Periodic Fasting and Acute Cardiac Events in Patients Evaluated for COVID-19: An Observational Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patikorn, C.; Roubal, K.; Veettil, S.K.; Chandran, V.; Pham, T.; Lee, Y.Y.; Giovannucci, E.L.; Varady, K.A.; Chaiyakunapruk, N. Intermittent fasting and obesity-related health outcomes: An umbrella review of meta-analyses of randomized controlled trials. JAMA Netw. Open 2021, 4, e2139558. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, C.L.; Muhlestein, J.B.; May, H.T.; Le, V.T.; Galenko, O.; Garrett, K.D.; Brunker, C.; Hopkins, R.O.; Carlquist, J.F.; Knowlton, K.U.; et al. Randomized controlled trial of once-per-week intermittent fasting for health improvement: The WONDERFUL Trial. Eur. Heart J. Open 2021, 1, oeab026. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Schübel, R.; Nattenmüller, J.; Sookthai, D.; Nonnenmacher, T.; Graf, M.E.; Riedl, L.; Schlett, C.L.; von Stackelberg, O.; Johnson, T.; Nabers, D.; et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes. A randomized noninferiority trial. JAMA Netw. Open 2018, 1, e180756. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Steger, F.L.; Bryan, D.R.; Richman, J.S.; Warriner, A.H.; Hanick, C.J.; Martin, C.K.; Salvy, S.J.; Peterson, C.M. Effectiveness of early time-restricted eating for weight loss, fat loss, and cardiometabolic health in adults with obesity. JAMA Intern. Med. 2022, 182, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, C.L.; Muhlestein, J.B.; Anderson, J.L.; May, H.T.; Knowlton, K.U.; Bair, T.L.; Le, V.T.; Bailey, B.W.; Horne, B.D. Association of periodic fasting lifestyles with survival and incident major adverse cardiovascular events in patients undergoing cardiac catheterization. Eur. J. Prev. Cardiol. 2021, 28, 1774–1781. [Google Scholar] [CrossRef]
- Arcopinto, M.; Bobbio, E.; Bossone, E.; Perrone-Filardi, P.; Napoli, R.; Sacca, L.; Cittadini, A. The GH/IGF-1 axis in chronic heart failure. Endocr. Metab. Immune Disord. Drug Targets 2013, 13, 76–91. [Google Scholar] [CrossRef]
- Roger, V.L. Epidemiology of heart failure. A contemporary perspective. Circ. Res. 2021, 128, 1421–1434. [Google Scholar] [CrossRef]
- Wende, A.R.; Brahma, M.K.; McGinnis, G.R.; Young, M.E. Metabolic origins of heart failure. JACC Basic Transl. Sci. 2017, 2, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Muhlestein, J.B.; Lappé, D.L.; May, H.T.; Carlquist, J.F.; Galenko, O.; Brunisholz, K.D.; Anderson, J.L. Randomized cross-over trial of short-term water-only fasting: Metabolic and cardiovascular consequences. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.C. Nutrient sensing, signaling and ageing: The role of IGF-1 and mTOR in ageing and age-related disease. In Subcellular Biochemistry; Springer: Singapore, 2018; pp. 49–97. [Google Scholar]
- Spark, R.F.; Arky, R.A.; Boulter, P.R.; Saudek, C.D.; O’Brian, J.T. Renin, aldosterone and glucagon in the natriuresis of fasting. N. Engl. J. Med. 1975, 292, 1335–1340. [Google Scholar] [PubMed]
- Kamel, K.S.; Lin, S.H.; Cheema-Dhadli, S.; Marliss, E.B.; Haperin, M.L. Prolonged total fasting: A feast for the integrative physiologist. Kidney Int. 1998, 53, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Mani, K.; Liu, H.; Kovacs, A.; Murphy, J.T.; Foroughi, L.; French, B.A.; Weinheimer, C.J.; Kraja, A.; Benjamin, I.J.; et al. Transcription factor EB activation rescues advanced αB-crystallin mutation-induced cardiomyopathy by normalizing desmin localization. J. Am. Heart Assoc. 2019, 8, e010866. [Google Scholar] [CrossRef] [PubMed]
- Alirezaei, M.; Kemball, C.C.; Flynn, C.T.; Wood, M.R.; Whitton, J.L.; Kiosses, W.B. Short-term fasting induces profound neuronal autophagy. Autophagy 2010, 6, 702–710. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; McCarty, M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: Implications for reversal of type 2 diabetes. Open Heart 2019, 6, e001028. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, M.; Sedej, S.; Carmona-Gutierrez, D.; Madeo, F.; Kroemer, G. Autophagy in cardiovascular aging. Circ. Res. 2018, 123, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Rahman, M.S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, M.J. Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunol. Lett. 2020, 226, 38–45. [Google Scholar] [CrossRef]
- Gnoni, M.; Beas, R.; Vásquez-Garagatti, R. Is there any role of intermittent fasting in the prevention and improving clinical outcomes of COVID-19?: Intersection between inflammation, mTOR pathway, autophagy and calorie restriction. Virus Dis. 2021, 32, 625–634. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G., 3rd; Leeuwenburgh, C.; Mattson, M.P. Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 2019, 139, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Kelly, D.P.; Margulies, K.B. Implications of altered ketone metabolism and therapeutic ketosis in heart failure. Circulation 2020, 141, 1800–1812. [Google Scholar] [CrossRef]
- Yurista, S.R.; Matsuura, T.R.; Silljé, H.H.W.; Nijholt, K.T.; McDaid, K.S.; Shewale, S.V.; Leone, T.C.; Newman, J.C.; Verdin, E.; van Veldhuisen, D.J.; et al. Ketone ester treatment improves cardiac function and reduces pathologic remodeling in preclinical models of heart failure. Circ. Heart Fail. 2021, 14, e007684. [Google Scholar] [CrossRef] [PubMed]
- Takahara, S.; Soni, S.; Maayah, Z.H.; Ferdaoussi, M.; Dyck, J.R.B. Ketone therapy for heart failure: Current evidence for clinical use. Cardiovasc. Res. 2022, 118, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Yonas, E.; Alwi, I.; Pranata, R.; Huang, I.; Lim, M.A.; Gutierrez, E.J.; Yamin, M.; Siswanto, B.B.; Virani, S.S. Effect of heart failure on the outcome of COVID-19—A meta analysis and systematic review. Am. J. Emerg. Med. 2020, 46, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, V.; Tun, N.L.; Haque, W.Z.; Majella, M.G.; Sivakumar, R.K.; Kumar, A.; Hsu, A.T.W.; Ishak, I.A.; Nur, A.A.; Ayeh, S.K.; et al. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241541. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Muhlestein, J.B.; May, H.T.; Le, V.T.; Bair, T.L.; Knowlton, K.U.; Anderson, J.L. Association of periodic fasting with lower severity of COVID-19 outcomes in the SARS-CoV-2 pre-vaccine era: An observational cohort from the INSPIRE registry. BMJ Nutr. Prev. Health 2022, 5, e000462. [Google Scholar] [CrossRef] [PubMed]
- Grundler, F.; Mesnage, R.; Cerrada, A.; de Toledo, F.W. Improvements during long-term fasting in patients with long COVID—A case series and literature review. Front. Nutr. 2023, 10, 1195270. [Google Scholar] [CrossRef]
- Mey, J.T.; Kirwan, J.P.; Axelrod, C.L. The role of nutrition in mitigating the effects of COVID-19 from infection through PASC. Nutrients 2023, 15, 866. [Google Scholar] [CrossRef]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef] [PubMed]
- Deru, L.S.; Bikman, B.T.; Davidson, L.E.; Tucker, L.A.; Fellingham, G.; Bartholomew, C.L.; Yuan, H.L.; Bailey, B.W. The effects of exercise on β-hydroxybutyrate concentrations over a 36-h fast: A randomized crossover study. Med. Sci. Sports Exer. 2021, 53, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.L.; Davidson, M.T.; Kurishima, C.; Vega, R.B.; Powers, J.C.; Matsuura, T.R.; Petucci, C.; Lewandowski, E.D.; Crawford, P.A.; Muoio, D.M.; et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019, 4, e124079. [Google Scholar] [CrossRef] [PubMed]
- Cauwenberghs, N.; Prunicki, M.; Sabovčik, F.; Perelman, D.; Contrepois, K.; Li, X.; Snyder, M.P.; Nadeau, K.C.; Kuznetsova, T.; Haddad, F.; et al. Temporal changes in soluble angiotensin-converting enzyme 2 associated with metabolic health, body composition, and proteome dynamics during a weight loss diet intervention: A randomized trial with implications for the COVID-19 pandemic. Am. J. Clin. Nutr. 2021, 114, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Bunker, T. Pathogenic mechanisms of the severe acute respiratory syndrome coronavirus 2 and potential direct and indirect counteractions by intermittent fasting. Nutrients 2022, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.M.; Jacobsen, S.M.; Dallon, B.W.; Saito, E.R.; Bennett, S.L.H.; Davidson, L.E.; Thomson, D.M.; Hyldahl, R.D.; Bikman, B.T. Ketones elicit distinct alterations in adipose mitochondrial bioenergetics. Int. J. Mol. Sci. 2020, 21, 6255. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, S.; Bagherniya, M.; Askari, G.; Read, M.I.; Sahebkar, A. The effect of fasting or calorie restriction on mitophagy induction: A literature review. J. Cachexia Sarcopenia Muscle 2020, 11, 1447–1458. [Google Scholar] [CrossRef]
- Traba, J.; Geiger, S.S.; Kwarteng-Siaw, M.; Han, K.; Ra, O.H.; Siegel, R.M.; Gius, D.; Sack, M.N. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J. Biol. Chem. 2017, 292, 12153–12164. [Google Scholar] [CrossRef]
Characteristic | Overall (N = 601) | Non-Fasting (n = 421) | Periodic Fasting (n = 180) | p-Value |
---|---|---|---|---|
Age (years) | 64.3 ± 15.1 | 64.1 ± 15.0 | 64.9 ± 15.3 | 0.53 |
Sex (female) | 36.30% | 38.20% | 31.70% | 0.13 |
Race (non-White *, self-report) | 4.50% | 5.70% | 1.70% | 0.029 |
Ethnicity (Hispanic, self-report) | 3.70% | 4.30% | 2.20% | 0.22 |
COVID-19 vaccination (any) | 81.50% | 79.80% | 85.60% | 0.1 |
Vaccination before infection | 52.90% | 53.20% | 52.20% | 0.83 |
BMI (kg/m2), n = 583 | 30.6 ± 7.2 | 30.7 ± 7.3 | 30.1 ± 7.0 | 0.34 |
Smoking (current or prior) | 26.80% | 30.90% | 17.20% | <0.001 |
Hypertension | 86.70% | 87.60% | 84.40% | 0.29 |
Hyperlipidemia | 84.50% | 85.50% | 82.20% | 0.31 |
Diabetes | 47.10% | 49.90% | 40.60% | 0.036 |
Family history of early CHD | 12.10% | 12.80% | 10.60% | 0.44 |
Atrial fibrillation | 50.40% | 52.00% | 46.70% | 0.23 |
Heart failure history | 60.60% | 62.90% | 55.00% | 0.07 |
Depression history | 43.40% | 45.80% | 37.80% | 0.07 |
Anxiety history | 41.30% | 41.80% | 40.00% | 0.68 |
Prior coronary disease | 77.00% | 77.70% | 75.60% | 0.57 |
Prior myocardial infarction | 21.60% | 21.60% | 21.70% | 0.99 |
Prior PCI | 27.10% | 27.30% | 26.70% | 0.87 |
Prior CABG | 12.80% | 14.00% | 10.00% | 0.18 |
Cancer history | 17.60% | 18.10% | 16.70% | 0.68 |
Prior stroke | 13.50% | 12.40% | 16.10% | 0.22 |
Prior TIA | 13.80% | 13.80% | 13.90% | 0.97 |
Asthma | 29.30% | 33.50% | 19.40% | <0.001 |
COPD | 19.80% | 23.50% | 11.10% | <0.001 |
Dementia | 0.30% | 0.20% | 0.60% | 0.54 |
Peripheral arterial disease | 10.80% | 10.50% | 11.70% | 0.66 |
Chronic liver disease | 31.60% | 32.80% | 28.90% | 0.35 |
Renal failure | 2.00% | 1.90% | 2.20% | 0.8 |
Pre-COVID medication prescription history | ||||
Statins | 78.40% | 80.00% | 74.40% | 0.13 |
Antiarrhythmics | 39.40% | 40.40% | 37.20% | 0.47 |
ACE inhibitors/ARBs | 75.20% | 77.40% | 70.00% | 0.053 |
Beta-blockers | 82.50% | 84.30% | 78.30% | 0.08 |
Calcium channel blockers | 66.10% | 67.70% | 62.20% | 0.19 |
Diuretics | 72.90% | 75.50% | 66.70% | 0.025 |
Aspirin | 56.10% | 57.20% | 53.30% | 0.38 |
Anticoagulants | 89.00% | 91.00% | 84.40% | 0.019 |
Antiplatelets | 55.40% | 56.80% | 52.20% | 0.3 |
Digoxin | 1.20% | 1.70% | 0% | 0.11 |
Anti-diabetic | 59.90% | 62.50% | 53.90% | 0.049 |
Vitamin D supplement | 63.40% | 63.90% | 62.20% | 0.7 |
Antidepressants | 53.70% | 55.80% | 48.90% | 0.12 |
Medication prescriptions at the time of COVID-19 diagnosis | ||||
Statins | 53.10% | 54.90% | 48.90% | 0.18 |
Antiarrhythmics | 11.10% | 10.90% | 11.70% | 0.79 |
ACE inhibitors | 19.10% | 20.40% | 16.10% | 0.22 |
ARBs | 21.10% | 22.10% | 18.90% | 0.38 |
Beta-blockers | 42.90% | 45.10% | 37.80% | 0.1 |
Calcium channel blockers | 20.80% | 21.90% | 18.30% | 0.33 |
Diuretics | 40.60% | 43.70% | 33.30% | 0.018 |
Anti-diabetic | 35.30% | 38.00% | 28.90% | 0.032 |
Azithromycin | 4.00% | 4.50% | 2.80% | 0.32 |
Corticosteroid | 36.90% | 38.70% | 32.80% | 0.17 |
Remdesivir | 10.80% | 10.90% | 10.60% | 0.89 |
Vitamin D supplement | 47.80% | 49.40% | 43.90% | 0.22 |
Antidepressants | 28.10% | 29.50% | 25.00% | 0.27 |
Characteristic | Overall (N = 601) | Non-Fasting (n = 421) | Periodic Fasting (n = 180) | p-Value |
---|---|---|---|---|
Income (US dollars per year) | ||||
<USD 20,000 | 6.00% | 6.40% | 5.00% | 0.08 |
USD20,000-USD49,999 | 14.30% | 14.50% | 13.90% | |
USD50,000-USD99,999 | 30.10% | 28.30% | 34.40% | |
≥USD100,000 | 17.30% | 15.40% | 21.70% | |
Declined/unknown | 32.30% | 35.40% | 25.00% | |
Education | ||||
Junior high or less | 2.30% | 2.10% | 2.80% | <0.001 |
High school | 20.60% | 25.20% | 10.00% | |
Some college | 25.60% | 27.80% | 20.60% | |
Associate’s degree | 11.80% | 10.50% | 15.00% | |
Bachelor’s degree | 22.10% | 20.00% | 27.20% | |
Master’s degree | 9.50% | 7.10% | 15.00% | |
Doctoral/professional | 2.50% | 2.10% | 3.30% | |
Declined/unknown | 5.50% | 5.20% | 6.10% | |
Marital status | ||||
Married | 76.90% | 74.30% | 82.80% | |
Partner | 1.20% | 1.40% | 0.60% | |
Widowed | 4.30% | 4.50% | 3.90% | |
Single, never married | 7.20% | 7.60% | 6.10% | |
Divorced/separated | 8.70% | 10.00% | 5.60% | |
Declined/unknown | 1.80% | 2.10% | 1.10% | |
Employment status (and job-related type of physical activity) | ||||
Not employed | 42.40% | 43.70% | 39.40% | 0.052 |
Employed, primarily sitting | 27.00% | 24.70% | 32.20% | |
Employed, standing/walking | 20.10% | 19.20% | 22.20% | |
Employed, definite effort | 7.00% | 8.80% | 2.80% | |
Employed, vigorous effort | 1.80% | 1.70% | 2.20% | |
Declined/unknown | 1.70% | 1.90% | 1.10% | |
Physical activity (aerobic exercise) | ||||
None | 70.70% | 72.40% | 66.70% | 0.24 |
<1 h per week | 5.30% | 4.50% | 7.20% | |
1 to <3 h per week | 8.50% | 7.40% | 11.10% | |
3 or more hours per week | 11.50% | 11.20% | 12.20% | |
Declined/unknown | 4.00% | 4.50% | 2.80% | |
Physical activity (cycling) | ||||
None | 84.00% | 82.90% | 86.70% | 0.47 |
<1 h per week | 4.00% | 4.30% | 3.30% | |
1 to <3 h per week | 3.70% | 3.30% | 4.40% | |
3 or more hours per week | 2.70% | 2.90% | 2.20% | |
Declined/unknown | 5.70% | 6.70% | 3.30% | |
Physical activity (walking) | ||||
None | 7.80% | 6.70% | 10.60% | 0.5 |
<1 h per week | 9.70% | 10.00% | 8.90% | |
1 to <3 h per week | 22.00% | 21.60% | 22.80% | |
3 or more hours per week | 58.70% | 60.10% | 55.60% | |
Declined/unknown | 1.80% | 1.70% | 2.20% | |
Alcohol consumption (drinks) | ||||
None | 75.00% | 67.50% | 92.80% | <0.001 |
<1 per week | 13.00% | 17.60% | 2.20% | |
1–7 per week | 8.20% | 10.50% | 2.80% | |
>7 per week | 2.30% | 2.90% | 1.10% | |
Declined/unknown | 1.50% | 1.70% | 1.10% |
Association of Periodic Fasting | Univariable | Adjusted for COVID-19 Vaccination | Fully Adjusted Multivariable Model |
---|---|---|---|
Heart failure hospitalization (hospitalization for the primary discharge diagnosis of heart failure) | |||
Hazard Ratio (95% CI) | 0.57 (0.37, 0.90) | 0.57 (0.37, 0.90) | 0.63 (0.40, 0.99) * |
p-value | 0.015 | 0.015 | 0.044 |
Major adverse cardiovascular events (all-cause mortality or hospitalization for the primary diagnosis of heart failure, unstable angina, acute myocardial infarction, coronary revascularization, or stroke) | |||
Hazard Ratio (95% CI) | 0.59 (0.40, 0.87) | 0.59 (0.40, 0.88) | 0.64 (0.43, 0.96) † |
p-value | 0.008 | 0.009 | 0.03 |
Outcomes | Univariable | Adjusted for COVID-19 Vaccination | ||
---|---|---|---|---|
(All >30 Days Post-COVID) | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value |
Cardiovascular Endpoints (only those >30 days post-COVID) | ||||
HF Hospitalization | 0.87 (0.60, 1.26) | 0.46 | 0.87 (0.60, 1.26) | 0.47 |
MACE | 0.89 (0.52, 1.26) | 0.52 | 0.89 (0.63, 1.26) | 0.53 |
PASC Endpoints | ||||
Post-COVID Syndrome * | 0.90 (0.35, 2.33) | 0.83 | 0.90 (0.35, 2.31) | 0.82 |
Anosmia | Not evaluated individually (n = 1 event) | |||
Ageusia | Not evaluated individually (n = 2 events) | |||
Malaise (n = 14 events) | 0.64 (0.18, 2.31) | 0.5 | 0.65 (0.18, 2.34) | 0.51 |
Dyspnea | 0.74 (0.46, 1.17) | 0.2 | 0.74 (0.46, 1.17) | 0.2 |
Shortness of Breath | 0.62 (0.33, 1.14) | 0.12 | 0.60 (0.32, 1.11) | 0.1 |
Fatigue | 1.08 (0.67, 1.74) | 0.77 | 1.06 (0.66, 1.72) | 0.8 |
Cognitive Impairment | 0.50 (0.17, 1.47) | 0.21 | 0.49 (0.16, 1.45) | 0.2 |
Palpitations | 0.88 (0.39, 2.00) | 0.77 | 0.89 (0.39, 2.02) | 0.78 |
Chest Pain | 0.89 (0.55, 1.44) | 0.63 | 0.87 (0.54, 1.42) | 0.58 |
Dizziness | 0.92 (0.52, 1.65) | 0.79 | 0.88 (0.49, 1.58) | 0.67 |
Vertigo | Not evaluated individually (n = 1 event) | |||
PASC Composite † | 0.90 (0.68, 1.18) | 0.44 | 0.89 (0.67, 1.17) | 0.41 |
PASC Composite 2 ‡ | 0.82 (0.61, 1.11) | 0.19 | 0.81 (0.60, 1.10) | 0.17 |
PASC Composite 3 § | 0.69 (0.44, 1.07) | 0.1 | 0.68 (0.44, 1.06) | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horne, B.D.; Anderson, J.L.; Haddad, F.; May, H.T.; Le, V.T.; Knight, S.; Bair, T.L.; Knowlton, K.U. Periodic Fasting and Acute Cardiac Events in Patients Evaluated for COVID-19: An Observational Prospective Cohort Study. Nutrients 2024, 16, 2075. https://doi.org/10.3390/nu16132075
Horne BD, Anderson JL, Haddad F, May HT, Le VT, Knight S, Bair TL, Knowlton KU. Periodic Fasting and Acute Cardiac Events in Patients Evaluated for COVID-19: An Observational Prospective Cohort Study. Nutrients. 2024; 16(13):2075. https://doi.org/10.3390/nu16132075
Chicago/Turabian StyleHorne, Benjamin D., Jeffrey L. Anderson, Francois Haddad, Heidi T. May, Viet T. Le, Stacey Knight, Tami L. Bair, and Kirk U. Knowlton. 2024. "Periodic Fasting and Acute Cardiac Events in Patients Evaluated for COVID-19: An Observational Prospective Cohort Study" Nutrients 16, no. 13: 2075. https://doi.org/10.3390/nu16132075
APA StyleHorne, B. D., Anderson, J. L., Haddad, F., May, H. T., Le, V. T., Knight, S., Bair, T. L., & Knowlton, K. U. (2024). Periodic Fasting and Acute Cardiac Events in Patients Evaluated for COVID-19: An Observational Prospective Cohort Study. Nutrients, 16(13), 2075. https://doi.org/10.3390/nu16132075