The Role of Vitamin D3 in Ocular Diseases
Abstract
:1. Introduction
2. Method
3. Dry Eye Disease (DED)
4. Myopia
5. Keratoconus (KC)
6. Graves’ Orbitopathy
7. Retinoblastoma (RB)
8. Age-Related Macular Degeneration (AMD)
9. Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME)
10. Glaucoma
11. Cataract
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chauhan, K.; Shahrokhi, M.; Huecker, M.R. Vitamin D. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441912/ (accessed on 9 April 2023).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhatt, R.B.; Patel, N.H.; Shah, A.T.; Ranpara, K.H. Study of correlation between vitamin D3 levels and dry eye. Indian J. Ophthalmol. 2023, 71, 1478–1482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bae, S.H.; Shin, Y.J.; Kim, H.K.; Hyon, J.Y.; Wee, W.R.; Park, S.G. Vitamin D Supplementation for Patients with Dry Eye Syndrome Refractory to Conventional Treatment. Sci. Rep. 2016, 6, 33083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwalfenberg, G.K. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res. 2011, 55, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.; Rekhi, E.; Hoh Kam, J.; Jeffery, G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta and improving visual function. Neurobiol. Aging 2012, 33, 2382–2389. [Google Scholar] [CrossRef] [PubMed]
- Dikci, S.; Akatlı, A.N.; Yıldırım, T. Conjunctival impression cytology and tear-film changes in cases with vitamin D deficiency. Int. Ophthalmol. 2020, 40, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Albietz, J.; Harkin, D.G.; Kimlin, M.G.; Schmid, K.L. Impact of oral vitamin D supplementation on the ocular surface in people with dry eye and/or low serum vitamin D. Contact Lens Anterior Eye 2017, 41, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, Y.; Wang, Y. Vitamin D deficiency is associated with dry eye syndrome: A systematic review and meta-analysis. Acta Ophthalmol. 2020, 98, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Najjaran, M.; Zarei-Ghanavati, S.; Arjmand Askari, E.; Eslampoor, A.; Ziaei, M. Effect of oral vitamin D supplementation on dry eye disease patients with vitamin D deficiency. Clin. Exp. Optom. 2023, 106, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Yazar, S.; Hewitt, A.W.; Black, L.J.; McKnight, C.M.; Mountain, J.A.; Sherwin, J.C.; Oddy, W.H.; Coroneo, M.T.; Lucas, R.M.; Mackey, D.A. Myopia is associated with lower vitamin D status in young adults. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4552–4559. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.T.; Klawe, J.; Liu, B.; Ahmad, S. Association Between Serum Vitamin D Levels and Myopia in the National Health and Nutrition Examination Survey (2001–2006). Ophthalmic Epidemiol. 2024, 31, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Reinach, P.S.; Huang, C.; Yu, L.; Zhuang, H.; Ran, H.; Zhao, F.; Srinivasalu, N.; Qu, J.; Zhou, X. Calcipotriol Attenuates Form Deprivation Myopia Through a Signaling Pathway Parallel to TGF-β2-Induced Increases in Collagen Expression. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aaraj, S.; Kausar, A.; Khan, S.A. Vitamin D deficiency: A risk factor for myopia in children—A cross sectional study in a tertiary care centre. J. Pak. Med. Assoc. 2022, 72, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, H.; Jiang, L.; Chen, X.; Chen, J.; Lu, F. Low Serum Vitamin D Is Not Correlated with Myopia in Chinese Children and Adolescents. Front. Med. 2022, 9, 809787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pannu, A.; Vichare, N.; Pushkar, K.; Kumar, A.; Gupta, S. Parallelism between hypovitaminosis D3 and recently detected myopia in children with amplified screen use in the COVID-19 era—A preliminary study. Indian J. Ophthalmol. 2023, 71, 229–234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, K.M.; Bentham, G.C.; Young, I.S.; McGinty, A.; McKay, G.J.; Hogg, R.; Hammond, C.J.; Chakravarthy, U.; Rahu, M.; Seland, J.; et al. Association Between Myopia, Ultraviolet B Radiation Exposure, Serum Vitamin D Concentrations, and Genetic Polymorphisms in Vitamin D Metabolic Pathways in a Multicountry European Study. JAMA Ophthalmol. 2017, 135, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zarei-Ghanavati, S.; Yahaghi, B.; Hassanzadeh, S.; Mobarhan, M.G.; Hakimi, H.R.; Eghbali, P. Serum 25-Hydroxyvitamin D, Selenium, Zinc and Copper in Patients with Keratoconus. J. Curr. Ophthalmol. 2020, 32, 26–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erdinest, N.; Wajnsztajn, D.; London, N.; Solomon, A. Ocular surface inflammation and ectatic corneal disorders. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Torky, M.A.; Bassiouny, R.M.; Khattab, A.M.; Elzehery, R.R.; Elhelaly, R.M. Thyroid gland dysfunction and vitamin D receptor gene polymorphism in keratoconus. Eye 2023, 37, 1602–1607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kundu, G.; Shetty, N.; Shetty, R.; Khamar, P.; D’Souza, S.; Meda, T.R.; Nuijts, R.M.M.A.; Narasimhan, R.; Roy, A.S. Artificial intelligence-based stratification of demographic, ocular surface high-risk factors in progression of keratoconus. Indian J. Ophthalmol. 2023, 71, 1882–1888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aslan, M.G.; Fındık, H.; Okutucu, M.; Aydın, E.; Oruç, Y.; Arpa, M.; Uzun, F. Serum 25-Hydroxy Vitamin D, Vitamin B12, and Folic Acid Levels in Progressive and Nonprogressive Keratoconus. Cornea 2021, 40, 334–341. [Google Scholar] [CrossRef] [PubMed]
- McMillan, J. Spectrum of Darkness, Agent of Light: Myopia, Keratoconus, Ocular Surface Disease, and Evidence for a Profoundly Vitamin D-dependent Eye. Cureus 2018, 10, e2744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lasagni Vitar, R.M.; Fonteyne, P.; Knutsson, K.A.; Bertuzzi, F.; Galli, L.; Rama, P.; Ferrari, G. Vitamin D Supplementation Impacts Systemic Biomarkers of Collagen Degradation and Copper Metabolism in Patients with Keratoconus. Transl. Vis. Sci. Technol. 2022, 11, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, P.C.; Pathak, M.; Thakur, B.; Fogla, R.; Agarwal, A.; Ram, J. Association of keratoconus with serum levels of 25-hydroxyvitamin D and antioxidant trace elements: A systematic review and meta-analysis. Indian J. Ophthalmol. 2022, 70, 2818–2824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Planck, T.; Shahida, B.; Malm, J.; Manjer, J. Vitamin D in Graves Disease: Levels, Correlation with Laboratory and Clinical Parameters, and Genetics. Eur. Thyroid. J. 2018, 7, 27–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heisel, C.J.; Riddering, A.L.; Andrews, C.A.; Kahana, A. Serum Vitamin D Deficiency Is an Independent Risk Factor for Thyroid Eye Disease. Ophthalmic Plast. Reconstr. Surg. 2020, 36, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Alhuzaim, O.N.; Aljohani, N. Effect of vitamin d3 on untreated graves’ disease with vitamin d deficiency. Clin. Med. Insights Case Rep. 2014, 7, 83–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khamisi, S.; Lundqvist, M.; Rasmusson, A.J.; Engström, B.E.; Karlsson, F.A.; Ljunggren, Ö. Vitamin D and bone metabolism in Graves’ disease: A prospective study. J. Endocrinol. Investig. 2023, 46, 425–433. [Google Scholar] [CrossRef]
- Hu, Y.X.; Zheng, R.D.; Fan, Y.F.; Sun, L.; Hu, X.; Liu, C. The effects of bone metabolism in different methylprednisolone pulse treatments for Graves’ ophthalmopathy. Exp. Ther. Med. 2020, 19, 333–338. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alali, M.; Alkulaib, N.S.; Alkhars, A.; Albadri, K.; Al Hassan, S.; Elewa, M.; Aldairi, W.; Alsaqer, S.K.; Al-Abdulqader, R.A.; Alhammad, F. Thyroid eye disease in Eastern Province of Saudi Arabia: Clinical profile and correlation with vitamin D deficiency. Orbit 2023, 43, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Zawadzka-Starczewska, K.; Stasiak, B.; Wojciechowska-Durczyńska, K.; Lewiński, A.; Stasiak, M. Novel Insight into Non-Genetic Risk Factors of Graves’ Orbitopathy. Int. J. Environ. Res. Public Health 2022, 19, 16941. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lanzolla, G.; Di Matteo, L.; Comi, S.; Cosentino, G.; Menconi, F.; Maglionico, M.N.; Posarelli, C.; Figus, M.; Marinò, M. Absence of a relationship between vitamin D and Graves’ orbitopathy. J. Endocrinol. Investig. 2023, 46, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, H.; Patel, B.C. Retinoblastoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Jung, E.M.; Bunin, G.R.; Ganguly, A.; Johnson, R.A.; Spector, L.G. The association between maternal nutrient intake during pregnancy and the risk of sporadic unilateral retinoblastoma among offspring. Cancer Epidemiol. 2023, 85, 102376. [Google Scholar] [CrossRef] [PubMed]
- Sabet, S.J.; Darjatmoko, S.R.; Lindstrom, M.J.; Albert, D.M. Antineoplastic effect and toxicity of 1,25-dihydroxy-16-ene-23-yne-vitamin D3 in athymic mice with Y-79 human retinoblastoma tumors. Arch. Ophthalmol. 1999, 117, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Albert, D.M.; Kumar, A.; Strugnell, S.A.; Darjatmoko, S.R.; Lokken, J.M.; Lindstrom, M.J.; Patel, S. Effectiveness of vitamin D analogues in treating large tumors and during prolonged use in murine retinoblastoma models. Arch. Ophthalmol. 2004, 122, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Damera, G.; Fogle, H.W.; Lim, P.; Goncharova, E.A.; Zhao, H.; Banerjee, A.; Tliba, O.; Krymskaya, V.P.; Panettieri, R.A., Jr. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1. Br. J. Pharmacol. 2009, 158, 1429–1441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulkarni, A.D.; van Ginkel, P.R.; Darjatmoko, S.R.; Lindstrom, M.J.; Albert, D.M. Use of combination therapy with cisplatin and calcitriol in the treatment of Y-79 human retinoblastoma xenograft model. Br. J. Ophthalmol. 2009, 93, 1105–1108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez Serena, A.; Martínez Betancourt, D.P.; González Del Valle, F.; Ruiz-Moreno, J.M. Serum 25-hydroxy vitamin D levels in age-related macular degeneration. Int. J. Retin. Vitr. 2022, 8, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kabataş, N.; Doğan, A.Ş.; Yılmaz, M.; Kabataş, E.U.; Biçer, T.; Çalışkan, S.; Çelikay, O.; Uçar, F.; Gürdal, C. Association between age-related macular degeneration and 25(OH) vitamin D levels in the Turkish population. Arq. Bras. Oftalmol. 2022, 85, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Seyyar, S.A.; Tokuc, E.O.; Tıskaoğlu, N.S.; Karabaş, V.L.; Güngör, K. Do serum vitamin D levels correlate with Macular Edema or with Diabetic Retinopathy? Eur. J. Ophthalmol. 2022, 32, 3592–3598. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, C.; Guler, E.M.; Kocyigit, A.; Kirik, F.; Ozdemir, H. Effects of 1,25 Dihydroxyvitamin D3 on Human Retinal Pigment Epithelial Cell Lines. Int. Ophthalmol. 2021, 41, 3333–3340. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Chen, X.; Luo, S.; Jiang, S.; Mao, Y.; Xiao, W. Serum 25-Hydroxyvitamin D Is Differentially Associated with Early and Late Age-Related Macular Degeneration in the United States Population. Nutrients 2023, 15, 1216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, A.; Silva, N.; Furtado, M.J.; Carneiro, Â.; Lume, M.; Andrade, J.P. Serum vitamin D and age-related macular degeneration: Systematic review and meta-analysis. Surv. Ophthalmol. 2021, 66, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Kan, E.; Kan, E.K.; Yücel, Ö.E. The Possible Link Between Vitamin D Levels and Exudative Age-related Macular Degeneration. Oman Med. J. 2020, 35, e83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzara, F.; Conti, F.; Platania, C.B.M.; Eandi, C.M.; Drago, F.; Bucolo, C. Effects of Vitamin D3 and Meso-Zeaxanthin on Human Retinal Pigmented Epithelial Cells in Three Integrated in vitro Paradigms of Age-Related Macular Degeneration. Front. Pharmacol. 2021, 12, 778165. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Aloisio, R.; Di Antonio, L.; Toto, L.; Rispoli, M.; Di Iorio, A.; Delvecchio, G.; Mastropasqua, R. Choroidal Changes in Blood Flow in Patients with Intermediate AMD after Oral Dietary Supplement Based on Astaxanthin, Bromelain, Vitamin D3, Folic Acid, Lutein, and Antioxidants. Medicina 2022, 58, 1092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernandez, M.; Recalde, S.; González-Zamora, J.; Bilbao-Malavé, V.; Sáenz de Viteri, M.; Bezunartea, J.; Moreno-Orduña, M.; Belza, I.; Barrio-Barrio, J.; Fernandez-Robredo, P.; et al. Anti-Inflammatory and Anti-Oxidative Synergistic Effect of Vitamin D and Nutritional Complex on Retinal Pigment Epithelial and Endothelial Cell Lines against Age-Related Macular Degeneration. Nutrients 2021, 13, 1423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merle, B.M.J.; Silver, R.E.; Rosner, B.; Seddon, J.M. Associations Between Vitamin D Intake and Progression to Incident Advanced Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4569–4578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aoki, A.; Inoue, M.; Nguyen, E.; Obata, R.; Kadonosono, K.; Shinkai, S.; Hashimoto, H.; Sasaki, S.; Yanagi, Y. Dietary n-3 Fatty Acid, α-Tocopherol, Zinc, vitamin D, vitamin C, and β-carotene are Associated with Age-Related Macular Degeneration in Japan. Sci. Rep. 2016, 6, 20723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gverović Antunica, A.; Znaor, L.; Ivanković, M.; Puzović, V.; Marković, I.; Kaštelan, S. Vitamin D and Diabetic Retinopathy. Int. J. Mol. Sci. 2023, 24, 12014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zahedi, M.; Motahari, M.M.; Fakhri, F.; Aphshari, N.M.; Poursharif, S.; Jahed, R.; Nikpayam, O. Is vitamin D deficiency associated with retinopathy in type 2 diabetes mellitus? A case-control study. Clin. Nutr. ESPEN 2024, 59, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Alcubierre, N.; Valls, J.; Rubinat, E.; Cao, G.; Esquerda, A.; Traveset, A.; Granado-Casas, M.; Jurjo, C.; Mauricio, D. Vitamin D Deficiency Is Associated with the Presence and Severity of Diabetic Retinopathy in Type 2 Diabetes Mellitus. J. Diabetes Res. 2015, 2015, 374178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhuang, Y.; Zhuang, Z.; Cai, Q.; Hu, X.; Huang, H. Serum vitamin D is substantially reduced and predicts flares in diabetic retinopathy patients. J. Diabetes Investig. 2024; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Navaei, S.; Nazemi, S.; Emamian, M.H.; Hashemi, H.; Fotouhi, A. Vitamin D deficiency and diabetic retinopathy risk. J. Fr. Ophtalmol. 2023, 46, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Ebrahimi Meimand, S.; Malek Hosseini, A.A.; Shirvani, A. Alterations in circulating levels of vitamin D binding protein, total and bioavailability of vitamin D in diabetic retinopathy patients. BMC Endocr. Disord. 2022, 22, 169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hardatt, D.; Devi, M.; Vyas, S.; Singh, G.; Jain, J.; Gupta, S.; Dhanawat, M. Effect of Vitamin D on Retinoblastoma Protein in Prediabetic Individuals. Curr. Diabetes Rev. 2023; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, F.; Longo, A.M.; Giurdanella, G.; Lupo, G.; Platania, C.B.M.; Rossi, S.; Drago, F.; Anfuso, C.D.; Bucolo, C. Vitamin D3 preserves blood retinal barrier integrity in an in vitro model of diabetic retinopathy. Front. Pharmacol. 2022, 13, 971164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, L.; Lu, Q.; Chen, W.; Li, J.; Li, C.; Zheng, Z. Vitamin D3 Protects against Diabetic Retinopathy by Inhibiting High-Glucose-Induced Activation of the ROS/TXNIP/NLRP3 Inflammasome Pathway. J. Diabetes Res. 2018, 2018, 8193523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, L.; Zou, G.; Chen, L.; Lu, Q.; Wu, M.; Li, C. Elevated NLRP3 Inflammasome Levels Correlate with Vitamin D in the Vitreous of Proliferative Diabetic Retinopathy. Front. Med. 2021, 8, 736316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filippelli, M.; Campagna, G.; Vito, P.; Zotti, T.; Ventre, L.; Rinaldi, M.; Bartollino, S.; dell’Omo, R.; Costagliola, C. Anti-inflammatory Effect of Curcumin, Homotaurine, and Vitamin D3 on Human Vitreous in Patients with Diabetic Retinopathy. Front. Neurol. 2021, 11, 592274. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Luo, D.; Sun, M.; Fang, G.; Wei, M.; Zhang, Y.; Wang, J.; Huang, Y. No causal association between serum vitamin D levels and diabetes retinopathy: A Mendelian randomization analysis. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Seyyar, S.A.; Tıskaoğlu, N.S.; Onder Tokuc, E.; Mercanlı, M.; Doğan, L. Is serum vitamin D associated with diabetic retinopathy and its severity or with diabetes itself? Clin. Exp. Optom. 2023, 106, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Fekri, S.; Soheilian, M.; Roozdar, S.; Abtahi, S.H.; Nouri, H. The effect of vitamin D supplementation on the outcome of treatment with bevacizumab in diabetic macular edema: A randomized clinical trial. Int. Ophthalmol. 2022, 42, 3345–3356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vergroesen, J.E.; de Crom, T.O.E.; Blekkenhorst, L.C.; Klaver, C.C.W.; Voortman, T.; Ramdas, W.D. Dietary Nitrate Intake Is Associated with Decreased Incidence of Open-Angle Glaucoma: The Rotterdam Study. Nutrients 2022, 14, 2490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krefting, E.A.; Jorde, R.; Christoffersen, T.; Grimnes, G. Vitamin D and intraocular pressure--results from a case-control and an intervention study. Acta Ophthalmol. 2014, 92, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yao, Q.; Ma, W.; Liu, H.; Ji, J.; Li, X. Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol. 2016, 16, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lazzara, F.; Amato, R.; Platania, C.B.M.; Conti, F.; Chou, T.H.; Porciatti, V.; Drago, F.; Bucolo, C. 1α,25-dihydroxyvitamin D3 protects retinal ganglion cells in glaucomatous mice. J. Neuroinflamm. 2021, 18, 206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, Y.; Han, X.; Yao, Q.; Zhang, K.; Zheng, L.; Hong, W.; Xing, X. 1α,25-dihydroxyvitamin D3 attenuates oxidative stress-induced damage in human trabecular meshwork cells by inhibiting TGFβ-SMAD3-VDR pathway. Biochem. Biophys. Res. Commun. 2019, 516, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kwon, Y.J.; Lee, H.S.; Han, J.H.; Joung, B.; Kim, S.J. Inverse Relationship between Serum 25-Hydroxyvitamin D and Elevated Intraocular Pressure. Nutrients 2023, 15, 423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abass, I.A.; Saleh, A.T.; Badi, A.D.; Mohammad, B.I.; Hamied, F.M.; Al-Aubaidy, H.A. Correlation of serum 1,25-dihydroxycholecalciferol with the incidence of primary open-angle glaucoma: A cross-sectional study on patients with chronic illnesses. Saudi J. Ophthalmol. 2023, 37, 247–249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, T.; Jammal, A.A.; Medeiros, F.A. Association Between Serum Vitamin D Level and Rates of Structural and Functional Glaucomatous Progression. J. Glaucoma 2022, 31, 614–621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bokhary, K.A.; Alqahtani, L.Y.; Aljaser, F.S.; Abudawood, M.; Almubarak, F.; Algowaifly, S.; Jamous, K.F.; Fahmy, R. Association of Vitamin D deficiency with primary glaucoma among Saudi population—A pilot study. Saudi J. Ophthalmol. 2022, 35, 299–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, S.; Chen, F.; Wang, H.; Kesavamoorthy, G.; Lai, J.S.; Wong, I.Y.; Chiu, K.; Chan, J.C. Effect of Vitamin D3 on Regulating Human Tenon’s Fibroblasts Activity. Transl. Vis. Sci. Technol. 2021, 10, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, Y.; Yun, S.P.; Yoo, W.S.; Kim, R.B.; Cho, M.C.; Kim, S.J. Reduced 25-hydroxyvitamin D concentration in the aqueous humor of cataract patients with open-angle glaucoma. Sci. Rep. 2021, 11, 18785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molinari, C.; Ruga, S.; Farghali, M.; Galla, R.; Fernandez-Godino, R.; Clemente, N.; Uberti, F. Effects of a New Combination of Natural Extracts on Glaucoma-Related Retinal Degeneration. Foods 2021, 10, 1885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, S.T.; Waterhouse, M.; Romero, B.D.; Baxter, C.; English, D.; Mackey, D.A.; Ebeling, P.R.; Armstrong, B.K.; McLeod, D.S.A.; Hartel, G.; et al. Vitamin D Supplementation and the Incidence of Cataract Surgery in Older Australian Adults. Ophthalmology 2023, 130, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, M.M.; Mohamed Mostafa, E.; Salama, E.H.; Roshdy Mohamed, E. Association of Serum 25-Hydroxyl Vitamin D Deficiency and Age-Related Cataract: A Case-Control Study. J. Ophthalmol. 2019, 2019, 9312929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Shen, X.; Yu, T.; Wang, Y.; Cai, S.; Jiang, X.; Cai, X. A putative causality of vitamin D in common diseases: A mendelian randomization study. Front. Nutr. 2022, 9, 938356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, C.J.; Akaichi, F. Vitamin D deficiency and posterior subcapsular cataract. Clin. Ophthalmol. 2015, 9, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, M.C.; Kim, R.B.; Ahn, J.Y.; Yoo, W.S.; Kim, S.J. Aqueous humor and serum 25-Hydroxyvitamin D levels in patients with cataracts. BMC Ophthalmol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jee, D.; Kim, E.C. Association between serum 25-hydroxyvitamin D levels and age-related cataracts. J. Cataract. Refract. Surg. 2015, 41, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Öktem, Ç.; Aslan, F. Vitamin D Levels in Young Adult Cataract Patients: A Case-Control Study. Ophthalmic Res. 2021, 64, 116–120. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrugacz, M.; Pieńczykowska, K.; Bryl, A. The Role of Vitamin D3 in Ocular Diseases. Nutrients 2024, 16, 1878. https://doi.org/10.3390/nu16121878
Mrugacz M, Pieńczykowska K, Bryl A. The Role of Vitamin D3 in Ocular Diseases. Nutrients. 2024; 16(12):1878. https://doi.org/10.3390/nu16121878
Chicago/Turabian StyleMrugacz, Małgorzata, Kamila Pieńczykowska, and Anna Bryl. 2024. "The Role of Vitamin D3 in Ocular Diseases" Nutrients 16, no. 12: 1878. https://doi.org/10.3390/nu16121878
APA StyleMrugacz, M., Pieńczykowska, K., & Bryl, A. (2024). The Role of Vitamin D3 in Ocular Diseases. Nutrients, 16(12), 1878. https://doi.org/10.3390/nu16121878