A Mobile-Based Nutrition Tracker App Enhanced Dietitian-Guided 2:1:1 Diet-Induced Weight Loss: An 8-Week Retrospective Cohort Study in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. COFIT Application
2.3. Intervention Group
2.4. Control Group
2.5. Measurements
2.5.1. Diet Record Completeness
2.5.2. Dietary Compliance
2.5.3. Macronutrient Intakes
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Changes in Weight Loss
3.3. Program Adherence and Weight Loss Effectiveness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FLC | flexible low-carbohydrate |
BMI | body mass index |
DSM | dietary self-monitoring |
NAFLD | nonalcoholic fatty liver disease |
TEF | thermic effect of food |
LCD | low-carbohydrate diet |
BMR | basal metabolic rate |
MetS | metabolic syndrome |
References
- Hung, T.S.; Fox, K.R. Prevalence of Overweight and Obesity in Taiwanese Adults: Estimates from National Surveys, 1990–2017. J. Med. Health 2022, 11, 17–32. [Google Scholar]
- Chin, S.O.; Keum, C.; Woo, J.; Park, J.; Choi, H.J.; Woo, J.T.; Rhee, S.Y. Successful weight reduction and maintenance by using a smartphone application in those with overweight and obesity. Sci. Rep. 2016, 6, 34563. [Google Scholar] [CrossRef]
- Jacobs, S.; Radnitz, C.; Hildebrandt, T. Adherence as a predictor of weight loss in a commonly used smartphone application. Obes. Res. Clin. Pract. 2017, 11, 206–214. [Google Scholar] [CrossRef]
- Oh, B.; Yi, G.H.; Han, M.K.; Kim, J.S.; Lee, C.H.; Cho, B.; Kang, H.C. Importance of Active Participation in Obesity Management Through Mobile Health Care Programs: Substudy of a Randomized Controlled Trial. JMIR mHealth uHealth 2018, 6, e2. [Google Scholar] [CrossRef]
- Beratarrechea, A.; Lee, A.G.; Willner, J.M.; Jahangir, E.; Ciapponi, A.; Rubinstein, A. The impact of mobile health interventions on chronic disease outcomes in developing countries: A systematic review. Telemed. J. e-Health 2014, 20, 75–82. [Google Scholar] [CrossRef] [PubMed]
- May, C.N.; Cox-Martin, M.; Ho, A.S.; McCallum, M.; Chan, C.; Blessing, K.; Behr, H.; Blanco, P.; Mitchell, E.S.; Michaelides, A. Weight loss maintenance after a digital commercial behavior change program (Noom Weight): Observational cross-sectional survey study. Obes. Sci. Pract. 2023, 9, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumari, B.; Ali, A.; Yadav, R.K.; Sharma, A.K.; Hajela, K.; Singh, G.K. Mobile technology: A tool for healthcare and a boon in pandemic. J. Fam. Med. Prim. Care 2022, 11, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Kwak, S.H.; Jung, H.S.; Koo, B.K.; Moon, M.K.; Lim, S.; Jang, H.C.; Park, K.S.; Cho, Y.M. The Effect of a Smartphone-Based, Patient-Centered Diabetes Care System in Patients with Type 2 Diabetes: A Randomized, Controlled Trial for 24 Weeks. Diabetes Care 2019, 42, 3–9. [Google Scholar] [CrossRef]
- Mao, A.Y.; Chen, C.; Magana, C.; Barajas, K.C.; Olayiwola, J.N. A Mobile Phone-Based Health Coaching Intervention for Weight Loss and Blood Pressure Reduction in a National Payer Population: A Retrospective Study. JMIR mHealth uHealth 2017, 5, e80. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.; Yang, Q.; DeLuca, L.; Toro-Ramos, T.; Kim, Y.; Michaelides, A. The Relationship Between Weight Loss Outcomes and Engagement in a Mobile Behavioral Change Intervention: Retrospective Analysis. JMIR mHealth uHealth 2021, 9, e30622. [Google Scholar] [CrossRef]
- Wadden, T.A.; Tronieri, J.S.; Butryn, M.L. Lifestyle modification approaches for adult obesity. Am. Psychol. 2020, 75, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.L.; Wakayama, L.N.; Bennett, G.G. Self-Monitoring via Digital Health in Weight Loss Interventions: A Systematic Review among Adults with Overweight or Obesity. Obesity 2021, 29, 478–499. [Google Scholar] [CrossRef] [PubMed]
- Peterson, N.D.; Middleton, K.R.; Nackers, L.M.; Medina, K.E.; Milsom, V.A.; Perri, M.G. Dietary self-monitoring and long-term success with weight management. Obesity 2014, 22, 1962–1967. [Google Scholar] [CrossRef] [PubMed]
- Painter, S.L.; Ahmed, R.; Kushner, R.F.; Hill, J.O.; Lindquist, R.; Brunning, S.; Margulies, A. Expert Coaching in Weight Loss: Retrospective Analysis. J. Med. Internet Res. 2018, 20, e92. [Google Scholar] [CrossRef] [PubMed]
- Van Wier, M.F.; Ariëns, G.A.; Dekkers, J.C.; Hendriksen, I.J.; Smid, T.; Van Mechelen, W. Phone and e-mail counselling are effective for weight management in an overweight working population: A randomized controlled trial. BMC Public Health 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021, 30, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Makris, A.; Foster, G.D. Dietary approaches to the treatment of obesity. Psychiatr. Clin. N. Am. 2011, 34, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Florentino, R.F.; Tee, E.; Hardinsyah, R.; Ismail, M.N.; Suthutvoravut, U.; Hop, L.T. Food-Based Dietary Guidelines of Southeast Asian Countries: Part 2—Analysis of Pictorial Food Guides. Malays. J. Nutr. 2016, 22 (Suppl. S22), S49–S65. [Google Scholar]
- Ha, K.; Nam, K.; Song, Y. A moderate-carbohydrate diet with plant protein is inversely associated with cardiovascular risk factors: The Korea National Health and Nutrition Examination Survey 2013–2017. Nutr. J. 2020, 19, 84. [Google Scholar] [CrossRef]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. Adherence to a smartphone application for weight loss compared to website and paper diary: A pilot randomized controlled trial. J. Med. Internet Res. 2013, 15, e32. [Google Scholar] [CrossRef] [PubMed]
- Spring, B.; Duncan, J.M.; Janke, E.A.; Kozak, A.T.; McFadden, H.G.; DeMott, A.; Pictor, A.; Epstein, L.H.; Siddique, J.; Pellegrini, C.A.; et al. Integrating technology into standard weight loss treatment: A randomized controlled trial. JAMA Intern. Med. 2013, 173, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, S.A.; Crowe, T.C. Low-carbohydrate diets: What arethe potential short- and long-term health implications? Asia Pac. J. Clin. Nutr. 2003, 12, 396–404. [Google Scholar]
- Adam-Perrot, A.; Clifton, P.; Brouns, F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006, 7, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Hite, A.H.; Berkowitz, V.G.; Berkowitz, K. Low-Carbohydrate Diet Review. Nutr. Clin. Pract. 2011, 26, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D. The traffic light diet can lower risk for obesity and diabetes. NASN Sch. Nurse 2011, 26, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.H. A Brief History and Future of the Traffic Light Diet. Curr. Dev. Nutr. 2022, 6, nzac120. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, C.; Almeida, A.; Cabral, M.; Ramos, E.; Mendes, R. The Impact of a Community-Based Food Education Program on Nutrition-Related Knowledge in Middle-Aged and Older Patients with Type 2 Diabetes: Results of a Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 2403. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Kiazand, A.; Alhassan, S.; Kim, S.; Stafford, R.S.; Balise, R.R.; Kraemer, H.C.; King, A.C. Comparison of the Atkins, Zone, Ornish, and LEARN Diets for Change in Weight and Related Risk Factors among Overweight Premenopausal Women: The A TO Z Weight Loss Study: A Randomized Trial. JAMA 2007, 297, 969–977. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of Low-Carbohydrate and Low-Fat Diets: A Randomized Trial. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Sun, J.; Ruan, Y.; Xu, N.; Wu, P.; Lin, N.; Yuan, K.; An, S.; Kang, P.; Li, S.; Huang, Q.; et al. The effect of dietary carbohydrate and calorie restriction on weight and metabolic health in overweight/obese individuals: A multi-center randomized controlled trial. BMC Med. 2023, 21, 192. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Bielak, L.; Lakin, P.R.; Klein, G.L.; Wong, J.M.W.; Luoto, P.K.; Wong, W.W.; Ludwig, D.S. Energy Requirement Is Higher during Weight-Loss Maintenance in Adults Consuming a Low- Compared with High-Carbohydrate Diet. J. Nutr. 2020, 150, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Dickinson, S.L.; Henschel, B.; Ebbeling, C.B.; Allison, D.B. Do Lower-Carbohydrate Diets Increase Total Energy Expenditure? An Updated and Reanalyzed Meta-Analysis of 29 Controlled-Feeding Studies. J. Nutr. 2021, 151, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Calcagno, M.; Kahleova, H.; Alwarith, J.; Burgess, N.N.; Flores, R.A.; Busta, M.L.; Barnard, N.D. The Thermic Effect of Food: A 367 Review. J. Am. Coll. Nutr. 2019, 38, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.H.; Samuel, V.T. A high-protein diet for reducing body fat: Mechanisms and possible caveats. Nutr. Metab. 2014, 11, 53. [Google Scholar] [CrossRef]
- Endevelt, R.; Gesser-Edelsburg, A. A qualitative study of adherence to nutritional treatment: Perspectives of patients and dietitians. Patient Prefer. Adherence 2014, 8, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, K.; Mottola, M.F.; Atkinson, S.A. Comparative Assessment of Diet Quality and Adherence to a Structured Nutrition and Exercise Intervention Compared with Usual Care in Pregnancy in a Randomized Trial. Curr. Dev. Nutr. 2023, 7, 100097. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.K.; Stephens, J.; Dennison Himmelfarb, C.R.; Stewart, K.J.; Hauck, S. Randomized controlled pilot study testing use of smartphone technology for obesity treatment. J. Obes. 2013, 2013, 151597. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.; Meinert Larsen, T.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef]
- Aronica, L.; Rigdon, J.; Offringa, L.C.; Stefanick, M.L.; Gardner, C.D. Examining differences between overweight women and men in 12-month weight loss study comparing healthy low-carbohydrate vs. low-fat diets. Int. J. Obes. 2021, 45, 225–234. [Google Scholar] [CrossRef]
- Williams, R.L.; Wood, L.G.; Collins, C.E.; Callister, R. Effectiveness of weight loss interventions—Is there a difference between men and women: A systematic review. Obes. Rev. 2015, 16, 171–186. [CrossRef] [PubMed]
- Susanto, A.; Burk, J.; Hocking, S.; Markovic, T.; Gill, T. Differences in weight loss outcomes for males and females on a low-carbohydrate diet: A systematic review. Obes. Res. Clin. Pract. 2022, 16, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Flore, G.; Preti, A.; Carta, M.G.; Deledda, A.; Fosci, M.; Nardi, A.E.; Loviselli, A.; Velluzzi, F. Weight Maintenance after Dietary Weight Loss: Systematic Review and Meta-Analysis on the Effectiveness of Behavioural Intensive Intervention. Nutrients 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Buckman, D.W.; Dodd, K.W.; Casavale, K.O.; Carroll, R.J. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J. Nutr. 2014, 144, 399–407. [Google Scholar] [CrossRef]
- Hauser, M.E.; Hartle, J.C.; Landry, M.J.; Fielding-Singh, P.; Shih, C.W.; Rigdon, J.; Gardner, C.D. Association of dietary adherence and dietary quality with weight loss success among those following low-carbohydrate and low-fat diets: A secondary analysis of the DIETFITS randomized clinical trial. Am. J. Clin. Nutr. 2024, 119, 174–184. [Google Scholar] [CrossRef]
Intervention Group | Control Group | p-Value ᵃ | p-Value ᵇ | p-Value ᶜ | |||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | Total | Female | Male | Total | ||||
n(%) | 7853 (91.3) | 751 (8.7) | 8604 (100) | 1257 (74.2) | 436 (25.8) | 1693 (100) | |||
Age (yrs) | 35.3 ± 7.4 | 34.9 ± 8.6 | 35.2 ± 7.5 | 34.1 ± 9.9 | 32.5 ± 10.1 | 33.7 ± 9.9 | <0.001 | <0.001 | <0.001 |
<20 (n,%) | 31 (0.4) | 9 (1.2) | 40 (0.5) | 40 (3.2) | 16 (3.7) | 56 (3.3) | |||
20–29 (n,%) | 1641 (20.9) | 188 (25) | 1829 (21.3) | 432 (34.4) | 185 (42.4) | 617 (36.4) | |||
30–39 (n,%) | 4172 (53.1) | 376 (50.1) | 4548 (52.9) | 435 (34.6) | 136 (31.2) | 571 (33.7) | |||
40–49 (n,%) | 1697 (21.6) | 136 (18.1) | 1833 (21.3) | 238 (18.9) | 63 (14.4) | 301 (17.8) | |||
50–59 (n,%) | 265 (3.4) | 26 (3.5) | 291 (3.4) | 103 (8.2) | 31 (7.1) | 134 (7.9) | |||
<60 (n,%) | 46 (0.6) | 14 (1.9) | 60 (0.7) | 9 (0.7) | 5 (1.1) | 14 (0.8) | |||
Weight (kg) | 66.9 ± 10.8 | 83.3 ± 16.3 | 68.4 ± 12.3 | 62.2 ± 11.7 | 77.2 ± 14.9 | 66 ± 14.2 | <0.001 | <0.001 | <0.001 |
BMI (kg/m2) | 25.9 ± 4.2 | 28.9 ± 4.7 | 26.1 ± 4.3 | 24.2 ± 4.2 | 26.4 ± 4.6 | 24.6 ± 4.3 | <0.001 | <0.001 | <0.001 |
Disease History (n,%) | |||||||||
Diabetes | 141 (1.8) | 12 (1.6) | 153 (1.8) | N/A | N/A | N/A | N/A | N/A | N/A |
Hypertension | 340 (4.3) | 90 (12) | 430 (5) | N/A | N/A | N/A | N/A | N/A | N/A |
Hyperlipidemia | 299 (3.8) | 74 (9.9) | 373 (4.3) | N/A | N/A | N/A | N/A | N/A | N/A |
Nonalcoholic fatty liver disease (NAFLD) | 1119 (14.2) | 179 (23.8) | 1298 (15.1) | N/A | N/A | N/A | N/A | N/A | N/A |
Education (n,%) | |||||||||
Graduated | 1946 (24.8) | 204 (27.2) | 2150 (25) | N/A | N/A | N/A | N/A | N/A | N/A |
Undergraduate | 4470 (56.9) | 398 (53) | 4868 (56.6) | N/A | N/A | N/A | N/A | N/A | N/A |
High school | 311 (4) | 35 (3.3) | 346 (4) | N/A | N/A | N/A | N/A | N/A | N/A |
Occupation (n,%) | |||||||||
Indoor | 5607 (71.4%) | 543 (72.3%) | 6150 (71.5%) | N/A | N/A | N/A | N/A | N/A | N/A |
Outdoor | 364 (4.6%) | 74 (9.9%) | 438 (5.1%) | N/A | N/A | N/A | N/A | N/A | N/A |
Night shift | 381 (4.9%) | 52 (6.9%) | 433 (5%) | N/A | N/A | N/A | N/A | N/A | N/A |
Households | 1501 (19.1%) | 82 (10.9%) | 1583 (18.4%) | N/A | N/A | N/A | N/A | N/A | N/A |
Intervention Group (n = 8604) | p-Value ᵃ | p-Value ᵇ | p-Value ᶜ | p-Trend | Weight Loss (%) | Control Group (n = 1693) | p-Value ᵃ | p-Value ᵇ | p-Value ᶜ | p-Trend | Weight Loss (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week 0 | Week 4 | Week 8 | Week 0 | Week 4 | Week 8 | |||||||||||
Weight (kg) | ||||||||||||||||
Total | 68.4 ± 12.3 | 66.2 ± 12 | 65 ± 11.4 | <0.001 | <0.001 | <0.001 | <0.001 | −4.97% * | 66 ± 14.2 | 65.4 ± 14 | 64.9 ± 14 | 0.22 | 0.3 | 0.02 | <0.001 | −1.67% |
Female | 66.9 ± 10.8 | 64.9 ± 10 | 63.8 ± 10.2 | <0.001 | <0.001 | <0.001 | <0.001 | −4.63% * | 62.2 ± 11.7 | 61.4 ± 12 | 60.9 ± 11.4 | 0.09 | 0.28 | 0.005 | <0.001 | −2.09% |
Male | 83.3 ± 16.3 | 79.8 ± 15 | 78.1 ± 14.5 | <0.001 | 0.03 | <0.001 | <0.001 | −6.24% * | 77.2 ± 14.9 | 76.9 ± 15 | 76.7 ± 14.3 | 0.77 | 0.84 | 0.61 | <0.001 | −0.65% |
BMI (kg/m2) | ||||||||||||||||
Total | 26.1 ± 4.4 | 25.2 ± 4 | 24.9 ± 4.2 | <0.001 | <0.001 | <0.001 | <0.001 | N/A | 24.6 ± 4.3 | 24.3 ± 4 | 25.2 ± 37.7 | 0.04 | 0.33 | 0.52 | 0.4382 | N/A |
Female | 26 ± 4.3 | 25 ± 4 | 24.8 ± 4.1 | <0.001 | 0.002 | <0.001 | <0.001 | N/A | 24.2 ± 4.2 | 23.9 ± 4 | 25 ± 41.7 | 0.07 | 0.35 | 0.5 | 0.4193 | N/A |
Male | 27.6 ± 5 | 28 ± 4 | 25.9 ± 4.5 | 0.09 | <0.001 | <0.001 | <0.001 | N/A | 26.4 ± 4.6 | 26.4 ± 4 | 26.2 ± 4.4 | >0.99 | 0.48 | 0.51 | <0.001 | N/A |
Female | p-Trend | Male | p-Trend | Total | p-Trend | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight Loss Percentage | >8% (n = 501) | 4–8% (n = 4633) | <4% (n = 2719) | >8% (n = 161) | 4–8% (n = 438) | <4% (n = 152) | >8% (n = 662) | 4–8% (n = 5071) | <4% (n = 2871) | |||
Age (yrs) | 35.98 ± 6.55 | 35.25 ± 7.3 | 35.23 ± 7.61 | 0.1408 | 33.7 ± 7.32 | 35.18 ± 8.05 | 35.14 ± 11.04 | 0.006122 | 35.42 ± 6.81 | 35.24 ± 7.36 | 35.22 ± 7.83 | 0.8111 |
Baseline weight (kg) | 69.11 ± 12.41 | 67.56 ± 10.22 | 65.48 ± 11.31 | <0.001 | 93.95 ± 16.38 | 80.49 ± 14.04 | 79.88 ± 17.4 | <0.001 | 75.15 ± 17.18 | 68.68 ± 11.21 | 66.24 ± 12.14 | <0.001 |
Baseline BMI (kg/m2) | 26.62 ± 4.37 | 26.04 ± 4.42 | 25.73 ± 4.18 | <0.001 | 30.04 ± 4.92 | 26.98 ± 4.48 | 26.62 ± 5.56 | <0.001 | 27.45 ± 4.74 | 26.12 ± 4.44 | 25.78 ± 4.27 | <0.001 |
Effectiveness | ||||||||||||
∆Weight (kg) | 6.53 ± 1.74 | 3.65 ± 0.91 | 1.67 ± 0.97 | <0.001 | 9.49 ± 3.47 | 4.64 ± 1.31 | 2.11 ± 1.11 | <0.001 | 7.25 ± 2.61 | 3.74 ± 0.99 | 1.69 ± 0.98 | <0.001 |
∆Weight (%) | 9.43 ± 1.4 | 5.4 ± 0.97 | 2.53 ± 1.4 | <0.001 | 9.96 ± 2.01 | 5.73 ± 1.06 | 2.66 ± 1.42 | <0.001 | 9.56 ± 1.58 | 5.42 ± 0.98 | 2.54 ± 1.41 | <0.001 |
∆BMI (kg/m2) | 2.52 ± 0.64 | 1.41 ± 0.37 | 0.65 ± 0.38 | <0.001 | 3.02 ± 1.03 | 1.55 ± 0.43 | 0.7 ± 0.38 | <0.001 | 2.64 ± 0.78 | 1.42 ± 0.37 | 0.65 ± 0.38 | <0.001 |
Macronutrient Intake | ||||||||||||
Calorie (kcal) | 1125.8 ± 159.2 | 1114.9 ± 171.5 | 1104.7 ± 192.9 | <0.01 | 1302.5 ± 269.7 | 1327.9 ± 248.6 | 1289 ± 312.2 | 0.726 | 1168.6 ± 206.1 | 1133.1 ± 188.9 | 1113.9 ± 204.5 | <0.001 |
Carbohydrate (%) | 23.09 ± 6.93 | 27.5 ± 9.09 | 32.44 ± 9.55 | <0.001 | 26.83 ± 9.73 | 28.74 ± 9.75 | 32.81 ± 10.59 | <0.001 | 24.1 ± 7.86 | 27.61 ± 9.16 | 32.46 ± 9.61 | <0.001 |
Protein (%) | 26.53 ± 2.56 | 25.06 ± 3.09 | 23.5 ± 3.54 | <0.001 | 25.76 ± 3.57 | 25.03 ± 3.56 | 23.37 ± 3.95 | <0.001 | 26.34 ± 2.85 | 25.05 ± 3.14 | 23.49 ± 3.56 | <0.001 |
Fat (%) | 50.38 ± 5.78 | 47.45 ± 7.02 | 44.06 ± 7.32 | <0.001 | 47.42 ± 7.49 | 46.22 ± 7.16 | 43.82 ± 8.25 | <0.001 | 49.66 ± 6.36 | 47.34 ± 7.04 | 44.05 ± 7.37 | <0.001 |
Diet Record | ||||||||||||
Diet record Completeness (%) | 95.26 ± 10.49 | 81.61 ± 22.04 | 56.21 ± 32.78 | <0.001 | 80.27 ± 23.27 | 76.75 ± 25.75 | 48.7 ± 34.64 | <0.001 | 91.61 ± 15.99 | 81.19 ± 22.43 | 55.81 ± 32.92 | <0.001 |
Light green (%) | 90.51 ± 8.03 | 85.1 ± 11.65 | 77.94 ± 17.36 | <0.001 | 84.01 ± 13.08 | 82.89 ± 12.74 | 74.4 ± 19.62 | <0.001 | 88.93 ± 9.9 | 84.91 ± 11.77 | 77.75 ± 17.5 | <0.001 |
Light yellow (%) | 7.6 ± 6.22 | 12.1 ± 9.61 | 17.75 ± 14.64 | <0.001 | 12.68 ± 10.29 | 13.91 ± 10.82 | 20.86 ± 17.48 | <0.001 | 8.84 ± 7.72 | 12.26 ± 9.74 | 17.91 ± 14.81 | <0.001 |
Light red (%) | 1.89 ± 3.07 | 2.8 ± 4.1 | 4.31 ± 7.14 | <0.001 | 3.32 ± 4.87 | 3.19 ± 4.92 | 4.74 ± 8.01 | 0.09005 | 2.24 ± 3.64 | 2.83 ± 4.18 | 4.33 ± 7.19 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chueh, T.-L.; Wang, Z.-L.; Ngu, Y.J.; Lin, P.-L.; Owaga, E.; Hsieh, R.-H. A Mobile-Based Nutrition Tracker App Enhanced Dietitian-Guided 2:1:1 Diet-Induced Weight Loss: An 8-Week Retrospective Cohort Study in Taiwan. Nutrients 2024, 16, 2331. https://doi.org/10.3390/nu16142331
Chueh T-L, Wang Z-L, Ngu YJ, Lin P-L, Owaga E, Hsieh R-H. A Mobile-Based Nutrition Tracker App Enhanced Dietitian-Guided 2:1:1 Diet-Induced Weight Loss: An 8-Week Retrospective Cohort Study in Taiwan. Nutrients. 2024; 16(14):2331. https://doi.org/10.3390/nu16142331
Chicago/Turabian StyleChueh, Tai-Ling, Zih-Ling Wang, Yi Jing Ngu, Po-Lin Lin, Eddy Owaga, and Rong-Hong Hsieh. 2024. "A Mobile-Based Nutrition Tracker App Enhanced Dietitian-Guided 2:1:1 Diet-Induced Weight Loss: An 8-Week Retrospective Cohort Study in Taiwan" Nutrients 16, no. 14: 2331. https://doi.org/10.3390/nu16142331
APA StyleChueh, T. -L., Wang, Z. -L., Ngu, Y. J., Lin, P. -L., Owaga, E., & Hsieh, R. -H. (2024). A Mobile-Based Nutrition Tracker App Enhanced Dietitian-Guided 2:1:1 Diet-Induced Weight Loss: An 8-Week Retrospective Cohort Study in Taiwan. Nutrients, 16(14), 2331. https://doi.org/10.3390/nu16142331