [Google Scholar] [CrossRef]
- Wang, C.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Res. Int. 2020, 136, 109452. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From plantation to cup: Changes in bioactive compounds during coffee processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
- Macheiner, L.; Schmidt, A.; Schreiner, M.; Mayer, H.K. Green coffee infusion as a source of caffeine and chlorogenic acid. J. Food Compos. Anal. 2019, 84, 103307. [Google Scholar] [CrossRef]
- Marques, D.S.; Memento, G.S.; Salgado, A.L.; Freire, A.P. Quality Coffee Information Needs and Implications for Information Systems: A Study with Coffee Consumers. In Proceedings of the 20th Brazilian Symposium on Information Systems, Juiz de Fora, Brazil, 20–23 May 2014. [Google Scholar] [CrossRef]
- Mili, S.; Ferro-Soto, C. Precursors and outcomes of satisfaction of fair trade coffee consumers. Eur. J. Manag. Bus. Econ. 2024, 33, 195–211. [Google Scholar] [CrossRef]
- Samoggia, A.; Riedel, B. Consumers’ Perceptions of Coffee Health Benefits and Motives for Coffee Consumption and Purchasing. Nutrients 2019, 11, 653. [Google Scholar] [CrossRef] [PubMed]
- Bercík, J.; Gálová, J.; Pavelka, A. The Use of Consumer Neuroscience in Aroma Marketing; BRIIL: Leiden, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, Z.; Jiangm, K.; Xu, K.; Meng, F.; Wu, W.; Li, Z.; Wang, B. Study on ultrasound-assisted extraction of cold brew coffee using physicochemical, flavor, and sensory evaluation. Food Biosci. 2024, 61, 104455. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Seninde, D.R.; Chambers, E. Coffee flavor: A review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Schenker, S.; Heinemann, C.; Huber, M.; Pompizzi, R.; Perren, R.; Escher, R. Impact of roasting conditions on the formation of aroma compounds in coffee beans. J. Food Sci. 2002, 67, 60–66. [Google Scholar] [CrossRef]
- Baggenstoss, J.; Poisson, L.; Kaegi, R.; Perren, R.; Escher, F. Coffee roasting and aroma formation: Application of different time-temperature conditions. J. Agric. Food Chem. 2008, 56, 5836–5846. [Google Scholar] [CrossRef]
- Erlacher, W.A.; Amaral, J.F.; Amaral, J.A.; Christo, B.F.; Ferreira, D.S.; Tatagiba, S.D.; Rocha, B.C.; Tomaz, M.A.; Rodrigues, W.N.; Partelli, F.L. Effect of indole-3-acetic acid on growth, physiology and nutritional status of young arabica coffee plants. Coffee Sci. 2023, 17, 172050. [Google Scholar] [CrossRef]
- da Costa, D.S.; Albuquerque, T.G.; Costa, H.S.; Bragotto, A.P.A. Thermal contaminants in coffee induced by roasting: A review. Int. J. Environ. Res. Public Health 2023, 20, 5586. [Google Scholar] [CrossRef]
- Cao, X.; Wu, H.; Viejo, C.G.; Dunshea, F.R.; Suleria, H.A.R. Effects of postharvest processing on aroma formation in roasted coffee—A review. Int. J. Food Sci. Technol. 2023, 58, 1007–1027. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Ruvutuso, F.; Scuderi, D.; Palazzolo, E.; Gugliuzza, G.; Tinebra, I.; Farina, V. Chemical composition and anti-radical properties of coffee cherry cultivated in Mediterranean climate. Food Biosci. 2023, 56, 103349. [Google Scholar] [CrossRef]
- Pua, A.; Goh, R.M.V.; Huang, Y.; Tang, V.C.Y.; Ee, K.H.; Cornuz, M.; Liu, S.Q.; Lassabliere, B.; Yu, B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem. 2022, 388, 132971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Front. Microbiol. 2019, 10, 2621. [Google Scholar] [CrossRef] [PubMed]
- Rahma, S.K.; Sarofa, U.; Anggreini, R.A. The effect of the proportion of ginger and spices extracts and the addition of sugar on the physicochemical properties of instant spiced coffee. Asian J. Appl. Res. Community Dev. Empower. 2024, 8, 37–43. [Google Scholar] [CrossRef]
- Wan, L.; Wang, H.; Mo, X.; Wang, Y.; Song, L.; Liu, L.; Liang, W. Applying HS-SPME-GC-MS combined with PTR-TOF-MS to analyze the volatile compounds in coffee husks of Coffea arabica with different primary processing treatments in Yunnan. LWT 2024, 191, 115675. [Google Scholar] [CrossRef]
- Maligan, J.M.; Kosasih, S.U.; Nurcholis, M.; Sriherfyna, F.H. Effect of fermentation time and roasting temperature on the characteristics of wine coffee arabica semeru. J. Pangan Agroindustri 2024, 12, 31–42. [Google Scholar] [CrossRef]
- Abubakar, Y.; Hasni, D.; Baihaqi, A.; Rasdiansyah, R.; Sumardi, S. Consumer preferences on arabica coffee bag with cinnamon flavors from different roasting degrees. AIP Conf. Proc. 2024, 3082, 040047. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea Arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Bressani, A.P.P.; Martinez, S.J.; Sarmento, A.B.I.; Borém, F.M.; Schwan, R.F. Influence of yeast inoculation on the quality of fermented coffee (Coffea arabica var. Mundo Novo) processed by natural and pulped natural processes. Int. J. Food Microbiol. 2021, 343, 109107. [Google Scholar] [CrossRef]
- Zofia, N.-Ł.; Aleksandra, Z.; Tomasz, B.; Martyna, Z.-D.; Magdalena, Z.; Zofia, H.-B.; Tomasz, W. Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules 2020, 25, 5394. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, B.; Liu, S.; Qu, H.; Luo, H.; Yuan, W. Study on the wine brewing technology of coffee pulp grown in Yunnan province. Sci. Technol. Food Ind. 2017, 10, 194–199. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Wira, D.; Klimowicz, A. The Effect of brewing process parameters on antioxidant activity and caffeine content in infusions of roasted and unroasted arabica coffee beans originated from different countries. Molecules 2021, 26, 3681. [Google Scholar] [CrossRef]
- Stanek, N.; Zarębska, M.; Biłos, Ł.; Barabosz, K.; Nowakowska-Bogdan, E.; Semeniuk, I.; Błaszkiewicz, J.; Kulesza, R.; Matejuk, R.; Szkutnik, K. Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant, and sensory properties. Sci. Rep. 2021, 11, 21377. [Google Scholar] [CrossRef] [PubMed]
- Portela, C.D.S.; Almeida, I.F.; Reis, T.A.D.D.; Hickmann, B.R.B.; Benassi, M.T. Effects of brewing conditions and coffee species on the physicochemical characteristics, preference, and dynamics of sensory attributes perception in cold brews. Food Res. Int. 2022, 151, 110860. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Szwajgier, D.; Baranowska-Wójcik, E.; Budryn, G.; Zakłos-Szyda, M.; Sosnowska, B. Bioaccessibility of coffee bean hydroxycinnamic acids during in vitro digestion influenced by the degree of roasting and activity of intestinal probiotic bacteria, and their activity in Caco-2 and HT29 cells. Food Chem. 2022, 392, 133328. [Google Scholar] [CrossRef]
- Wolska, J.; Janda, K.; Jakubczyk, K.; Szymkowiak, M.; Chlubek, D.; Gutowska, I. Levels of antioxidant activity and fluoride content in coffee infusions of Arabica, Robusta, and green coffee beans in according to their brewing methods. Biol. Trace Elem. Res. 2017, 179, 327–333. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Wang, J.Y.; Nemzer, B. Antioxidant and antiradical activity of coffee. Antioxidants 2013, 2, 230–245. [Google Scholar] [CrossRef]
- Oboh, G.; Akinyemi, A.J.; Ademiluyi, A.O. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf. Asian Pac. J. Trop. Biomed. 2012, 2, 733–738. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lim, J.-M.; Kim, Y.J.; Kim, W. Alterations in pH of coffee bean extract and properties of chlorogenic acid based on the roasting degree. Foods 2024, 13, 1757. [Google Scholar] [CrossRef]
- Mättä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus Sp. (Family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Typek, R. Thermal transformation of trans-5-O-caffeoylquinic acid (trans-5-CQA) in alcoholic solutions. Food Chem. 2015, 167, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef] [PubMed]
- Dimtsas, V.; Douma, A.; Soukia, D.; Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Exploring varied (green) extraction methods to optimize galia melon peel antioxidant potential. Separations 2024, 11, 135. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintad, M. Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and biofunctional properties with emphasis on current trends and advances. Trends Food Sci. Technol. 2020, 99, 507–519. [Google Scholar] [CrossRef]
- Mihalev, K.; Schieber, A.; Mollov, P.; Carle, R. Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice. J. Agric. Food Chem. 2004, 52, 7306–7310. [Google Scholar] [CrossRef] [PubMed]
- Mehaya, F.M.; Mohammad, A.A. Thermostability of bioactive compounds during roasting process of coffee beans. Heliyon 2020, 6, e05508. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Bravo, J.; De Peña, M.P.; Cid, C. Effect of sugar addition (torrefacto) during roasting process on antioxidant capacity and phenolics of coffee. LWT Food Sci. Technol. 2013, 51, 553–559. [Google Scholar] [CrossRef]
- Ohishi, T.; Fukutomi, R.; Shoji, Y.; Goto, S.; Isemura, M. The beneficial effects of principal polyphenols from green tea, coffee, wine, and curry on obesity. Molecules 2021, 26, 453. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Haller, S.; Montandon, M.-L.; Rodriguez, C.; Herrmann, F.R.; Giannakopoulos, P. Impact of coffee, wine, and chocolate consumption on cognitive outcome and MRI parameters in old age. Nutrients 2018, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Kuchera, M.; Smoot, K.; Diako, C.; Vixie, B.; Ross, C.F. Consumer acceptance of a polyphenolic coffee beverage. J. Food Sci. 2016, 81, S2817–S2823. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Nebesny, E.; Oracz, J. Correlation between the stability of chlorogenic acids, antioxidant activity and acrylamide content in coffee beans roasted in different conditions. Int. J. Food Prop. 2015, 18, 290–302. [Google Scholar] [CrossRef]
- Zanin, R.C.; Smrke, S.; Kurazawa, L.E.; Yamashita, F.; Yeretzian, C. Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chem. 2021, 341, 128193. [Google Scholar] [CrossRef]
- Hong, C.T.; Chan, L.; Bai, C.-H. The Effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients 2020, 12, 1860. [Google Scholar] [CrossRef]
- Schepici, G.; Silvestro, S.; Bramanti, P.; Mazzon, E. Caffeine: An overview of its beneficial effects in experimental models and clinical trials of Parkinson’s disease. Int. J. Mol. Sci. 2020, 21, 4766. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Metrani, R.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Ravishankar, S.; Brierley, P.; Leskovar, D.L.; Turini, T.A.; Schultheis, J.; et al. Profiling carotenoid and sugar contents in unique Cucumis melo L. cultigens harvested from different climatic regions of the United States. J. Food Compos. Anal. 2022, 106, 104306. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Laura Corollaro, M.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Ross, K.; Siow, Y.; Brown, D.; Isaak, C.; Fukumoto, L.; Godfrey, D. Characterization of Water Extractable Crude Polysaccharides from Cherry, Raspberry, and Ginseng Berry Fruits: Chemical Composition and Bioactivity. Int. J. Food Prop. 2015, 18, 670–689. [Google Scholar] [CrossRef]
- Faienza, M.F.; Corbo, F.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Grano, M.; Wang, D.Q.; D’Amato, G.; Muraglia, M.; Franchini, C.; et al. Novel insights in health-promoting properties of sweet cherries. J. Funct. Foods. 2020, 69, 103945. [Google Scholar] [CrossRef] [PubMed]
- Weingart, E.; Tschirner, S.; Teevs, L.; Prüße, U. Conversion of Fructose to HMF in a Continuous Fixed Bed Reactor with Outstanding Selectivity. Molecules 2018, 23, 1802. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, G.; Redi-Abshiro, M.; Chandravanshi, B.S.; Ele, E.; Mohammed, A.M.; Mamo, H. Efect of altitude of cofee plants on the composition of fatty acids of green coffee beans. BMC Chem. 2020, 14, 36. [Google Scholar] [CrossRef]
- Schouten, M.A.; Tappi, S.; Romani, S. Acrylamide in coffee: Formation and possible mitigation strategies—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3807–3821. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.; Vandenberghe, L.P.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation of coffee beans—A review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef]
- Hamzalıoğlu, A.; Gökmen, V. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modeling. Food Chem. 2020, 318, 126467. [Google Scholar] [CrossRef] [PubMed]
- Münchow, M.; Alstrup, J.; Steen, I.; Giacalone, D. Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages 2020, 6, 29. [Google Scholar] [CrossRef]
- Rattanarat, P.; Chindapan, N.; Sakamon, D. Comparative evaluation of acrylamide and polycyclic aromatic hydrocarbons contents in Robusta coffee beans roasted by warm air and superheated steam. Food Chem. 2021, 341, 128266. [Google Scholar] [CrossRef]
- Oikawa, N.; Wakabayashi, M.; Ota, H. Processing Method of Coffee Bean, Roasting Method of Coffee Bean, and Method for increasing Amino Acid in Coffee Bean. U.S. Patent 11/664,218, 18 September 2008. [Google Scholar]
- Sturm, K.; Hudina, M.; Solar, A.; Marn, M.V.; Stampar, F. Fruit Quality of Different ‘Gala’ Clones. Europ. J. Hort. Sci. 2003, 68, 169–175. [Google Scholar]
- Marques, C.; Sotiles, R.A.; Farias, F.O.; Oliveira, G.; Mitterer-Daltoe, M.L.; Masson, M.L. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels. Arab. J. Chem. 2020, 13, 9118–9129. [Google Scholar] [CrossRef]
- Wiecinska, P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled DTA/TG/MS analysis. J. Therm. Anal. Calorim. 2016, 123, 1419–1430. [Google Scholar] [CrossRef]
- Komesu, A.; Martinez, P.F.M.; Lunelli, B.H.; Oliveira, J.; Maciel, M.R.W.; Fiho, R.M. Study of Lactic Acid Thermal Behavior Using Thermoanalytical Techniques. J. Chem. 2017, 2017, 4149592. [Google Scholar] [CrossRef]
- Cuervo, A.; Hevia, A.; López, P.; Suárez, A.; Diaz, C.; Sánchez, B.; Margolles, A.; González, S. Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects. Food Funct. 2016, 7, 104–109. [Google Scholar] [CrossRef]
- Zulfiqar, H.; Hussain, A.I.; Ali, Q.; Rathore, H.A.; Ahmed, I. Phenolic profile, nutritional potential and biological activities of wildly grown accessions of Cucumis melo var. Agrestis. J. King Saud Univ. Sci. 2024, 36, 10332. [Google Scholar] [CrossRef]
- Haile, M.; Bae, H.M.; Kang, W.H. Comparison of the Antioxidant Activities and Volatile Compounds of Coffee Beans Obtained Using Digestive Bio-Processing (Elephant Dung Coffee) and Commonly Known Processing Methods. Antioxidants 2020, 9, 408. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Phenolic Profile and antioxidant activity of melon (Cucumis melo L.) seeds from Pakistan. Foods 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, V.T.; Kalschne, D.L.; Canan, C.; Flores, É.L.M.; Viegas, M.C.; Peiter, G.C.; Zara, R.F.; Amaral, J.S.; Corso, M.P. Coffee extract as a natural antioxidant in fresh pork sausage—A model approach. Foods 2024, 13, 1409. [Google Scholar] [CrossRef]
- Freitas, V.V.; Borges, L.L.R.; Vidigal, M.C.T.R.; das Santos, M.H.; Stringheta, P.C. Coffee: A comprehensive overview of origin, market, and the quality process. Trends Food Sci. Technol. 2024, 146, 104411. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Guinard, J.E.; Ristenpart, W.D. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Crit. Rev. Food Sci. Nutr. 2021, 63, 1010–1036. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, Q.; Huang, Y.; Lu, T.; Ma, H.; Chen, X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. J. Sci. Food Agric. 2024, 104, 63–74. [Google Scholar] [CrossRef]
Compound (g/100 g d.b.) | Control | Melon | Strawberry | Apples | Quince | Raspberry | Cherry | Grapefruit |
---|---|---|---|---|---|---|---|---|
CA | 0.13 ± 0.01 a | 0.08 ± 0.00 b | 0.12 ± 0.01 a,c | 0.06 ± 0.00 b | 0.05 ± 0.00 b | 0.12 ± 0.00 a,c | 0.10 ± 0.00 a | 0.07 ± 0.00 b |
FA | 0.36 ± 0.03 a | 0.21 ± 0.00 b | 0.35 ± 0.00 a | 0.26 ± 0.00 b | 0.28 ± 0.00 b | 0.36 ± 0.01 a | 0.22 ± 0.00 b | 0.21 ± 0.01 b |
3-FQA | 0.09 ± 0.02 a | 0.31 ± 0.00 b | 0.11 ± 0.00 a | 0.37 ± 0.01 c | 0.39 ± 0.01 c | 0.10 ± 0.00 a | 0.31 ± 0.01 b | 0.28 ± 0.01 d |
5-FQA | 0.33 ± 0.01 a | 0.82 ± 0.02 b | 0.35 ± 0.00 a | 1.10 ± 0.02 c | 1.15 ± 0.02 c | 0.48 ± 0.01 d | 0.88 ± 0.02 b | 0.95 ± 0.01 e |
4-FQA | 0.09 ± 0.00 a | 0.40 ± 0.00 c | 0.09 ± 0.00 a | 0.45 ± 0.00 c | 0.43 ± 0.00 c | 0.11 ± 0.00 a | 0.42 ± 0.00 c | 0.42 ± 0.00 c |
3-CQA | 0.38 ± 0.01 a | 1.82 ± 0.01 b | 0.43 ± 0.01 c | 1.38 ± 0.01 d | 1.41 ± 0.01 d | 0.73 ± 0.03 e | 1.96 ± 0.04 b | 1.20 ± 0.02 d |
5-CQA | 4.25 ± 0.03 a | 5.71 ± 0.03 c | 4.02 ± 0.01 a | 4.35 ± 0.61 b | 4.33 ± 0.61 b | 4.15 ± 0.02 a | 3.18 ± 0.15 c | 2.88 ± 0.03 d |
4-CQA | 0.38 ± 0.02 a | 1.79 ± 0.02 b | 0.36 ± 0.01 a | 1.98 ± 0.06 b | 2.01 ± 0.06 c | 0.44 ± 0.01 d | 1.51 ± 0.05 e | 1.63 ± 0.01 e |
3,5-diCQA | 0.49 ± 0.02 a | 1.34 ± 0.01 c | 0.46 ± 0.01 a | 1.39 ± 0.07 c | 0.92 ± 0.07 b | 0.45 ± 0.01 a | 1.17 ± 0.01 c | 1.95 ± 0.02 d |
4,5-diCQA | 0.04 ± 0.00 a | 0.21 ± 0.01 b | 0.03 ± 0.01 a | 0.32 ± 0.00 c | 0.35 ± 0.00 c | 0.02 ± 0.00 a | 0.22 ± 0.01 b,d | 0.22 ± 0.00 d,b |
3,4-diCQA | 0.11 ± 0.00 a | 0.87 ± 0.01 b | 0.10 ± 0.00 a | 1.56 ± 0.03 c | 1.58 ± 0.03 c | 0.31 ± 0.01 d | 0.83 ± 0.01 b | 0.92 ± 0.01 b |
TCA | 6.50 ± 0.09 a | 13.56 ± 0.05 c | 6.42 ± 0.03 a | 13.22 ± 0.45 c | 12.72 ± 0.45 b | 7.27 ± 0.09 d | 10.80 ± 0.29 e | 10.73 ± 0.15 e |
Caffeine | 3.51 ± 0.03 a | 3.50 ± 0.01 a | 3.49 ± 0.02 a | 3.51 ± 0.01 a | 3.51 ± 0.03 a | 3.50 ± 0.02 a | 3.50 ± 0.02 a | 3.52 ± 0.01 a |
Compound (g/100 g d.b.) | Mango | Raspberry | Strawberry | Cherry | Grapefruit | Vanilla | Red Wine |
---|---|---|---|---|---|---|---|
CA | 0.08 ± 0.00 b | 0.09 ± 0.00 b | 0.07 ± 0.00 b | 0.06 ± 0.00 c | 0.08 ± 0.00 b | 0.06 ± 0.00 c | 0.12 ± 0.00 a |
FA | 0.12 ± 0.01 b | 0.23 ± 0.01 d | 0.19 ± 0.00 a | 0.17 ± 0.01 c | 0.23 ± 0.01 d | 0.17 ± 0.00 c | 0.35 ± 0.02 a |
3-FQA | 0.21 ± 0.01 d | 0.33 ± 0.01 c | 0.26 ± 0.01 d | 0.13 ± 0.01 b | 0.32 ± 0.03 c | 0.23 ± 0.01 d | 0.11 ± 0.00 a |
5-FQA | 0.15 ± 0.02 b | 0.25 ± 0.02 c | 0.29 ± 0.01 d | 0.20 ± 0.01 c | 0.26 ± 0.02 c | 0.70 ± 0.02 e | 0.37 ± 0.01 a |
4-FQA | 0.19 ± 0.02 b | 0.40 ± 0.01 c | 0.32 ± 0.00 d | 0.29 ± 0.00 e | 0.20 ± 0.02 b | 0.29 ± 0.03 e | 0.09 ± 0.00 a |
3-CQA | 0.47 ± 0.03 c | 0.06 ± 0.02 b | 0.63 ± 0.01 d | 0.46 ± 0.02 c | 0.50 ± 0.16 e | 0.46 ± 0.03 c | 0.43 ± 0.01 c |
5-CQA | 2.39 ± 0.05 b | 2.79 ± 0.09 b | 3.80 ± 0.03 c | 3.38 ± 0.02 c | 3.65 ± 0.13 c | 2.38 ± 0.01 b | 5.02 ± 0.02 d |
4-CQA | 0.26 ± 0.05 b | 0.51 ± 0.05 c | 0.15 ± 0.03 d | 0.61 ± 0.00 e | 0.34 ± 0.03 a | 0.91 ± 0.01 f | 0.36 ± 0.01 a |
3,5-diCQA | 0.14 ± 0.02 a | 0.33 ± 0.03 c | 0.29 ± 0.03 d | 0.15 ± 0.01 a | 0.28 ± 0.02 f | 0.15 ± 0.02 a | 0.46 ± 0.02 f |
4,5-diCQA | 0.16 ± 0.02 b | 0.21 ± 0.02 c | 0.22 ± 0.02 c | 0.20 ± 0.00 c | 0.26 ± 0.01 c | 0.19 ± 0.01 b | 0.03 ± 0.00 a |
3,4-diCQA | 0.13 ± 0.01 a | 0.20 ± 0.02 d | 0.27 ± 0.01 d | 0.75 ± 0.02 b | 0.30 ± 0.05 c | 0.92 ± 0.03 d | 0.10 ± 0.00 a |
TCA | 4.64 ± 0.15 b | 5.29 ± 0.10 c | 6.28 ± 0.03 a | 6.48 ± 0.09 a | 6.41 ± 0.03 d | 6.44 ± 0.15 a | 7.44 ± 0.15 d |
Caffeine | 3.50 ± 0.01 a | 3.50 ± 0.02 a | 3.49 ± 0.01 a | 3.41 ± 0.02 a | 3.50 ± 0.04 a | 3.50 ± 0.02 a | 3.51 ± 0.00 a |
Coffee Handling Method | 5-Hydroxymethylfurfural (mg/100 g d.b.) | Acrylamide (μg/100 g d.b.) |
---|---|---|
Control | 0.33 ± 0.01 a | 4.89 ± 0.06 a |
Maceration | ||
Melon | 0.44 ± 0.02 b | 4.90 ± 0.03 a |
Strawberry | 0.30 ± 0.01 a | 4.91 ± 0.02 a |
Apples | 0.55 ± 0.03 c | 4.98 ± 0.09 a |
Quince | 0.31 ± 0.01 a | 5.01 ± 0.03 b |
Raspberry | 0.38 ± 0.02 a | 4.95 ± 0.02 a |
Cherry | 0.35 ± 0.02 a | 4.91 ± 0.04 a |
Grapefruit | 0.41 ± 0.03 b | 4.90 ± 0.01 a |
Red vine | 0.35 ± 0.02 a | 4.91 ± 0.01 a |
Food flavors | ||
Mango | 1.34 ± 0.01 d | 6.95 ± 0.06 a |
Raspberry | 1.22 ± 0.01 d | 6.33 ± 0.09 c |
Strawberry | 1.05 ± 0.02 d | 7.22 ± 0.11 d |
Cherry | 0.95 ± 0.03 c | 5.51 ± 0.02 b |
Grapefruit | 0.98 ± 0.04 c | 5.18 ± 0.04 b |
Vanilla | 0.68 ± 0.03 e | 4.93 ± 0.01 a |
Coffee Handling Method | Acetic Acid (mg/100 g d.b.) | Lactic Acid (mg/100 g d.b.) | Malic Acid (g/100 g d.b.) | Citric Acid (g/100 g d.b.) | Total Organic Acids (g/100 g d.b.) |
---|---|---|---|---|---|
Control | 0.72 ± 0.02 a | 3.23 ± 0.01 a | 0.25 ± 0.02 a | 0.61 ± 0.01 a | 0.87 ± 0.03 a |
Maceration | |||||
Melon | 1.24 ± 0.01 b | 4.16 ± 0.12 b | 0.29 ± 0.04 b | 0.71 ± 0.05 b | 1.05 ± 0.05 b |
Strawberry | 1.44 ± 0.01 c | 7.05 ± 0.05 c | 0.29 ± 0.01 b | 0.65 ± 0.07 c | 0.95 ± 0.09 c |
Apples | 0.22 ± 0.01 d | 3.71 ± 0.11 d | 0.20 ± 0.03 c | 0.65 ± 0.02 c | 0.85 ± 0.05 a |
Quince | 0.63 ± 0.00 e | 4.89 ± 0.03 e | 0.28 ± 0.02 b | 0.66 ± 0.01 c | 0.94 ± 0.03 c |
Raspberry | 1.22 ± 0.01 b | 4.72 ± 0.10 e | 0.23 ± 0.04 a | 0.65 ± 0.02 c | 0.89 ± 0.04 a |
Cherry | 1.59 ± 0.02 c | 4.66 ± 0.05 e | 0.27 ± 0.02 b | 0.63 ± 0.05 a | 0.91 ± 0.02 c |
Grapefruit | 1.61 ± 0.02 c | 3.73 ± 0.09 d | 0.26 ± 0.03 a | 0.65 ± 0.04 c | 0.93 ± 0.02 c |
Red vine | 1.13 ± 0.06 b | 3.76 ± 0.09 d | 0.23 ± 0.03 c | 0.76 ± 0.02 b | 0.99 ± 0.09 c |
Food flavors | |||||
Mango | 0.04 ± 0.00 f | 0.01 ± 0.00 f | 0.27 ± 0.01 b | 0.46 ± 0.02 d | 0.73 ± 0.02 d |
Raspberry | 0.05 ± 0.01 f | 0.01 ± 0.00 f | 0.23 ± 0.02 c | 0.55 ± 0.02 e | 0.78 ± 0.03 d |
Strawberry | 0.19 ± 0.01 g | 0.01 ± 0.00 f | 0.20 ± 0.02 d | 0.58 ± 0.03 e | 0.78 ± 0.03 d |
Cherry | 0.16 ± 0.01 g | 0.01 ± 0.00 f | 0.21 ± 0.05 d | 0.58 ± 0.08 e | 0.79 ± 0.02 d |
Grapefruit | 0.22 ± 0.01 h | 0.01 ± 0.00 f | 0.16 ± 0.03 e | 0.57 ± 0.02 e | 0.73 ± 0.03 d |
Vanilla | 0.02 ± 0.00 f | 0.01 ± 0.00 f | 0.21 ± 0.02 d | 0.59 ± 0.0 1 e | 0.80 ± 0.03 e |
IC50 (mg/mL) * | |||||||
---|---|---|---|---|---|---|---|
Control | Maceration | ||||||
Melon | Strawberry | Apples | Quince | Raspberry | Cherry | Grapefruit | |
4.47 ± 0.05 a | 3.80 ± 0.15 b | 4.79 ± 0.09 a | 4.14 ± 0.03 a | 4.36 ± 0.29 a | 5.73 ± 0.15 c | 4.37 ± 0.18 a | 4.40 ± 0.07 a |
Food flavors | Maceration | ||||||
Mango | Raspberry | Strawberry | Cherry | Grapefruit | Vanilla | Red wine | |
6.72 ± 0.34 d | 6.50 ± 0.09 d | 6.56 ± 0.02 d | 6.46 ± 0.10 d | 5.62 ± 0.13 c | 5.47 ± 0.05 c | 3.96 ± 0.35 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzelczyk, J.; Budryn, G.; Kołodziejczyk, K.; Ziętala, J. The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee. Nutrients 2024, 16, 2823. https://doi.org/10.3390/nu16172823
Grzelczyk J, Budryn G, Kołodziejczyk K, Ziętala J. The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee. Nutrients. 2024; 16(17):2823. https://doi.org/10.3390/nu16172823
Chicago/Turabian StyleGrzelczyk, Joanna, Grażyna Budryn, Krzysztof Kołodziejczyk, and Joanna Ziętala. 2024. "The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee" Nutrients 16, no. 17: 2823. https://doi.org/10.3390/nu16172823
APA StyleGrzelczyk, J., Budryn, G., Kołodziejczyk, K., & Ziętala, J. (2024). The Influence of Maceration and Flavoring on the Composition and Health-Promoting Properties of Roasted Coffee. Nutrients, 16(17), 2823. https://doi.org/10.3390/nu16172823