Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements and Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Uric Acid Lowering and Lipid Profiles
4.2. Effects of Febuxostat on Lipid Profiles
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saito, Y.; Tanaka, A.; Node, K.; Kobayashi, Y. Uric acid and cardiovascular disease: A clinical review. J. Cardiol. 2021, 78, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Jiang, Q.; Sun, P.; Li, Y.; Zhu, Y.; Liu, J.; Ye, X.; Chen, T.; Zhao, F.; Yang, W. Hyperuricemia prevalence and its association with metabolic disorders: A multicenter retrospective real-world study in China. Ann. Transl. Med. 2021, 9, 1550. [Google Scholar] [CrossRef] [PubMed]
- Hui, M.; Carr, A.; Cameron, S.; Davenport, G.; Doherty, M.; Forrester, H.; Jenkins, W.; Jordan, K.M.; Mallen, C.D.; McDonald, T.M.; et al. The British Society for Rheumatology Guideline for the Management of Gout. Rheumatology 2017, 56, e1–e20. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Borghi, C.; Cicero, A.F.G.; Hisatome, I.; Niwa, K.; Ohno, M.; Johnson, R.J.; Lanaspa, M.A. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. Int. J. Cardiol. 2018, 261, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, H.; Chen, Y.; Wang, J.; Xu, L.; Miao, M.; Xu, C. Association between serum uric acid levels and dyslipidemia in Chinese adults: A cross-sectional study and further meta-analysis. Medicine 2020, 99, e19088. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.F.; Rai, S.K.; Lu, N.; Oza, A.; Jorge, A.M.; Zhang, Y.; Choi, H.K. Statin use and mortality in gout: A general population-based cohort study. Semin. Arthritis. Rheum. 2018, 48, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Castro, V.M.F.; Melo, A.C.; Belo, V.S.; Chaves, V.E. Effect of allopurinol and uric acid normalization on serum lipids hyperuricemic subjects: A systematic review with meta-analysis. Clin. Biochem. 2017, 50, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Turab, M.; Hasan, S.S.; Zaidi, S.A.; Khalid, S.; Shaikh, F.; Zehra, D. The Allopurinol and Febuxostat in the Treatment of Hyperuricemic Patients and Their Impact on Lipid Fractions (Cholesterol, LDL, HDL). J. Hunan Univ. Nat. Sci. 2022, 49, 282–289. [Google Scholar] [CrossRef]
- Tanaka, A.; Taguchi, I.; Teragawa, H.; Ishizaka, N.; Kanzaki, Y.; Tomiyama, H.; Sata, M.; Sezai, A.; Eguchi, K.; Kato, T.; et al. Febuxostat does not delay progression of carotid atherosclerosis in patients with asymptomatic hyperuricemia: A randomized, controlled trial. PLoS Med. 2020, 17, e1003095. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Tsutsumi, Z.; Moriwaki, Y.; Takahashi, S.; Ka, T.; Yamamoto, T. Oxidized low-density lipoprotein autoantibodies in patients with primary gout: Effect of urate-lowering therapy. Clin. Chim. Acta. 2004, 339, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, N.S.; Ireland, S.; George, J.; Belch, J.J.; Lang, C.C.; Struthers, A.D. Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. J. Am. Coll. Cardiol. 2011, 58, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Tohyo, S. Topiroxostat influences circulating lipid concentrations in hyperuricemic patients. Int. J. Clin. Pharmacol. Ther. 2019, 57, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Brunner, F.J.; Waldeyer, C.; Ojeda, F.; Salomaa, V.; Kee, F.; Sans, S.; Thorand, B.; Giampaoli, S.; Brambilla, P.; Tunstall-Pedoe, H.; et al. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: Results from the Multinational Cardiovascular Risk Consortium. Lancet 2019, 394, 2173–2183. [Google Scholar] [CrossRef] [PubMed]
- Matsubayashi, M.; Sakaguchi, Y.M.; Sahara, Y.; Nanaura, H.; Kikuchi, S.; Asghari, A.; Bui, L.; Kobashigawa, S.; Nakanishi, M.; Nagata, R.; et al. 27-Hydroxycholesterol regulates human SLC22A12 gene expression through estrogen receptor action. FASEB J. 2021, 35, e21262. [Google Scholar] [CrossRef]
- Milionis, H.J.; Kakafika, A.I.; Tsouli, S.G.; Athyros, V.G.; Bairaktari, E.T.; Seferiadis, K.I.; Elisaf, M.S. Effects of statin treatment on uric acid homeostasis in patients with primary hyperlipidemia. Am. Heart J. 2004, 148, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Waldman, B.; Ansquer, J.C.; Sullivan, D.R.; Jenkins, A.J.; McGill, N.; Buizen, L.; Davis, T.M.E.; Best, J.D.; Li, L.; Feher, M.D.; et al. Effect of fenofibrate on uric acid and gout in type 2 diabetes: A post-hoc analysis of the randomised, controlled FIELD study. Lancet Diabetes Endocrinol. 2018, 6, 310–318. [Google Scholar] [CrossRef]
- Teragawa, H.; Tanaka, A.; Fujii, Y.; Yoshida, H.; Ueda, T.; Nomura, S.; Kadokami, T.; Koide, H.; Saito, M.; Sano, H.; et al. Effect of febuxostat on the level of malondialdehyde-modified low-density lipoprotein, an oxidative stress marker: A subanalysis of the PRIZE study. Clin. Cardiol. 2023, 46, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Domienik-Karłowicz, J.; Tykarski, A.; Filipiak, K.J.; Jaguszewski, M.J.; Narkiewicz, K.; Barylski, M.; Mamcarz, A.; Wolf, J.; Mancia, G. Expert consensus for the diagnosis and treatment of patients with hyperuricemia and high cardiovascular risk: 2023 update. Cardiol. J. 2024, 31, 1–14. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef] [PubMed]
- Tschiderer, L.; Klingenschmid, G.; Seekircher, L.; Willeit, P. Carotid intima-media thickness predicts carotid plaque development: Meta-analysis of seven studies involving 9341 participants. Eur. J. Clin. Investig. 2020, 50, e13217. [Google Scholar] [CrossRef] [PubMed]
Variable | All | Febuxostat Group | Control Group | SMD |
---|---|---|---|---|
(n = 456) | (n = 229) | (n = 227) | ||
Age (years) | 71.0 [63.0, 77.0] | 70.0 [63.0, 76.0] | 71.0 [63.0, 78.0] | 0.020 |
Male | 367 (80.5%) | 181 (79.0%) | 186 (81.9%) | 0.073 |
Body mass index (kg/m2) | 24.6 [22.5, 27.0] | 24.4 [22.3, 26.8] | 24.7 [22.7, 27.2] | 0.024 |
<18.5 | 15 (3.3%) | 5 (2.2%) | 10 (4.4%) | |
18.5–24.9 | 231 (50.9%) | 124 (54.1%) | 107 (47.6%) | |
25.0–29.9 | 167 (36.8%) | 77 (33.6%) | 90 (40.6%) | |
30.0–34.9 | 32 (7.0%) | 15 (6.6%) | 17 (7.6%) | |
≥35 | 9 (2.0%) | 8 (3.5%) | 1 (0.4%) | |
Hypertension | 404 (88.6%) | 203 (88.6%) | 201 (88.5%) | 0.003 |
Antihypertensive drugs | 415 (91.0%) | 208 (90.8%) | 207 (91.2%) | 0.013 |
Diabetes | 164 (36.0%) | 83 (36.2%) | 81 (35.7%) | 0.012 |
Dyslipidemia | 269 (59.0%) | 137 (59.8%) | 132 (58.1%) | 0.034 |
Prior ASCVD | 147 (32.2%) | 73 (31.9%) | 74 (32.6%) | 0.015 |
eGFR (mL/min/1.73 m2) | 55.0 [45.5, 66.7] | 54.9 [44.7, 65.9] | 55.4 [46.8, 66.8] | 0.100 |
Serum uric acid (mg/dL) | 7.6 [7.1, 8.2] | 7.6 [7.2, 8.2] | 7.6 [7.1, 8.3] | 0.058 |
Non-HDL-C (mg/dL) | 128.0 [105.5, 153.5] | 128.0 [106.0, 156.0] | 126.0 [105.0, 153.0] | 0.053 |
Total cholesterol (mg/dL) | 181.0 [156.0, 204.5] | 182.0 [156.0, 205.0] | 179.0 [155.0, 204.0] | 0.034 |
HDL-C (mg/dL) | 50.0 [42.5, 60.2] | 49.0 [42.0, 60.0] | 51.0 [43.0, 61.0] | 0.045 |
LDL-C (mg/dL) | 97.4 [77.6, 120.8] | 97.6 [79.2, 119.6] | 95.9 [74.6, 121.6] | 0.034 |
Triglyceride (mg/dL) | 125.5 [90.0, 191.5] | 125.0 [93.0, 195.0] | 129.0 [88.0, 182.0] | 0.030 |
Variable | All | Febuxostat Group | Control Group | SMD |
---|---|---|---|---|
(n = 456) | (n = 229) | (n = 227) | ||
At baseline (n) | 456 | 229 | 227 | |
Statin | 221 (48.5%) | 108 (47.2%) | 113 (50.2%) | 0.052 |
Fibrate | 8 (1.8%) | 3 (1.3%) | 5 (2.2%) | 0.068 |
EPA | 16 (3.5%) | 5 (2.2%) | 11 (4.8%) | 0.145 |
Ezetimibe | 16 (3.3%) | 10 (4.2%) | 6 (2.5%) | 0.094 |
At 6 months (n) | 448 | 225 | 223 | |
Statin | 219 (48.9%) | 109 (48.4%) | 110 (49.3%) | 0.018 |
Fibrate | 9 (2.0%) | 3 (1.3%) | 6 (2.7%) | 0.097 |
EPA | 16 (3.6%) | 5 (2.2%) | 11 (4.9%) | 0.146 |
Ezetimibe | 15 (3.3%) | 9 (4.0%) | 6 (2.7%) | 0.073 |
At 12 months (n) | 429 | 217 | 212 | |
Statin | 205 (47.8%) | 104 (47.9%) | 101 (47.6%) | 0.006 |
Fibrate | 9 (2.1%) | 3 (1.4%) | 6 (2.8%) | 0.101 |
EPA | 16 (3.7%) | 5 (2.3%) | 11 (5.2%) | 0.152 |
Ezetimibe | 15 (3.5%) | 8 (3.7%) | 7 (3.3%) | 0.021 |
At 24 months (n) | 407 | 211 | 196 | |
Statin | 197 (48.4%) | 101 (47.9%) | 96 (49.0%) | 0.022 |
Fibrate | 8 (2.0%) | 2 (0.9%) | 6 (3.1%) | 0.151 |
EPA | 16 (3.9%) | 4 (1.9%) | 12 (6.1%) | 0.217 |
Ezetimibe | 15 (3.7%) | 8 (3.8%) | 7 (3.6%) | 0.012 |
Variable | Febuxostat Group | p-Value * | Control Group | p-Value * | Group Difference | p-Value ** |
---|---|---|---|---|---|---|
Changes (95% CI) | Changes (95% CI) | (95% CI) | ||||
Non-HDL-C (mg/dL) | −5.9 (−9.1 to −2.8) | <0.001 | −1.3 (−4.4 to 1.8) | 0.348 | −4.6 (−9.1 to −0.2) | 0.039 |
Total cholesterol (mg/dL) | −5.8 (−9.0 to −2.5) | <0.001 | −1.2 (−4.4 to 2.1) | 0.424 | −4.6 (−9.2 to −0.0) | 0.048 |
HDL-C (mg/dL) | 0.7 (−0.6 to 1.9) | 0.637 | 0.7 (−0.6 to 1.9) | 0.711 | −0.0 (−1.8 to 1.8) | 0.984 |
LDL-C (mg/dL) | −3.8 (−6.7 to −0.8) | 0.002 | −2.0 (−4.5 to 0.9) | 0.076 | −1.7 (−5.9 to 2.4) | 0.411 |
Triglyceride (mg/dL) | −5.1 (−5.8 to 16.0) | 0.171 | 22.9 (11.8 to 34.0) | 0.077 | −17.8 (−33.1 to −2.5) | 0.023 |
Serum uric acid (mg/dL) | −2.5 (−2.7 to −2.4) | <0.001 | −0.3 (−0.4 to −0.1) | <0.001 | −2.3 (−2.5 to −2.1) | <0.001 |
Body mass index (kg/m2) | −0.0 (−0.2 to −0.1) | 0.738 | −0.0 (−0.1 to 0.2) | 0.946 | −0.0 (−0.3 to 0.2) | 0.801 |
Systolic BP (mmHg) | 0.3 (−1.6 to 2.2) | 0.824 | 0.8 (−1.1 to 2.8) | 0.059 | −0.5 (−3.3 to 2.2) | 0.698 |
eGFR (mL/min/1.73 m2) | −0.0 (−1.0 to 0.9) | 0.909 | 0.1 (−0.9 to 1.1) | 0.997 | −0.1 (−1.5 to 1.3) | 0.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, Y.; Tanaka, A.; Yoshida, H.; Nakashima, H.; Ban, N.; Matsuhisa, M.; Kobayashi, Y.; Node, K.; on behalf of the PRIZE Study Investigators. Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study. Nutrients 2024, 16, 2324. https://doi.org/10.3390/nu16142324
Saito Y, Tanaka A, Yoshida H, Nakashima H, Ban N, Matsuhisa M, Kobayashi Y, Node K, on behalf of the PRIZE Study Investigators. Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study. Nutrients. 2024; 16(14):2324. https://doi.org/10.3390/nu16142324
Chicago/Turabian StyleSaito, Yuichi, Atsushi Tanaka, Hisako Yoshida, Hitoshi Nakashima, Noriko Ban, Munehide Matsuhisa, Yoshio Kobayashi, Koichi Node, and on behalf of the PRIZE Study Investigators. 2024. "Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study" Nutrients 16, no. 14: 2324. https://doi.org/10.3390/nu16142324
APA StyleSaito, Y., Tanaka, A., Yoshida, H., Nakashima, H., Ban, N., Matsuhisa, M., Kobayashi, Y., Node, K., & on behalf of the PRIZE Study Investigators. (2024). Effects of Xanthine Oxidase Inhibition by Febuxostat on Lipid Profiles of Patients with Hyperuricemia: Insights from Randomized PRIZE Study. Nutrients, 16(14), 2324. https://doi.org/10.3390/nu16142324