The ORIGINS Project: A Cross-Sectional Analysis of the Nutrition Profile of Pregnant Women in a Longitudinal Birth Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics
2.3. Demographic Data
2.4. Dietary Intake Data
2.5. Australian Recommended Food Score (ARFS)
2.6. Nutrient Reference Values (NRVs)
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Macronutrient Intake
3.3. Micronutrient Intake
3.4. Australian Recommended Food Score (ARFS)
4. Discussion
4.1. Calcium Intake
4.2. Iron Intake
4.3. Iodine Intake
4.4. Folate Intake
4.5. Sodium Intake
4.6. Australian Recommended Food Score (ARFS)
4.7. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magnusson, R.; Patterson, D. Global action, but national results: Strengthening pathways towards better health outcomes for non-communicable diseases. Crit. Public Health 2021, 31, 464–476. [Google Scholar] [CrossRef]
- Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Mendis, S.; Chowdhury, R.; Bramer, W.M.; Falla, A.; et al. The global impact of non-communicable diseases on healthcare spending and national income: A systematic review. Eur. J. Epidemiol. 2015, 30, 251–277. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Strategy for the Prevention and Control of Noncommunicable Diseases (WHAA53/14); World Health Organisation: Geneva, Switzerland, 2000. [Google Scholar]
- Devaux, M.; Lerouge, A.; Giuffre, G.; Giesecke, S.; Baiocco, S.; Ricci, A.; Reyes, F.; Cantarero, D.; Ventelou, B.; Cecchini, M. How will the main risk factors contribute to the burden of non-communicable diseases under different scenarios by 2050? A modelling study. PLoS ONE 2020, 15, e0231725. [Google Scholar] [CrossRef] [PubMed]
- Stråvik, M.; Jönsson, K.; Hartvigsson, O.; Sandin, A.; Wold, A.E.; Sandberg, A.; Barman, M. Food and Nutrient Intake during Pregnancy in Relation to Maternal Characteristics: Results from the NICE Birth Cohort in Northern Sweden. Nutrients 2019, 11, 1680. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J. Allergy Clin. Immunol. 2013, 131, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Gluckman, P.D. Developmental origins of health and disease—Global public health implications. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Reynolds, R.M.; Hardy, D.B. Developmental origins of health and disease: Current knowledge and potential mechanisms. Nutr. Rev. 2017, 75, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, K.; Vogel, C.; Godfrey, K.; Baird, J.; Harvey, N.; Hanson, M.; Cooper, C.; Inskip, H.; Crozier, S. Longitudinal dietary trajectories from preconception to mid-childhood in women and children in the Southampton Women’s Survey and their relation to offspring adiposity: A group-based trajectory modelling approach. Int. J. Obes. 2022, 46, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Brands, B.; Poston, L.; Demmelmair, H. Early Nutrition Project: Early nutrition programming of long-term health. Proc. Nutr. Soc. 2012, 71, 371–378. [Google Scholar] [CrossRef]
- Brands, B.; Demmelmai, H.; Koletzko, B. Early Nutrition Project: How growth due to infant nutrition influences obesity and later disease risk. Acta Paediatr. 2014, 103, 578–585. [Google Scholar] [CrossRef]
- Hanson, M.A.; Gluckman, P.D. Early developmental conditioning of later health and disease: Physiology or pathophysiology? Physiol. Rev. 2024, 94, 1027–1076. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Gluckman, P.D.; Ma, R.C.W.; Matzen, P.; Biesma, R.G. Early life opportunities for prevention of diabetes in low and middle income countries. BMC Public Health 2012, 12, 1025. [Google Scholar] [CrossRef] [PubMed]
- Murrin, C.M.; Heinen, M.M.; Kelleher, C.C. Are Dietary Patterns of Mothers during Pregnancy Related to Children’s Weight Status? Evidence from the Lifeways Cross-Generational Cohort Study. AIMS Public Health 2015, 2, 274–296. [Google Scholar] [CrossRef] [PubMed]
- Rich-Edwards, J.W.; Stampfer, M.J.; Manson, J.E.; Rosner, B.; Hankinson, S.E.; Colditz, G.A.; Willett, W.C.; Hennekens, C.H. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 1997, 315, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Janet, J.; Mahesh, S.; Specht, I.O.; Heitmann, B.L. A systematic literature review of the relation between iron status/anemia in pregnancy and offspring neurodevelopment. Eur. J. Clin. Nutr. 2019, 73, 1561–1578. [Google Scholar] [CrossRef]
- Abel, M.H.; Brandlistuen, R.E.; Caspersen, I.H.; Aase, H.; Torheim, L.E.; Meltzer, H.M.; Brantsaeter, A.L. Language delay and poorer school performance in children of mothers with inadequate iodine intake in pregnancy: Results from follow-up at 8 years in the Norwegian Mother and Child Cohort Study. Eur. J. Nutr. 2019, 58, 3047–3058. [Google Scholar] [CrossRef] [PubMed]
- Devereux, G.; Seaton, A. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immunol. 2005, 115, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Palumbo, M.P.; Glueck, D.H.; Sauder, K.A.; O’Mahony, L.; Fleischer, D.M.; Miriam Ben-Abdallah Ringham, B.M.; Dabelea, D. The maternal diet index in pregnancy is associated with offspring allergic diseases: The Healthy Start study. Allergy 2022, 77, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Tiril, C.B.; Aase, H.; Brantsæter, A.L.; Biele, G. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: A systematic review and meta-analysis. BMJ Open 2017, 7, e016777. [Google Scholar] [CrossRef]
- Donovan, S.; Dewey, K.; Novotny, R.; Stang, J.; Taveras, E.; Kleinman, R.; Raghavan, R.; Nevins, J.; Scinto-Madonich, S.; Butera, G.; et al. Maternal Diet during Pregnancy and Lactation and Risk of Child Food Allergies and Atopic Allergic Diseases: A Systematic Review. USDA Nutr. Evid. Syst. Rev. 2020, 1–187. [Google Scholar] [CrossRef]
- Maneschi, K.; Geller, T.; Collins, C.E.; Gordon, A.; Grech, A. Maternal diet quality and nutrient intakes across preconception and pregnancy are not consistent with Australian guidelines: Results from the pilot BABY1000 study. Food Sci. Nutr. 2023, 11, 4113–4123. [Google Scholar] [CrossRef]
- Manolio, T.A.; Bailey-Wilson, J.E.; Collins, F.S. Genes, environment and the value of prospective cohort studies. Nat. Rev. Genet. 2006, 7, 812–820. [Google Scholar] [CrossRef]
- Silva, D.T.; Hagemann, E.; Davis, J.A.; Gibson, L.Y.; Srinivasjois, R.; Palmer, D.J.; Colvin, L.; Tan, J.; Prescott, S.L. Introducing the ORIGINS project: A community-based interventional birth cohort. Rev. Environ. Health 2020, 35, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- Food Standards Australia and New Zealand. AUSNUT 2011–2013 AHS Food Nutrient Database; Food Standards Australia and New Zealand: Canberra, Australia, 2014. Available online: https://www.foodstandards.gov.au/science-data/food-composition-databases/ausnut-2011-13 (accessed on 5 March 2024).
- National Health and Medical Research Council & Department of Health and Aging. Australian Dietary Guidelines; National Health and Medical Research Council & Department of Health and Aging: Canberra, Australia, 2013. Available online: https://www.nhmrc.gov.au/adg (accessed on 5 March 2024).
- Collins, C.E.; Burrows, T.L.; Rollo, M.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The Comparative Validity and Reproducibility of a Diet Quality Index for Adults: The Australian Recommended Food Score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef]
- National Health and Medical Research Council, Department of Health and Aging; New Zealand Ministry of Health. Nutrient Reference Values for Australian and New Zealand Including; National Health and Medical Research Council, Department of Health and Aging: Canberra, Australia; New Zealand Ministry of Health: Thorndon, New Zealand, 2006.
- Australian Bureau of Statistics. National Health Survey: Users’ Guide 2006, 2017–2018 (4363.0); Australian Bureau of Statistics: Belconnen, Australia, 2019. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/4363.0~2017-18~Main%20Features~Users’%20Guide~1 (accessed on 5 March 2024).
- Slater, K.; Rollo, M.E.; Szewczyk, Z.; Ashton, L.; Schumacher, T.; Collins, C. Do the Dietary Intakes of Pregnant Women Attending Public Hospital Antenatal Clinics Align with Australian Guide to Healthy Eating Recommendations? Nutrients 2020, 12, 2438. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Q.; Collins, C.E.; Schumacher, T.L.; Weatherall, L.J.; Keogh, L.; Sutherland, K.; Gordon, A.; Rae, K.M.; Pringle, K.G. Disparities exist between the dietary intake of Indigenous Australian women during pregnancy and the Australian dietary guidelines: The Gomeroi gaaynggal study. J. Hum. Nutr. Diet. 2018, 31, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Gresham, E.; Collins, C.E.; Mishra, G.D.; Byles, J.E.; Hure, A.J. Diet quality before or during pregnancy and the relationship with pregnancy and birth outcomes: The Australian Longitudinal Study on Women’s Health. Public Health Nutr. 2016, 19, 2975–2983. [Google Scholar] [CrossRef]
- Millman, N.T. Dietary iron intake in pregnant women in Europe: A review of 24 studies from 14 countries in the period 1991–2014. J. Nutr. Metab. 2020, 2020, 7102190. [Google Scholar] [CrossRef]
- Bath, S.C.; Verkaik-Kloosterman, J.; Sabatier, M.; Ter Borg, S.; Eilander, A.; Hora, K.; Aksoy, B.; Hristozova, N.; van Lieshout, L.; Tanju Besler, H.; et al. A systematic review of iodine intake in children, adults, and pregnant women in Europe—comparison against dietary recommendations and evaluation of dietary iodine sources. Nutr. Rev. 2022, 80, 2154–2177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ter Borg, S.; Koopman, N.; Verkaik-Kloosterman, J. An Evaluation of Food and Nutrient Intake among Pregnant Women in The Netherlands: A Systematic Review. Nutrients 2023, 15, 3071. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Health Survey: Usual Nutrient Intakes; ABS: Belconnen, Australia, 2011. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/australian-health-survey-usual-nutrient-intakes/latest-release (accessed on 12 March 2024).
- Hyde, N.K.; Brennan-Olsen, S.; Bennett, K.; Moloney, D.J.; Pasco, J.A. Maternal nutrition during pregnancy: Intake of nutrients important for bone health. Matern. Child Health J. 2017, 21, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Caut, C.; Leach, M.; Steel, A. Dietary guideline adherence during preconception and pregnancy: A systematic review. Matern. Child. Nutr. 2020, 16, e12916. [Google Scholar] [CrossRef] [PubMed]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. The Developmental Origins of Adult Disease. J. Am. Coll. Nutr. 2004, 23, 588S–595S. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.M.; Vickers, M.H.; Harrison, C.J.; Segovia, S.A.; Gray, C. High fat and/or high salt intake during pregnancy alters maternal meta-inflammation and offspring growth and metabolic profiles. Physiol. Rep. 2014, 2, e12110. [Google Scholar] [CrossRef]
- Wilkinson, S.A.; Schoenaker, D.A.J.M.; de Jersey, S.; Collins, C.E.; Gallo, L.; Rollo, M.; Borg, D.; Dekker Nitert, M.; Truby, H.; Barrett, H.L.; et al. Exploring the diets of mothers and their partners during pregnancy: Findings from the Queensland Family Cohort pilot study. Nutr. Diet. 2022, 79, 602–615. [Google Scholar] [CrossRef]
- Giskes, K.; Turrell, G.; Patterson, C.; Newman, B. Socio-economic differences in fruit and vegetable consumption among Australian adolescents and adults. Public Health Nutr. 2002, 5, 663–669. [Google Scholar] [CrossRef]
- Williams, R.L.; Rollo, M.E.; Schumacher, T.; Collins, C.E. Diet Quality Scores of Australian Adults Who Have Completed the Healthy Eating Quiz. Nutrients 2017, 9, 880. [Google Scholar] [CrossRef]
- Harper, C.A.; Smythe, K.; Wong, V.W.; Rollo, M.E.; Collins, C.E. Comparison of pre-diagnosis dietary intake of women with gestational diabetes mellitus to dietary recommendations. Midwifery 2021, 100, 103032. [Google Scholar] [CrossRef]
- Goletzke, J.; Buyken, A.E.; Louie, J.C.Y.; Moses, R.G.; Brand-Miller, J. Dietary micronutrient intake during pregnancy is a function of carbohydrate quality. Am. J. Clin. Nutr. 2015, 102, 626–632. [Google Scholar] [CrossRef]
- Cormick, G.; Betrán, A.P.; Romero, I.B.; Lombardo, C.F.; Gülmezoglu, A.M.; Ciapponi, A.; Belizán, J.M. Global inequities in dietary calcium intake during pregnancy: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 444–456. [Google Scholar] [CrossRef]
- Kovacs, C.S. Calcium and bone metabolism disorders during pregnancy and lactation. Endocrinol. Metab. Clin. N. Am. 2011, 40, 795–826. [Google Scholar] [CrossRef]
- Egeland, G.M.; Skurtveit, S.; Sakshaug, S.; Daltveit, A.K.; Vikse, B.E.; Haugen, M. Low Calcium Intake in Midpregnancy Is Associated with Hypertension Development within 10 Years after Pregnancy: The Norwegian Mother and Child Cohort Study. J. Nutr. 2017, 147, 1757–1763. [Google Scholar] [CrossRef]
- Yin, J.; Dwyer, T.; Riley, M.; Cochrane, J.; Jones, G. The association between maternal diet during pregnancy and bone mass of the children at age 16. Eur. J. Clin. Nutr. 2010, 64, 131–137. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, J.; Kim, K.; Kim, H.; Ha, E.; Park, H.; Ha, M.; Kim, Y.; Hong, Y.; Chang, N. Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: Results from Mothers and Children’s Environmental Health (MOCEH) study. Nutr. J. 2013, 12, 38. [Google Scholar] [CrossRef]
- Abu-Ouf, N.M.; Jan, M.M. The impact of maternal iron deficiency and iron deficiency anemia on child’s health. Saudi Med. J. 2015, 36, 146–149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ronnenberg, A.G.; Wood, R.J.; Wang, X.; Xing, H.; Chen, C.; Chen, D.; Guang, W.; Huang, A.; Wang, L.; Xu, X. Preconception hemoglobin and ferritin concentrations are associated with pregnancy outcome in a prospective cohort of Chinese women. J. Nutr. 2004, 134, 2586–2591. [Google Scholar] [CrossRef]
- Zhou, S.J.; Condo, D.; Ryan, P.; Skeaff, S.A.; Howell, S.; Anderson, P.J.; McPhee, A.J.; Makrides, M. Association Between Maternal Iodine Intake in Pregnancy and Childhood Neurodevelopment at Age 18 Months. Am. J. Epidemiol. 2018, 188, 332–338. [Google Scholar] [CrossRef]
- Sullivan, T.R.; Best, K.P.; Gould, J.; Zhou, S.J.; Makrides, M.; Green, T.J. Too Much Too Little: Clarifying the Relationship Between Maternal Iodine Intake and Neurodevelopmental Outcomes. J. Nutr. 2024, 154, 185. [Google Scholar] [CrossRef]
- Lee, Y.Q.; Lumbers, E.R.; Schumacher, T.L.; Collins, C.E.; Rae, K.M.; Pringle, K.G.; Gomeroi gaaynggal Advisory Committee. Maternal Diet Influences Fetal Growth but Not Fetal Kidney Volume in an Australian Indigenous Pregnancy Cohort. Nutrients 2021, 13, 569. [Google Scholar] [CrossRef]
- De-Regil, L.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015, 2015, CD007950. [Google Scholar] [CrossRef]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and micronutrient intake during pregnancy: An overview of recent evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef]
- Scaife, P.J.; Mohaupt, M.G. Salt, aldosterone and extrarenal Na+-Sensitive responses in pregnancy. Placenta 2017, 56, 53–58. [Google Scholar] [CrossRef]
- Macdonald-Wallis, C.; Silverwood, R.J.; de Stavola, B.L.; Inskip, H.; Cooper, C.; Godfrey, K.M.; Crozier, S.; Fraser, A.; Nelson, S.M.; Lawlor, D.A.; et al. Antenatal blood pressure for prediction of pre-eclampsia, preterm birth, and small for gestational age babies: Development and validation in two general population cohorts. BMJ Br. Med. J. 2015, 351, h5948. [Google Scholar] [CrossRef]
- Magnussen, E.B.; Vatten, L.J.; Lund-Nilsen, T.; Salvesen, K.Ã.; Smith, G.D.; Romundstad, P. Prepregnancy cardiovascular risk factors as predictors of pre-eclampsia: Population based cohort study. BMJ 2007, 335, 978–981. [Google Scholar] [CrossRef]
- Malek, L.; Umberger, W.; Makrides, M.; Zhou, S.J. Adherence to the Australian dietary guidelines during pregnancy: Evidence from a national study. Public Health Nutr. 2015, 19, 1155–1163. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Patterson, A.J.; Smith, R.; Collins, C.E. Disparities exist between National food group recommendations and the dietary intakes of women. BMC Women’s Health 2011, 11, 37. [Google Scholar] [CrossRef]
Variables | Value | |
---|---|---|
Mean | SD | |
Maternal Age (years) | 32.4 | 4.4 |
Height (cm) | 165.9 | 14.4 |
Weight (kg) | 72.8 | 14.4 |
Parity | 1.2 | 1.4 |
Number of adults 18 and over in household | 2.1 | 0.4 |
Number (%) | ||
BMI (pre-pregnancy) | ||
<18.5 | 6 (1.6) | |
18.5–24.99 | 141 (37.7) | |
25–29.99 | 110 (29.4) | |
≥30 | 65 (17.4) | |
Missing | 52 | |
Cultural Background | ||
Caucasian | 309 (82.6) | |
Aboriginal or Torres Strait Islander Descent | 5 (1.3) | |
Asian | 25 (6.7) | |
African | 6 (1.6) | |
Not Specified | 34 (9.1) | |
Born in Australia | 224 (59.9) | |
Income | ||
Up to AUD 25,000 | 8 (2.14) | |
AUD 25,001–AUD 50,000 | 6 (1.6) | |
AUD 50,001–AUD 75,000 | 26 (7) | |
AUD 75,001–AUD 100,000 | 46 (12.3) | |
AUD 100,001–AUD 150,000 | 129 (34.5) | |
More than AUD 150,000 | 122 (32.6) | |
Missing | 37 | |
Education | ||
High School or Lower | 61 (16.3) | |
Tertiary Qualification | 292 (78.1) | |
Missing | 21 | |
Marital Status | ||
Married/De Facto | 307 (82.1) | |
Not Married | 15 (4.0) | |
Missing | 52 | |
Employment | ||
Employed | 292 (78.1) | |
Not Employed | 56 (15.0) | |
Missing | 26 |
Nutrients | Median | IQR | % of Energy | Recommendations * (% Energy) | |||
---|---|---|---|---|---|---|---|
20 Weeks | 36 Weeks | 20 Weeks | 36 Weeks | 20 Weeks | 36 Weeks | ||
Energy (kJ) | 8169 | 8209 | 2684.5 | 3021.8 | - | - | - |
Protein (g) | 86.2 | 88.2 | 32.7 | 34.6 | 17.6 | 17.7 | 15–25 |
Total Fat (g) | 78.5 | 81.9 | 30.3 | 32.5 | 36.9 | 37.3 | 20–35 |
Saturated Fat (g) | 30.1 | 31.7 | 12.3 | 14.0 | 14.2 | 14.5 | <10 |
Total Carbohydrate (g) | 217.6 | 219 | 88.4 | 87.9 | 44.9 | 44.6 | 45–65 |
Sugar (g) | 103.0 | 107.2 | 48.7 | 53.1 | - | - | 10–25 |
Starch (g) | 111.8 | 109.4 | 52.3 | 51.6 | - | - | |
Fibre (g) | 26.0 | 25.9 | 11.1 | 10.4 | - | - |
Nutrients | Median | IQR | EAR * | ||
---|---|---|---|---|---|
20-Weeks | 36-Weeks | 20-Weeks | 36-Weeks | ||
Thiamine (mg) | 1.5 | 1.5 | 0.8 | 0.7 | 1.2 |
Riboflavin (mg) | 1.9 | 2.03 | 1.0 | 1.0 | 1.2 |
Niacin Equivalents (mg) | 36.6 | 38.1 | 13.6 | 13.3 | 14 |
Vitamin C (mg) | 149.1 | 144 | 91.5 | 98.4 | 40 |
Folate (µg) | 309.4 | 313.8 | 135.5 | 141.2 | 520 |
Retinol Equivalents (µg) | 807.1 | 822.5 | 492.2 | 482.0 | 550 |
Magnesium (mg) | 370.0 | 375.7 | 124.3 | 125.8 | 290–300 ** |
Phosphorus (mg) | 1358.0 | 1401.9 | 518.7 | 596.3 | 580 |
Calcium (mg) | 789.9 | 827.6 | 403.4 | 454.9 | 1000 |
Iron (mg) | 10.4 | 10.5 | 3.8 | 4.3 | 22 |
Zinc (mg) | 10.9 | 11.1 | 2.0 | 2.3 | 9 |
Sodium (mg) | 1823.6 | 1856.2 | 817.1 | 822.6 | 460–920 *** |
Iodine (µg) | 122.3 | 126.3 | 58.4 | 66.6 | 160 |
Potassium (mg) | 3065.6 | 3132.3 | 1052.3 | 1233.4 | 2800 *** |
Food Groups | Median | IQR | Maximum Score * | ||
---|---|---|---|---|---|
20 Weeks | 36 Weeks | 20 Weeks | 36 Weeks | ||
Vegetables | 13 | 13 | 7 | 6 | 21 |
Fruit | 6 | 6 | 4 | 4 | 12 |
Breads and cereals | 6 | 6 | 3 | 2.75 | 13 |
Meat/Flesh foods | 2 | 2 | 1 | 1 | 7 |
Non-Meat/Flesh protein foods | 2 | 2 | 1 | 1 | 6 |
Dairy foods | 4 | 4 | 2 | 3 | 11 |
Water | 1 | 1 | 0 | 0 | 1 |
Spreads/Sauces | 1 | 1 | 2 | 2 | 2 |
Total Score | 35 | 35 | 13 | 13 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannu, P.K.; Scherini, A.J.J.; Silva, D.T.; Whalan, S. The ORIGINS Project: A Cross-Sectional Analysis of the Nutrition Profile of Pregnant Women in a Longitudinal Birth Cohort. Nutrients 2024, 16, 2571. https://doi.org/10.3390/nu16152571
Pannu PK, Scherini AJJ, Silva DT, Whalan S. The ORIGINS Project: A Cross-Sectional Analysis of the Nutrition Profile of Pregnant Women in a Longitudinal Birth Cohort. Nutrients. 2024; 16(15):2571. https://doi.org/10.3390/nu16152571
Chicago/Turabian StylePannu, Poonam K., Alexander J. J. Scherini, Desiree T. Silva, and Sarah Whalan. 2024. "The ORIGINS Project: A Cross-Sectional Analysis of the Nutrition Profile of Pregnant Women in a Longitudinal Birth Cohort" Nutrients 16, no. 15: 2571. https://doi.org/10.3390/nu16152571
APA StylePannu, P. K., Scherini, A. J. J., Silva, D. T., & Whalan, S. (2024). The ORIGINS Project: A Cross-Sectional Analysis of the Nutrition Profile of Pregnant Women in a Longitudinal Birth Cohort. Nutrients, 16(15), 2571. https://doi.org/10.3390/nu16152571