Association between Vitamin D Deficiency and Prediabetes Phenotypes: A Population-Based Study in Henan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sampling
2.2. Data Collection
2.3. Vitamin D Status (VDS) Assessment
2.4. Blood Glucose Status (BGS) Definitions and Measurements
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Participants
3.2. BGS and Vitamin D Status among Participants
3.3. Estimated Prevalence Rates of IFG, IGT, and Prediabetes by Vitamin D Status and Sex in Adults Based on the Sampling Weight
3.4. The Association between Vitamin D Status and IFG/IGT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization; International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006; Available online: https://apps.who.int/iris/handle/10665/43588 (accessed on 6 February 2024).
- Chinese Diabetes Society. Guideline for the Prevention and Treatment of Type 2 Diabetes Mellitus in China (2020 Edition). Chin. J. Diabetes Mellit. 2021, 13, 315–409. [Google Scholar]
- Święcicka-Klama, A.; Połtyn-Zaradna, K.; Szuba, A.; Zatońska, K. The Natural Course of Impaired Fasting Glucose. Adv. Exp. Med. Biol. 2021, 1324, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Rett, K.; Gottwald-Hostalek, U. Understanding prediabetes: Definition, prevalence, burden and treatment options for an emerging disease. Curr. Med. Res. Opin. 2019, 35, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cai, X.; Mai, W.; Li, M.; Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ 2016, 355, i5953. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Diabetes. 2016. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 6 February 2024).
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arababadi, M.K.; Nosratabadi, R.; Asadikaram, G. Vitamin D and toll like receptors. Life Sci. 2018, 203, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszek-Matuszek, B.; Lenart-Lipińska, M.; Woźniakowska, E. Clinical implications of vitamin D deficiency. Przegląd Menopauzalny 2015, 14, 75–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Contreras-Manzano, A.; Villalpando, S.; García-Díaz, C.; Flores-Aldana, M. Cardiovascular Risk Factors and Their Association with Vitamin D Deficiency in Mexican Women of Reproductive Age. Nutrients 2019, 11, 1211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J. Steroid Biochem. Mol. Biol. 2018, 175, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Jeppesen, P.B. Is hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; Cavallari, I.; Napoli, N.; Conte, C. Vitamin D and Diabetes Mellitus. Front. Horm. Res. 2018, 50, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pittas, A.G.; Jorde, R.; Kawahara, T.; Dawson-Hughes, B. Vitamin D Supplementation for Prevention of Type 2 Diabetes Mellitus: To D or Not to D? J. Clin. Endocrinol. Metab. 2020, 105, 3721–3733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, Y.; Zheng, T.; Ran, X.; Ren, Y.; Chen, T.; Zhong, L.; Yan, D.; Yan, F.; Wu, Q.; Tian, H. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-Year Follow-Up Community-Based Study. Dis. Markers 2018, 2018, 1926308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, N.; Zhen, D.; Zhao, Z.; Fu, S.; Guan, C.; Liu, L.; Tang, X. 25-Hydroxyvitamin D and Incidence of Type 2 Diabetes from a Chinese Cohort Study. J. Nutr. Sci. Vitaminol. 2022, 68, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, C.; Chen, X.; Wan, H.; Chen, Y.; Chen, C.; Han, B.; Lu, Y. Vitamin D, prediabetes and type 2 diabetes: Bidirectional Mendelian randomization analysis. Eur. J. Nutr. 2020, 59, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.T.; Peruzzu, D.; Ruggieri, A.; Ortona, E.; Gagliardi, M.C. Vitamin D and Sex Differences in COVID-19. Front. Endocrinol. 2020, 11, 567824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dupuis, M.L.; Pagano, M.T.; Pierdominici, M.; Ortona, E. The role of vitamin D in autoimmune diseases: Could sex make the difference? Biol. Sex. Differ. 2021, 12, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Chu, C.; Doebis, C.; von Baehr, V.; Hocher, B. Sex-Dependent Association of Vitamin D With Insulin Resistance in Humans. J. Clin. Endocrinol. Metab. 2021, 106, e3739–e3747. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.M.; Yoon, Y.S.; Lee, K.S.; Bae, N.Y.; Gi, M.Y.; Yoon, H. Gender difference in relationship between serum ferritin and 25-hydroxyvitamin D in Korean adults. PLoS ONE 2017, 12, e0177722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, F.; Liu, Q.; Zhang, Q.; Wan, Z.; Hu, L.; Xu, R.; Cheng, A.; Lv, Y.; Wang, L. Sex-Specific Association between Serum Vitamin D Status and Lipid Profiles: A Cross-Sectional Study of a Middle-Aged and Elderly Chinese Population. J. Nutr. Sci. Vitaminol. 2020, 66, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Pojednic, R.M.; Trussler, E.M.; Navon, J.D.; Lemire, S.C.; Siu, E.C.; Metallinos-Katsaras, E.S. Vitamin D deficiency associated with risk of prediabetes among older adults: Data from the National Health and Nutrition Examination Survey (NHANES), 2007–2012. Diabetes Metab. Res. Rev. 2022, 38, e3499. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007, 30, 753–759. [Google Scholar] [CrossRef]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low- and middle-income countries. Ann. N. Y Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- StataCorp. Stata: Stata Survey Data Reference Manual Release 17; StataCorp LLC: College Station, TX, USA, 2021; Available online: https://www.stata.com/manuals/svy.pdf (accessed on 6 February 2024).
- Lee, B.K.; Park, S.; Kim, Y. Age- and gender-specific associations between low serum 25-hydroxyvitamin D level and type 2 diabetes in the Korean general population: Analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data. Asia Pac. J. Clin. Nutr. 2012, 21, 536–546. [Google Scholar] [PubMed]
- Yoon, H.; Jeong, D.K.; Park, C.E.; Oh, H.J.; Kim, S.G. The association between gender difference with metabolic syndrome, metabolic syndrome score and serum vitamin D levels in Korean adults. Int. J. Food Sci. Nutr. 2017, 68, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ye, S.; Qian, L.; Xing, X. Sex-Specific Association of Serum 25-Hydroxyvitamin D3 with Insulin Resistance in Chinese Han Patients with Newly Diagnosed Type 2 Diabetes Mellitus. J. Nutr. Sci. Vitaminol. 2018, 64, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Thorand, B.; Osterhoff, M.A.; Müller, G.; Böhm, A.; Meisinger, C.; Kowall, B.; Rathmann, W.; Kronenberg, F.; Staiger, H.; et al. Family history of diabetes is associated with higher risk for prediabetes: A multicentre analysis from the German Center for Diabetes Research. Diabetologia 2013, 56, 2176–2180. [Google Scholar] [CrossRef] [PubMed]
Demographics | Men | Women | Both | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Age (years) | ||||||
18–39 | 456 | 17.8 | 601 | 19.6 | 1057 | 18.8 |
40–64 | 1454 | 56.8 | 1825 | 59.5 | 3279 | 58.3 |
65–104 | 648 | 25.4 | 643 | 21.0 | 1291 | 22.9 |
Ethnicity | ||||||
Han | 2528 | 98.8 | 3024 | 98.5 | 5552 | 98.7 |
Other | 30 | 1.2 | 45 | 1.5 | 75 | 1.3 |
Marital status | ||||||
Married | 2372 | 92.7 | 2851 | 92.9 | 5223 | 92.8 |
Single * | 186 | 7.3 | 218 | 7.1 | 404 | 7.2 |
Occupation | ||||||
AFAHFWRI * | 916 | 35.8 | 918 | 29.9 | 1834 | 32.6 |
Non-AFAHFWRI | 899 | 35.1 | 635 | 20.7 | 1534 | 27.3 |
Unemployed/housework | 457 | 17.9 | 1207 | 39.3 | 1664 | 29.6 |
Retirement | 286 | 11.2 | 309 | 10.1 | 595 | 10.6 |
Education attainment | ||||||
Primary school or below | 705 | 27.6 | 1343 | 43.8 | 2048 | 36.4 |
Junior high school | 1088 | 42.5 | 1039 | 33.9 | 2127 | 37.8 |
SHS/TSS * | 562 | 22.0 | 469 | 15.3 | 1031 | 18.3 |
College or above | 203 | 7.9 | 218 | 7.1 | 421 | 7.5 |
Residential location | ||||||
Urban area | 1301 | 50.9 | 1687 | 55.0 | 2988 | 53.1 |
Rural area | 1257 | 49.1 | 1382 | 45.0 | 2639 | 46.9 |
Men | Women | Both | ||||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
BGS | ||||||
NBG | 1774 | 69.4 | 2154 | 70.2 | 3928 | 69.8 |
IFG | 346 | 13.5 | 289 | 9.4 | 635 | 11.3 |
IGT | 438 | 17.1 | 626 | 20.4 | 1064 | 18.9 |
Prediabetes | 784 | 30.6 | 915 | 29.8 | 1699 | 30.2 |
Vitamin D status | ||||||
VDD | 376 | 14.7 | 977 | 31.8 | 1353 | 24.0 |
Non-VDD | 2182 | 85.3 | 2092 | 68.2 | 4274 | 76.0 |
BGS | Vitamin D Status | Men | Women | Both |
---|---|---|---|---|
IFG | VDD | 13.0 (6.4–24.9) | 8.1 (4.4–14.4) | 9.7 (5.4–17.0) |
Non-VDD | 15.7 (9.5–25.0) | 8.0 (5.3–11.9) | 12.5 (7.9–19.3) | |
Total | 15.3 (9.3–24.1) | 8.0 (5.1–12.3) | 11.8 (7.4–18.3) | |
χ2, design-based F, P | 1.86, 0.42, 0.527 | 0.01, 0.005, 0.947 | 7.59, 1.63, 0.226 | |
IGT | VDD | 20.1 (9.3–40.0) | 14.2 (9.0–21.7) | 16.4 (10.6–24.6) |
Non-VDD | 10.5 (8.5–12.8) | 19.7 (13.5–27.6) | 14.3 (11.0–18.4) | |
Total | 12.1 (8.5–16.9) | 17.8 (12.8–24.2) | 14.8 (11.3–19.2) | |
χ2, design-based F, P | 34.26, 5.58, 0.036 | 14.09, 2.01, 0.182 | 3.70, 0.72, 0.414 | |
Prediabetes | VDD | 33.9 (21.8–48.5) | 22.3 (13.5–34.4) | 26.1 (17.3–37.4) |
Non-VDD | 26.2 (18.5–35.7) | 27.6 (18.8–38.6) | 26.8 (18.8–36.6) | |
Total | 27.4 (19.6–36.9) | 25.8 (17.9–35.7) | 26.6 (18.9–36.1) | |
χ2, design-based F, P | 10.10, 2.79, 0.121 | 10.36, 1.13, 0.309 | 0.22, 0.03, 0.863 |
Variable | IFG | IGT | ||||
---|---|---|---|---|---|---|
OR (95%CI) | t | p > t | OR (95%CI) | t | p > t | |
VDD | ||||||
Yes | 0.98 (0.49–2.00) | −0.05 | 0.963 | 1.95 (1.12–3.42) | 2.61 | 0.023 |
No | 1.00 | 1.00 | ||||
Sex | ||||||
M | 1.00 | 1.00 | ||||
F | 0.52 (0.30–0.90) | −2.60 | 0.023 | 3.27 (1.59–6.73) | 3.58 | 0.004 |
VDD # Sex * | ||||||
VDD = No, Sex = M | 1.00 | 1.00 | ||||
VDD = Yes, Sex = F | 1.09 (0.66–1.79) | 0.38 | 0.713 | 0.39 (0.18–0.84) | −2.67 | 0.020 |
Age (years) | ||||||
18–39 | 1.00 | 1.00 | ||||
40–64 | 1.10 (0.67–1.81) | 0.42 | 0.685 | 1.90 (1.25–2.89) | 3.32 | 0.006 |
65–104 | 1.76 (1.11–2.79) | 2.65 | 0.021 | 4.49 (2.97–6.80) | 7.89 | 0.000 |
Ethnicity | ||||||
Han | 1.00 | 1.00 | ||||
Other | 0.68 (0.26–1.79) | −0.87 | 0.401 | 0.59 (0.32–1.07) | −1.93 | 0.078 |
Family history of DM * | ||||||
No | 1.00 | 1.00 | ||||
Yes | 0.78 (0.33–1.83) | −0.63 | 0.539 | 1.32 (0.70–2.48) | 0.95 | 0.362 |
Education attainment | ||||||
Primary school or below | 1.00 | 1.00 | ||||
Junior high school | 1.00 (0.80–1.26) | 0.01 | 0.991 | 1.06 (0.76–1.48) | 0.38 | 0.712 |
SHS/TSS | 0.81 (0.51–1.28) | −1.01 | 0.334 | 0.60 (0.38–0.97) | −2.31 | 0.040 |
College or above | 0.32 (0.12–0.81) | −2.67 | 0.021 | 0.84 (0.51–1.37) | −0.78 | 0.450 |
Marital status | ||||||
Married | 1.00 | 1.00 | ||||
Single | 0.78 (0.48–1.28) | −1.09 | 0.296 | 1.96 (1.06–3.62) | 2.38 | 0.035 |
Occupation | ||||||
AFAHFWRI | 1.00 | 1.00 | ||||
Non-AFAHFWRI | 1.73 (1.07–2.80) | 2.48 | 0.029 | 1.06 (0.68–1.63) | 0.27 | 0.791 |
Unemployed/housework | 0.70 (0.24–2.00) | −0.75 | 0.470 | 0.80 (0.57–1.10) | −1.52 | 0.153 |
Retirement | 0.35 (0.17–0.73) | −3.11 | 0.009 | 0.81 (0.46–1.43) | −0.81 | 0.436 |
Residential location | ||||||
Urban area | 1.00 | 1.00 | ||||
Rural area | 0.91 (0.27–3.06) | −0.18 | 0.862 | 0.94 (0.49–1.81) | −0.19 | 0.849 |
Alcohol consumption | ||||||
No | 1.00 | 1.00 | ||||
Yes, ≤30 days | 0.98 (0.52–1.83) | −0.09 | 0.933 | 1.58 (1.05–2.38) | 2.42 | 0.032 |
Yes, >30 days | 0.67 (0.37–1.23) | −1.44 | 0.176 | 0.78 (0.53–1.16) | −1.35 | 0.201 |
Smoking status | ||||||
Never | 1.00 | 1.00 | ||||
Former | 0.68 (0.38–1.24) | −1.39 | 0.189 | 1.72 (0.83–3.56) | 1.63 | 0.129 |
Current | 1.11 (0.60–2.03) | 0.36 | 0.725 | 1.42 (0.80–2.53) | 1.34 | 0.205 |
Sedentary time * | ||||||
Low | 1.00 | 1.00 | ||||
High | 0.86 (0.57–1.28) | −0.84 | 0.415 | 0.96 (0.64–1.46) | −0.20 | 0.847 |
Test season | ||||||
Fall | 1.00 | 1.00 | ||||
Winter | 1.57 (0.41–5.99) | 0.73 | 0.481 | 1.87 (0.80–4.39) | 1.61 | 0.134 |
Abdominal obesity | ||||||
No | 1.00 | 1.00 | ||||
Yes | 1.19 (0.54–2.60) | 0.48 | 0.638 | 0.85 (0.50–1.45) | −0.66 | 0.520 |
Obesity | ||||||
No | 1.00 | 1.00 | ||||
Yes | 1.15 (0.75–1.77) | 0.69 | 0.500 | 1.63 (0.90–2.96) | 1.79 | 0.098 |
Hypertension | ||||||
No | 1.00 | 1.00 | ||||
Yes | 1.05 (0.83–1.33) | 0.49 | 0.632 | 1.54 (1.10–2.16) | 2.78 | 0.017 |
TC | ||||||
Low | 1.00 | 1.00 | ||||
High | 2.74 (1.29–5.83) | 2.92 | 0.013 | 1.58 (1.11–2.25) | 2.80 | 0.016 |
TG | ||||||
Low | 1.00 | 1.00 | ||||
High | 0.95 (0.45–2.00) | −0.14 | 0.888 | 1.48 (0.88–2.49) | 1.64 | 0.127 |
HDL-C | ||||||
Low | 1.00 | 1.00 | ||||
High | 0.81 (0.60–1.08) | −1.60 | 0.136 | 1.08 (0.65–1.79) | 0.31 | 0.759 |
LDL-C | ||||||
Low | 1.00 | 1.00 | ||||
High | 0.53 (0.33–0.86) | −2.87 | 0.014 | 0.86 (0.45–1.64) | −0.52 | 0.613 |
_cons | 0.16 (0.03–0.91) | −2.30 | 0.040 | 0.02 (0.01–0.10) | −5.72 | 0.000 |
Model * | Men | Women | Both | ||||||
---|---|---|---|---|---|---|---|---|---|
OR (95%CI) | t | P | OR (95%CI) | t | p | OR (95%CI) | t | p | |
Model 1 | |||||||||
IFG | 0.93 (0.49–1.76) | −0.26 | 0.800 | 0.94 (0.55–1.61) | −0.24 | 0.817 | 0.77 (0.46–1.29) | −1.10 | 0.292 |
IGT | 2.22 (1.07–4.61) | 2.38 | 0.035 | 0.67 (0.35–1.28) | −1.34 | 0.206 | 1.14 (0.73–1.78) | 0.63 | 0.539 |
Model 2 | |||||||||
IFG | 0.95 (0.49–1.86) | −0.16 | 0.873 | 1.05 (0.58–1.90) | 0.17 | 0.865 | 0.97 (0.53–1.75) | −0.12 | 0.904 |
IGT | 2.39 (1.27–4.51) | 2.99 | 0.011 | 0.76 (0.36–1.61) | −0.79 | 0.443 | 1.15 (0.65–2.03) | 0.53 | 0.606 |
Model 3 | |||||||||
IFG | 0.99 (0.46–2.13) | −0.02 | 0.983 | 1.18 (0.71–1.94) | 0.71 | 0.492 | 1.02 (0.52–2.01) | 0.06 | 0.951 |
IGT | 2.12 (1.31–3.44) | 3.39 | 0.005 | 0.77 (0.40–1.46) | −0.90 | 0.388 | 1.09 (0.64–1.84) | 0.34 | 0.738 |
Model 4 | |||||||||
IFG | 0.92 (0.45–1.86) | −0.27 | 0.795 | 1.19 (0.71–2.01) | 0.76 | 0.463 | 1.01 (0.53–1.91) | 0.02 | 0.984 |
IGT | 1.99 (1.24–3.19) | 3.16 | 0.008 | 0.79 (0.43–1.43) | −0.88 | 0.397 | 1.09 (0.66–1.79) | 0.36 | 0.725 |
Model * | Men Having Family History of DM | Men Having No Family History of DM | ||||
---|---|---|---|---|---|---|
OR (95%CI) | t | P | OR (95%CI) | t | p | |
Model 5 | ||||||
IFG | 0.40 (0.10–1.65) | −1.41 | 0.185 | 1.07 (0.55–2.09) | 0.21 | 0.834 |
IGT | 4.37 (1.47–13.04) | 2.94 | 0.012 | 1.43 (0.70–2.91) | 1.08 | 0.299 |
Model 6 | ||||||
IFG | 1.10 (0.18–6.71) | 0.12 | 0.909 | 1.02 (0.50–2.09) | 0.07 | 0.947 |
IGT | 14.84 (4.14–53.20) | 4.60 | 0.001 | 1.29 (0.73–2.28) | 0.99 | 0.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Feng, S.; Xu, J.; Wei, X.; Yang, G. Association between Vitamin D Deficiency and Prediabetes Phenotypes: A Population-Based Study in Henan, China. Nutrients 2024, 16, 1979. https://doi.org/10.3390/nu16131979
Wang G, Feng S, Xu J, Wei X, Yang G. Association between Vitamin D Deficiency and Prediabetes Phenotypes: A Population-Based Study in Henan, China. Nutrients. 2024; 16(13):1979. https://doi.org/10.3390/nu16131979
Chicago/Turabian StyleWang, Guojie, Shixian Feng, Jiying Xu, Xiaolin Wei, and Guojun Yang. 2024. "Association between Vitamin D Deficiency and Prediabetes Phenotypes: A Population-Based Study in Henan, China" Nutrients 16, no. 13: 1979. https://doi.org/10.3390/nu16131979
APA StyleWang, G., Feng, S., Xu, J., Wei, X., & Yang, G. (2024). Association between Vitamin D Deficiency and Prediabetes Phenotypes: A Population-Based Study in Henan, China. Nutrients, 16(13), 1979. https://doi.org/10.3390/nu16131979