Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium
Highlights
- The study reveals that while vegetarian/vegan ready-to-use meat alternatives generally contain less saturated fat and higher fiber compared to meat, certain categories like legume burgers/falafel fall short in protein content. Additionally, NutriScore alone may not be adequate to guide consumers toward the most nutritionally favorable options, highlighting the need for a more synergistic approach between NutriScore and professional dietary standards in ready-to-use meat alternatives.
- Contrary to traditional views, the processing of plant-based ingredients into meat alternatives can denature antinutrients and enhance protein digestibility, improving their nutritional profile. This novel finding underscores the potential benefits of industrial food processing when applied strategically to plant-based products.
- Transitioning to ready-to-use meat alternatives can significantly lower environmental impacts, with studies estimating a 54–87% reduction in greenhouse gas emissions. Simultaneously, these products, enriched with fiber and plant-based proteins, align with health recommendations to reduce red and processed meat intake, which is associated with increased risks of non-communicable diseases.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ready-to-Use Meat Alternatives
2.2. Meat (Products)
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, W.J.; Mangels, A.R.; Fresan, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.; Ward, K. Health, Ethics and Environment: A Qualitative Study of Vegetarian Motivations. Appetite 2008, 50, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.; Skonieczna-Zydecka, K.; Nowak, J.K.; Stachowska, E. Global and local diet popularity rankings, their secular trends, and seasonal variation in Google Trends data. Nutrition 2020, 79–80, 110759. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Belgium, P. Vleesconsumptie in België Blijft verder Dalen; ProVeg International: Gent, Belgium, 2022. [Google Scholar]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [PubMed]
- Rockstroem, J.; Edenhofer, O.; Gaertner, J.; DeClerck, F. Planet-proofing the global food system. Nat. Food 2020, 1, 3–5. [Google Scholar] [CrossRef]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Greger, M. A Whole Food Plant-Based Diet Is Effective for Weight Loss: The Evidence. Am. J. Lifestyle Med. 2020, 14, 500–510. [Google Scholar] [CrossRef]
- Jardine, M.A.; Kahleova, H.; Levin, S.M.; Ali, Z.; Trapp, C.B.; Barnard, N.D. Perspective: Plant-Based Eating Pattern for Type 2 Diabetes Prevention and Treatment: Efficacy, Mechanisms, and Practical Considerations. Adv. Nutr. 2021, 12, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Hashmi, S.; Shah, S.; Kalantar-Zadeh, K. Plant-based diets for prevention and management of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2020, 29, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; McMacken, M.; Kalantar-Zadeh, K. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am. J. Kidney Dis. 2021, 77, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Hu, F.B. Plant-based diets and cardiovascular health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Storz, M.A. Reduced Diabetes Medication Needs with a Plant-Based Diet. J. Am. Coll. Nutr. 2020, 39, 574–577. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabate, J. Consumer Attitudes Towards Environmental Concerns of Meat Consumption: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef]
- De Ridder, K.B.S.; Brocatus, L.; Lebacq, T.; Ost, C.; Teppers, E. (WIV-ISP). Samenvatting van de resultaten. In Voedselconsumptiepeiling 2014–2015; Tafforeau, J., Ed.; WIV-ISP: Brussel, Belgium, 2016. [Google Scholar]
- Hu, F.B.; Otis, B.O.; McCarthy, G. Can Plant-Based Meat Alternatives Be Part of a Healthy and Sustainable Diet? JAMA 2019, 322, 1547–1548. [Google Scholar] [CrossRef] [PubMed]
- Witdouck, M. Verkoop Vleesalternatieven Steeg Tijdens Coronajaar Met een Kwart. Available online: https://www.foodandmeat.be/2021/04/07/verkoop-vleesalternatieven-steeg-tijdens-coronajaar-met-een-kwart/ (accessed on 20 January 2024).
- Flint, M.; Bowles, S.; Lynn, A.; Paxman, J.R. Novel plant-based meat alternatives: Future opportunities and health considerations. Proc. Nutr. Soc. 2023, 82, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gomez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14 (Suppl. 2), 21–28. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Viallon, V.; Fontvieille, E.; Peruchet-Noray, L.; Jansana, A.; Wagner, K.H.; Kyro, C.; Tjonneland, A.; Katzke, V.; Bajracharya, R.; et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: A multinational cohort study. Lancet Reg. Health Eur. 2023, 35, 100771. [Google Scholar] [CrossRef]
- Messina, M.; Sievenpiper, J.L.; Williamson, P.; Kiel, J.; Erdman, J.W. Perspective: Soy-based Meat and Dairy Alternatives, Despite Classification as Ultra-processed Foods, Deliver High-quality Nutrition on Par with Unprocessed or Minimally Processed Animal-based Counterparts. Adv. Nutr. 2022, 13, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.J.; Sievenpiper, J.L.; Williamson, P.; Kiel, J.; Erdman, J.W. Ultra-processed foods: A concept in need of revision to avoid targeting healthful and sustainable plant-based foods. Public Health Nutr. 2023, 26, 1390–1391. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, M.K.; Gardner, C.D. Not All Ultra-Processed Foods Are Created Equal: A Case for Advancing Research and Policy That Balances Health and Nutrition Security. Diabetes Care 2023, 46, 1327–1329. [Google Scholar] [CrossRef]
- Jiang, G.; Ameer, K.; Kim, H.; Lee, E.J.; Ramachandraiah, K.; Hong, G.P. Strategies for Sustainable Substitution of Livestock Meat. Foods 2020, 9, 1227. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tarrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Hoek, A.C.; Luning, P.A.; Weijzen, P.; Engels, W.; Kok, F.J.; de Graaf, C. Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite 2011, 56, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulos, C.; Krystallis, A.; Vassallo, M.; Pagiaslis, A. Food Choice Questionnaire (FCQ) revisited. Suggestions for the development of an enhanced general food motivation model. Appetite 2009, 52, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Januszewska, R.; Pieniak, Z.; Verbeke, W. Food choice questionnaire revisited in four countries. Does it still measure the same? Appetite 2011, 57, 94–98. [Google Scholar] [CrossRef]
- Bohrer, B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019, 8, 320–329. [Google Scholar] [CrossRef]
- Alessandrini, R.; Brown, M.K.; Pombo-Rodrigues, S.; Bhageerutty, S.; He, F.J.; MacGregor, G.A. Nutritional Quality of Plant-Based Meat Products Available in the UK: A Cross-Sectional Survey. Nutrients 2021, 13, 4225. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.; Hirsch, S. Comparing meat and meat alternatives: An analysis of nutrient quality in five European countries. Public Health Nutr. 2023, 26, 3349–3358. [Google Scholar] [CrossRef]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient Composition of a Selection of Plant-Based Ground Beef Alternative Products Available in the United States. J. Acad. Nutr. Diet. 2021, 121, 2401–2408.e12. [Google Scholar] [CrossRef]
- van Vliet, S.; Bain, J.R.; Muehlbauer, M.J.; Provenza, F.D.; Kronberg, S.L.; Pieper, C.F.; Huffman, K.M. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Sci. Rep. 2021, 11, 13828. [Google Scholar] [CrossRef]
- Lacy-Nichols, J.; Hattersley, L.; Scrinis, G. Nutritional marketing of plant-based meat-analogue products: An exploratory study of front-of-pack and website claims in the USA. Public Health Nutr. 2021, 24, 4430–4441. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Balamurugan, S.; Shao, S. Fatty acids and volatile flavor compounds in commercial plant-based burgers. J. Food Sci. 2021, 86, 293–305. [Google Scholar] [CrossRef]
- Vatanparast, H.; Islam, N.; Shafiee, M.; Ramdath, D.D. Increasing Plant-Based Meat Alternatives and Decreasing Red and Processed Meat in the Diet Differentially Affect the Diet Quality and Nutrient Intakes of Canadians. Nutrients 2020, 12, 2034. [Google Scholar] [CrossRef]
- Farsi, D.N.; Uthumange, D.; Munoz Munoz, J.; Commane, D.M. The nutritional impact of replacing dietary meat with meat alternatives in the UK: A modelling analysis using nationally representative data. Br. J. Nutr. 2022, 127, 1731–1741. [Google Scholar] [CrossRef]
- Temme, E.H.; van der Voet, H.; Thissen, J.T.; Verkaik-Kloosterman, J.; van Donkersgoed, G.; Nonhebel, S. Replacement of meat and dairy by plant-derived foods: Estimated effects on land use, iron and SFA intakes in young Dutch adult females. Public Health Nutr. 2013, 16, 1900–1907. [Google Scholar] [CrossRef]
- van Kinderartsen, V.V.; van Diëtisten, V.B.; Gezin, K.e. Vegetarische Voeding: Informatiebrochure voor Hulpverleners in de Gezondheidszorg; Vlaamse Vereniging Kindergeneeskunde vzw: Genk, Belgium, 2019. [Google Scholar]
- Torres-Gonzalez, M.; Rice Bradley, B.H. Whole-Milk Dairy Foods: Biological Mechanisms Underlying Beneficial Effects on Risk Markers for Cardiometabolic Health. Adv. Nutr. 2023, 14, 1523–1537. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huybrechts, I.; Vandevijvere, S.; Bolca, S.; De Keyzer, W.; De Vriese, S.; Polet, A.; De Neve, M.; Van Oyen, H.; Van Camp, J.; et al. Fibre intake among the Belgian population by sex-age and sex-education groups and its association with BMI and waist circumference. Br. J. Nutr. 2011, 105, 1692–1703. [Google Scholar] [CrossRef] [PubMed]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Cardiovascular Disease Prevention: All Plant Foods Are Not Created Equal. Curr. Atheroscler. Rep. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439S–450S. [Google Scholar] [CrossRef]
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdoerfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010, 1, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomas, N.; Papandreou, C.; Salas-Salvado, J. Legume Consumption and Cardiometabolic Health. Adv. Nutr. 2019, 10, S437–S450. [Google Scholar] [CrossRef] [PubMed]
- Jahan-Mihan, A.; Luhovyy, B.L.; El Khoury, D.; Anderson, G.H. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef] [PubMed]
- Chan-Zapata, I.; Sandoval-Castro, C.; Segura-Campos, M.R. Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2022, 62, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karas, M.; Zlotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, M.; Nucara, A. Legume Proteins and Peptides as Compounds in Nutraceuticals: A Structural Basis for Dietary Health Effects. Nutrients 2022, 14, 1188. [Google Scholar] [CrossRef] [PubMed]
- Clemente, A.; Gee, J.M.; Johnson, I.T.; Mackenzie, D.A.; Domoney, C. Pea (Pisum sativum L.) protease inhibitors from the Bowman-Birk class influence the growth of human colorectal adenocarcinoma HT29 cells in vitro. J. Agric. Food Chem. 2005, 53, 8979–8986. [Google Scholar] [CrossRef]
- Jayalath, V.H.; de Souza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Di Buono, M.; Bernstein, A.M.; Leiter, L.A.; Kris-Etherton, P.M.; et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am. J. Hypertens. 2014, 27, 56–64. [Google Scholar] [CrossRef]
- Clark, J.L.; Taylor, C.G.; Zahradka, P. Rebelling against the (Insulin) Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds. Nutrients 2018, 10, 434. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.S.; Contador, C.A.; Ng, M.S.; Yu, J.; Chung, G.; Lam, H.M. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front. Genet. 2020, 11, 581357. [Google Scholar] [CrossRef]
- Krizova, L.; Dadakova, K.; Kasparovska, J.; Kasparovsky, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Petroski, W.; Minich, D.M. Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020, 12, 2929. [Google Scholar] [CrossRef]
- Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G.A. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016, 21, 1404. [Google Scholar] [CrossRef]
- Shi, J.; Arunasalam, K.; Yeung, D.; Kakuda, Y.; Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar] [CrossRef]
- Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An Insight of Alpha-amylase Inhibitors as a Valuable Tool in the Management of Type 2 Diabetes Mellitus. Curr. Diabetes Rev. 2020, 16, 117–136. [Google Scholar] [CrossRef]
- Gautam, A.K.; Sharma, D.; Sharma, J.; Saini, K.C. Legume lectins: Potential use as a diagnostics and therapeutics against the cancer. Int. J. Biol. Macromol. 2020, 142, 474–483. [Google Scholar] [CrossRef]
- Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume Lectins: Proteins with Diverse Applications. Int. J. Mol. Sci. 2017, 18, 1242. [Google Scholar] [CrossRef]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Rizzo, G. Soy-Based Tempeh as a Functional Food: Evidence for Human Health and Future Perspective. Front. Biosci. 2024, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, T.G.; Nunes, M.A.; Bessada, S.M.; Costa, H.S.; Oliveira, M.B.P. Biologically active and health promoting food components of nuts, oilseeds, fruits, vegetables, cereals, and legumes. In Chemical Analysis of Food. In Chemical Analysis of Food; Academic Press: Cambridge, MA, USA, 2020; pp. 609–656. [Google Scholar]
- Toribio-Mateas, M.A.; Bester, A.; Klimenko, N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods 2021, 10, 2040. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Gagaoua, M. Meat alternatives: A proofed commodity? Adv. Food Nutr. Res. 2022, 101, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Belobrajdic, D.; Wymond, B.; Benassi-Evans, B. Assessing the Effect of Plant-Based Mince on Fullness and Post-Prandial Satiety in Healthy Male Subjects. Nutrients 2022, 14, 5326. [Google Scholar] [CrossRef] [PubMed]
- Bryngelsson, S.; Moshtaghian, H.; Bianchi, M.; Hallstrom, E. Nutritional assessment of plant-based meat analogues on the Swedish market. Int. J. Food Sci. Nutr. 2022, 73, 889–901. [Google Scholar] [CrossRef]
- Mayer Labba, I.C.; Steinhausen, H.; Almius, L.; Bach Knudsen, K.E.; Sandberg, A.S. Nutritional Composition and Estimated Iron and Zinc Bioavailability of Meat Substitutes Available on the Swedish Market. Nutrients 2022, 14, 3903. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, D.; Chen, Z.; Chen, B.; Li, J.; Guo, J.; Dong, Q.; Liu, L.; Wei, Q. Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem. 2021, 356, 129697. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Chinchilli, V.M.; Liao, D.; Richie, J.P., Jr.; Al-Shaar, L. Red and processed meat consumption and food insecurity are associated with hypertension; analysis of the National Health and Nutrition Examination Survey data, 2003–2016. J. Hypertens. 2022, 40, 553–560. [Google Scholar] [CrossRef]
- Gonzalez, N.; Marques, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Bimonte, S.; Barbieri, A.; Del Vecchio, V.; Caliendo, D.; Schiavone, V.; Fusco, R.; Granata, V.; Arra, C.; Cuomo, A. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): An overview on the current state of knowledge. Infect. Agents Cancer 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Bronzato, S.; Durante, A. A Contemporary Review of the Relationship between Red Meat Consumption and Cardiovascular Risk. Int. J. Prev. Med. 2017, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Wilcox, M.L.; Maki, K.C. Red meat consumption and risk factors for type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2023, 77, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Banjari, I.; Hjartaker, A. Dietary sources of iron and vitamin B12: Is this the missing link in colorectal carcinogenesis? Med. Hypotheses 2018, 116, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Misra, R.; Balagopal, P.; Raj, S.; Patel, T.G. Red Meat Consumption (Heme Iron Intake) and Risk for Diabetes and Comorbidities? Curr. Diabetes Rep. 2018, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Bozza, M.T.; Jeney, V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front. Immunol. 2020, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Pointke, M.; Pawelzik, E. Plant-Based Alternative Products: Are They Healthy Alternatives? Micro- and Macronutrients and Nutritional Scoring. Nutrients 2022, 14, 601. [Google Scholar] [CrossRef] [PubMed]
- Romao, B.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Han, H.; Vega-Munoz, A.; Ariza-Montes, A.; Zandonadi, R.P. Are Vegan Alternatives to Meat Products Healthy? A Study on Nutrients and Main Ingredients of Products Commercialized in Brazil. Front. Public Health 2022, 10, 900598. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Orta-Ramirez, A.; Puyol Martin, Y.; Jakszyn, P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023, 15, 1325. [Google Scholar] [CrossRef]
- Melville, H.; Shahid, M.; Gaines, A.; McKenzie, B.L.; Alessandrini, R.; Trieu, K.; Wu, J.H.Y.; Rosewarne, E.; Coyle, D.H. The nutritional profile of plant-based meat analogues available for sale in Australia. Nutr. Diet. 2023, 80, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef] [PubMed]
- Silventoinen, P.; Kortekangas, A.; Ercili-Cura, D.; Nordlund, E. Impact of ultra-fine milling and air classification on biochemical and techno-functional characteristics of wheat and rye bran. Food Res. Int. 2021, 139, 109971. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Moses, R.; Sammons, N.; Birkved, M. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute. PLoS ONE 2017, 12, e0189029. [Google Scholar] [CrossRef] [PubMed]
- Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat analogs from different protein sources: A comparison of their sustainability and nutritional content. Sustainability 2019, 11, 3231. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Nicol, K.; Nugent, A.P.; Woodside, J.V.; Hart, K.H.; Bath, S.C. Iodine and plant-based diets: A narrative review and calculation of iodine content. Br. J. Nutr. 2024, 131, 265–275. [Google Scholar] [CrossRef]
n | Vegan | House Brand | Gluten-Free | Frozen | Organic | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | ||
Minced meat | 27 | 24 | 88.9 | 8 | 29.6 | 11 | 40.7 | 3 | 11.1 | 4 | 14.8 |
Schnitzels/breaded burgers/nuggets | 76 | 61 | 80.3 | 23 | 30.3 | 6 | 7.9 | 11 | 14.5 | 5 | 6.6 |
Vegetable burgers/balls (not breaded) | 52 | 31 | 59.6 | 22 | 42.3 | 7 | 13.5 | 3 | 5.8 | 18 | 34.6 |
Vegetable burgers/balls (breaded) | 37 | 14 | 37.8 | 15 | 40.5 | 0 | 0.0 | 7 | 18.9 | 10 | 27.0 |
Cheese burgers/schnitzels | 33 | 3 | 9.1 | 12 | 36.4 | 0 | 0.0 | 0 | 0.0 | 12 | 36.4 |
(Pseudo)grain burgers | 15 | 9 | 60.0 | 3 | 20.0 | 2 | 13.3 | 0 | 0.0 | 13 | 86.7 |
Legume burgers/falafel | 60 | 52 | 86.7 | 25 | 41.7 | 16 | 26.7 | 2 | 3.3 | 32 | 53.3 |
Nut/seed burgers | 10 | 6 | 60.0 | 5 | 50.0 | 3 | 30.0 | 0 | 0.0 | 6 | 60.0 |
Hamburgers/chicken burgers | 45 | 29 | 64.4 | 15 | 33.3 | 9 | 20.0 | 6 | 13.3 | 3 | 6.7 |
Steak | 12 | 9 | 75.0 | 5 | 41.7 | 3 | 25.0 | 1 | 8.3 | 1 | 8.3 |
Chunks/strips/cubes | 77 | 58 | 75.3 | 28 | 36.4 | 31 | 40.3 | 10 | 13.0 | 13 | 16.9 |
Sausages | 48 | 29 | 60.4 | 9 | 18.8 | 13 | 27.1 | 0 | 0.0 | 10 | 20.8 |
Meatballs | 28 | 20 | 71.4 | 10 | 35.7 | 5 | 17.9 | 3 | 10.7 | 2 | 7.1 |
Protein (g/100 g) | Total Fat (g/100 g) | Saturated Fat (g/100 g) | Salt (g/100 g) | Iron (mg/100 g) | Vitamin B12 (µg/100 g) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | |
Minced meat | 27/27 | 11.2 | 29.0 | 17.6 | 3.8 | <0.001 | 22/27 | 0.5 | 17.0 | 6.7 | 4.8 | 0.001 | 22/27 | 0.1 | 11.3 | 2.1 | 3.0 | <0.001 | 26/27 | 0.14 | 1.80 | 1.07 | 0.38 | <0.001 | 10/10 | 2.1 | 10.7 | 4.8 | 3.7 | 0.004 | 10/10 | 0.3 | 0.5 | 0.4 | 0.1 | 0.004 |
Schnitzels/breaded burgers/nuggets | 61/76 | 4.0 | 19.3 | 12.6 | 3.2 | <0.001 | 50/76 | 2.3 | 18.0 | 9.4 | 3.3 | 0.131 | 75/75 | 0.3 | 2.9 | 1.1 | 0.4 | <0.001 | 71/76 | 0.60 | 2.10 | 1.24 | 0.28 | <0.001 | 39/39 | 2.1 | 10.7 | 3.3 | 1.9 | <0.001 | 37/37 | 0.3 | 2.0 | 0.5 | 0.4 | <0.001 |
Vegetable burgers/balls (not breaded) | 23/52 | 4.6 | 20.0 | 10.2 | 3.9 | 0.698 | 32/52 | 0.2 | 16.1 | 8.4 | 4.0 | 0.007 | 52/52 | 0.0 | 3.7 | 1.2 | 0.8 | <0.001 | 49/52 | 0.70 | 2.00 | 1.19 | 0.28 | <0.001 | 11/11 | 2.1 | 3.9 | 2.4 | 0.7 | 0.002 | 11/11 | 0.4 | 0.7 | 0.4 | 0.1 | 0.002 |
Vegetable burgers/balls (breaded) | 11/37 | 3.2 | 20.0 | 8.6 | 4.9 | 0.093 | 22/37 | 3.0 | 16.0 | 9.6 | 2.7 | 0.336 | 35/37 | 0.6 | 5.8 | 1.9 | 1.3 | <0.001 | 36/37 | 0.00 | 1.70 | 1.04 | 0.33 | <0.001 | 9/9 | 2.1 | 6.6 | 3.3 | 2.0 | 0.006 | 9/9 | 0.3 | 1.7 | 0.7 | 0.5 | 0.007 |
Cheese burgers/schnitzels | 18/33 | 4.5 | 18.5 | 11.0 | 3.7 | 0.149 | 10/33 | 6.0 | 28.0 | 12.4 | 4.4 | 0.004 | 28/33 | 1.1 | 12.6 | 4.0 | 2.8 | 0.013 | 28/33 | 0.63 | 2.50 | 1.27 | 0.38 | <0.001 | 8/8 | 2.1 | 3.2 | 2.3 | 0.4 | 0.008 | 5/5 | 0.4 | 1.0 | 0.6 | 0.3 | 0.039 |
(Pseudo)grain burgers | 3/15 | 4.4 | 21.0 | 8.4 | 4.5 | 0.094 | 6/15 | 5.4 | 15.0 | 10.8 | 3.0 | 0.303 | 15/15 | 0.7 | 4.2 | 1.8 | 1.1 | <0.001 | 14/15 | 0.88 | 4.20 | 1.34 | 0.81 | 0.010 | 1/1 | 3.0 | 3.0 | 3.0 | / | / | 0 | / | / | / | / | / |
Legume burgers/falafel | 9/60 | 3.9 | 17.0 | 8.4 | 2.5 | <0.001 | 34/60 | 2.3 | 17.0 | 10.1 | 3.5 | 0.832 | 60/60 | 0.3 | 4.2 | 1.5 | 0.9 | <0.001 | 60/60 | 0.55 | 1.50 | 1.08 | 0.19 | <0.001 | 10/10 | 2.1 | 7.0 | 3.5 | 2.0 | 0.004 | 10/10 | 0.4 | 0.9 | 0.5 | 0.2 | 0.004 |
Nut/seed burgers | 6/10 | 7.1 | 18.8 | 12.3 | 4.4 | 0.132 | 0/10 | 12.3 | 23.0 | 18.9 | 4.4 | <0.001 | 10/10 | 1.3 | 3.7 | 2.4 | 1.0 | <0.001 | 9/10 | 0.84 | 1.63 | 1.10 | 0.27 | <0.001 | 4/4 | 7.0 | 7.0 | 7.0 | 0.0 | 0.046 | 4/4 | 0.5 | 0.5 | 0.5 | 0.0 | 0.046 |
Hamburgers/chicken burgers | 42/45 | 7.9 | 30.0 | 16.0 | 4.2 | <0.001 | 22/45 | 1.5 | 20.0 | 10.4 | 4.9 | 0.577 | 38/44 | 0.5 | 18.0 | 2.5 | 3.1 | <0.001 | 41/45 | 0.73 | 1.90 | 1.26 | 0.29 | <0.001 | 22/22 | 2.1 | 10.7 | 4.4 | 2.7 | <0.001 | 20/20 | 0.3 | 0.8 | 0.5 | 0.2 | <0.001 |
Steak | 12/12 | 11.2 | 25.5 | 15.3 | 4.0 | <0.001 | 5/12 | 2.0 | 18.0 | 10.7 | 3.7 | 0.538 | 11/12 | 0.2 | 8.0 | 2.6 | 2.1 | 0.009 | 9/12 | 0.98 | 1.90 | 1.34 | 0.32 | 0.015 | 5/5 | 2.1 | 10.7 | 4.1 | 3.7 | 0.042 | 5/5 | 0.4 | 0.7 | 0.5 | 0.2 | 0.042 |
Chunks/strips/cubes | 75/77 | 7.1 | 29.3 | 18.0 | 4.0 | <0.001 | 63/77 | 0.0 | 19.3 | 7.0 | 4.8 | <0.001 | 76/77 | 0.0 | 7.2 | 0.9 | 0.9 | <0.001 | 57/77 | 0.79 | 4.05 | 1.50 | 0.55 | <0.001 | 28/28 | 2.1 | 10.7 | 3.9 | 2.7 | <0.001 | 29/29 | 0.3 | 2.5 | 0.7 | 0.7 | <0.001 |
Sausages | 36/48 | 5.4 | 31.3 | 14.8 | 6.6 | <0.001 | 13/48 | 7.3 | 24.0 | 14.4 | 5.0 | <0.001 | 43/48 | 0.3 | 13.0 | 2.5 | 2.7 | <0.001 | 35/48 | 1.00 | 3.00 | 1.54 | 0.39 | 0.012 | 15/15 | 1.4 | 10.7 | 4.1 | 2.8 | <0.001 | 13/13 | 0.4 | 2.0 | 0.7 | 0.6 | 0.001 |
Meatballs | 25/28 | 8.5 | 22.0 | 15.0 | 3.8 | <0.001 | 15/28 | 3.6 | 18.4 | 10.5 | 4.6 | 0.591 | 23/28 | 0.4 | 9.4 | 2.3 | 2.4 | <0.001 | 21/26 | 0.65 | 1.80 | 1.37 | 0.28 | <0.001 | 9/9 | 2.1 | 8.1 | 3.7 | 2.3 | 0.007 | 10/10 | 0.3 | 74.0 | 8.0 | 23.2 | 0.005 |
Nutriscore (Score at 5) | Ecoscore (Score at 5) | Price per 100 Grams of Product (Euro) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | Differences * | |
Minced meat | 12/12 | 1.0 | 1.0 | 1.0 | 0.0 | 1.000 | 1/1 | 1.0 | 1.0 | 1.0 | / | / | 26 | 0.74 | 2.17 | 1.55 | 0.43 | a |
Schnitzels/breaded burgers/nuggets | 30/34 | 1.0 | 3.0 | 1.2 | 0.4 | 0.059 | 2/2 | 1.0 | 1.0 | 1.0 | 0.0 | 1.000 | 66 | 0.75 | 2.38 | 1.60 | 0.45 | b |
Vegetable burgers/balls (not breaded) | 26/29 | 1.0 | 3.0 | 1.1 | 0.4 | 0.102 | 2/2 | 1.0 | 1.0 | 1.0 | 0.0 | 1.000 | 43 | 0.75 | 2.86 | 1.70 | 0.42 | c |
Vegetable burgers/balls (breaded) | 9/21 | 1.0 | 3.0 | 1.7 | 0.7 | 0.001 | 0 | / | / | / | / | 33 | 0.48 | 2.49 | 1.61 | 0.60 | d | |
Cheese burgers/schnitzels | 6/16 | 1.0 | 4.0 | 2.0 | 1.0 | 0.004 | 2/3 | 1.0 | 2.0 | 1.3 | 0.6 | 0.317 | 29 | 0.83 | 3.56 | 1.88 | 0.58 | |
(Pseudo)grain burgers | 5/10 | 1.0 | 3.0 | 1.6 | 0.7 | 0.034 | 1/3 | 1.0 | 2.0 | 1.7 | 0.6 | 0.157 | 12 | 1.02 | 2.69 | 1.81 | 0.50 | |
Legume burgers/falafel | 30/33 | 1.0 | 3.0 | 1.1 | 0.4 | 0.102 | 6/8 | 1.0 | 2.0 | 1.3 | 0.5 | 0.157 | 57 | 0.85 | 2.54 | 1.74 | 0.45 | e |
Nut/seed burgers | 2/5 | 1.0 | 2.0 | 1.6 | 0.5 | 0.083 | 2/2 | 1.0 | 1.0 | 1.0 | 0.0 | 1.000 | 10 | 1.85 | 3.03 | 2.37 | 0.40 | a, b, c, d, e, f, g |
Hamburgers/chicken burgers | 14/24 | 1.0 | 3.0 | 1.6 | 0.8 | 0.004 | 2/3 | 1.0 | 2.0 | 1.3 | 0.6 | 0.317 | 45 | 0.75 | 2.81 | 1.77 | 0.43 | f |
Steak | 3/5 | 1.0 | 3.0 | 1.6 | 0.9 | 0.180 | 0 | / | / | / | / | / | 12 | 1.05 | 2.57 | 1.68 | 0.45 | |
Chunks/strips/cubes | 23/37 | 1.0 | 4.0 | 1.8 | 1.0 | <0.001 | 3/3 | 1.0 | 1.0 | 1.0 | 0.0 | 1.000 | 76 | 0.75 | 3.35 | 1.87 | 0.57 | |
Sausages | 9/26 | 1.0 | 4.0 | 2.2 | 1.0 | <0.001 | 2/6 | 1.0 | 2.0 | 1.7 | 0.5 | 0.046 | 46 | 0.92 | 3.00 | 1.86 | 0.47 | |
Meatballs | 8/15 | 1.0 | 4.0 | 1.8 | 1.0 | 0.016 | 0/1 | 2.0 | 2.0 | 2.0 | / | / | 27 | 0.65 | 2.52 | 1.60 | 0.58 | g |
Main/First Protein Source | Main/First Oil/Fat Source | Main/First Protein Source | Main/First Oil/Fat Source | ||||||
---|---|---|---|---|---|---|---|---|---|
% | Source | % | Source | % | Source | % | Source | ||
Minced meat | 51.9 | Soy protein | 33.3 | Rapeseed oil | Nut/seed burgers | 40.0 | Nuts | 100.0 | Sunflower oil |
22.2 | Pea protein | 14.8 | Sunflower oil | 30.0 | Rice | ||||
11.1 | Mycoprotein | 14.8 | Coconut oil | 20.0 | Wheat | ||||
3.7 | Wheat gluten/flour | 37.0 | No oil | 10.0 | Soybean | ||||
3.7 | Pea flour | ||||||||
Schnitzels/breaded burgers/nuggets | 43.4 | Soy protein | 78.9 | Sunflower oil | Hamburgers/chicken burgers | 55.6 | Soy protein | 53.3 | Sunflower oil |
13.2 | Wheat protein | 19.7 | Rapeseed oil | 11.1 | Wheat protein | 26.7 | Rapeseed oil | ||
9.2 | Wheat flour | 1.3 | Soy oil | 11.1 | Pea protein | 13.3 | Coconut oil | ||
7.9 | Soybean | 8.9 | Wheat gluten | 2.2 | Palm fat | ||||
5.3 | Cow’s milk, goat milk | 4.4 | Mycoprotein, pea flour | 4.4 | No oil | ||||
Vegetable burgers/balls (not breaded) | 32.7 | Soy protein | 71.2 | Sunflower oil | Steak | 33.3 | Soy protein | 91.7 | Sunflower oil |
15.4 | Soybean | 23.1 | Rapeseed oil | 16.7 | Mycoprotein | 8.3 | Coconut oil | ||
5.8 | Oat flour | 1.9 | Coconut oil | 16.7 | Wheat protein | ||||
7.6 | Soybean flour | 3.8 | No oil | 16.7 | Wheat gluten | ||||
5.8 | Wheat protein | 8.3 | Fava bean protein; Soybean | ||||||
Vegetable burgers/balls (breaded) | 32.4 | Wheat flour | 59.5 | Sunflower oil | Chunks/strips/cubes | 74.0 | Soy protein | 55.7 | Sunflower oil |
16.2 | Soy protein | 32.4 | Rapeseed oil | 5.2 | Pea protein | 29.9 | Rapeseed oil | ||
10.8 | Cheese | 8.1 | Palm fat | 5.2 | Soybean | 5.2 | Olive oil | ||
10.8 | Potato flour | 5.2 | Wheat gluten | 1.3 | Palm fat | ||||
8.1 | Wheat protein | 3.9 | Mycoprotein, wheat protein | 7.8 | No oil | ||||
Cheese burgers/schnitzels | 42.5 | Cheese (cow + goat) | 75.8 | Sunflower oil | Sausages | 29.2 | Soy protein | 47.9 | Rapeseed oil |
15.2 | Cow’s milk | 12.1 | Rapeseed oil | 18.8 | Wheat gluten | 39.6 | Sunflower oil | ||
12.1 | Wheat flour | 3.0 | Coconut oil; olive oil | 16.7 | Egg protein powder | 8.3 | Coconut oil | ||
6.1 | Wheat protein, soy protein, quinoa, rice | 6.1 | No oil | 12.5 | Wheat protein | 4.2 | Shea butter | ||
3.0 | Pea protein, soybean | 10.4 | Pea protein | ||||||
(Pseudo)grain burgers | 26.7 | Rice | 80.0 | Sunflower oil | Meatballs | 50.0 | Soy protein | 46.5 | Sunflower oil |
20.0 | Wheat | 6.7 | Rapeseed oil; olive oil | 25.0 | Wheat protein | 32.1 | Rapeseed oil | ||
13.3 | Quinoa, millet | 6.7 | No oil | 21.4 | Pea protein | 14.3 | Coconut oil | ||
6.7 | Oat flour | 3.6 | Soybean | 3.6 | Olive oil | ||||
6.7 | Wheat gluten, wheat protein | 86.7 | Sunflower oil | 3.6 | Palm fat | ||||
Legume burgers/falafel | 56.7 | Chickpea | 10.0 | Rapeseed oil | |||||
11.7 | Lentil | 3.3 | Olive oil | ||||||
11.7 | Soybean | ||||||||
5.0 | Soy protein | ||||||||
3.3 | Lupine bean |
Kcal/100 g | Protein (g/100 g) | Total Fat (g/100 g) | Saturated Fat (g/100 g) | Fibre (g/100 g) | Salt (g/100 g) | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p | n | Min. | Max. | Mean | SD | p |
Minced meat (vegetarian and vegan) | 27 | 92.0 | 238.0 | 159.0 | 41.4 | <0.001 | 27 | 11.2 | 29.0 | 17.6 | 3.8 | 0.155 | 27 | 0.5 | 17.0 | 6.7 | 4.8 | <0.001 | 27 | 0.1 | 11.3 | 2.1 | 3.0 | <0.001 | 27 | 1.2 | 8.9 | 4.9 | 2.0 | <0.001 | 27 | 0.1 | 1.8 | 1.1 | 0.4 | 0.188 |
Minced meat | 64 | 103.0 | 273.0 | 211.8 | 44.3 | 64 | 15.4 | 22.0 | 18.2 | 1.7 | 64 | 1.2 | 22.0 | 14.9 | 5.3 | 64 | 0.6 | 9.3 | 5.7 | 2.2 | 64 | 0.0 | 1.4 | 0.2 | 0.4 | 64 | 0.1 | 2.4 | 0.9 | 0.6 | ||||||
Schnitzels/breaded burgers/nuggets (vegetarian and vegan) | 76 | 156.0 | 312.0 | 217.2 | 34.4 | 0.381 | 76 | 4.0 | 19.3 | 12.6 | 3.2 | 0.006 | 76 | 2.3 | 18.0 | 9.4 | 3.3 | 0.088 | 75 | 0.3 | 2.9 | 1.1 | 0.4 | <0.001 | 76 | 1.8 | 7.3 | 4.6 | 1.4 | <0.001 | 76 | 0.6 | 2.1 | 1.2 | 0.3 | 0.543 |
Schnitzels/breaded burgers/nuggets | 69 | 110.0 | 308.0 | 211.2 | 46.9 | 69 | 7.0 | 25.0 | 14.4 | 3.5 | 69 | 1.0 | 20.0 | 10.2 | 4.8 | 68 | 0.3 | 7.3 | 2.5 | 1.5 | 59 | 0.0 | 4.3 | 0.9 | 0.8 | 65 | 0.1 | 2.0 | 1.2 | 0.3 | ||||||
Cheeseburgers/schnitzels (vegetarian and vegan) | 34 | 165.0 | 353.0 | 234.4 | 44.2 | 0.231 | 34 | 4.5 | 18.5 | 11.0 | 3.7 | <0.001 | 34 | 6.0 | 28.0 | 12.4 | 4.4 | 0.746 | 34 | 0.8 | 12.6 | 3.9 | 2.8 | 0.081 | 32 | 0.4 | 8.1 | 3.5 | 1.9 | <0.001 | 34 | 0.6 | 2.5 | 1.3 | 0.4 | 0.739 |
Cheeseburgers/schnitzels (with a meat component) | 48 | 140.0 | 348.0 | 221.1 | 52.3 | 48 | 12.0 | 23.9 | 16.0 | 3.0 | 48 | 3.4 | 24.0 | 12.7 | 5.3 | 48 | 1.7 | 11.0 | 4.7 | 2.6 | 41 | 0.0 | 2.5 | 0.8 | 0.6 | 47 | 0.6 | 2.3 | 1.3 | 0.3 | ||||||
Hamburgers (vegetarian and vegan) | 29 | 110.0 | 298.0 | 200.4 | 44.8 | 0.119 | 29 | 11.6 | 30.0 | 17.5 | 4.1 | 0.032 | 29 | 2.1 | 20.0 | 10.7 | 5.0 | 0.004 | 28 | 0.5 | 18.0 | 3.1 | 3.6 | <0.001 | 27 | 0.5 | 7.2 | 4.5 | 1.6 | <0.001 | 29 | 0.7 | 1.9 | 1.3 | 0.3 | 0.224 |
Hamburgers | 36 | 101.0 | 311.0 | 214.1 | 53.4 | 36 | 13.0 | 22.0 | 18.2 | 1.8 | 36 | 1.3 | 25.0 | 14.8 | 6.1 | 36 | 0.5 | 10.0 | 6.2 | 2.7 | 36 | 0.0 | 1.3 | 0.2 | 0.4 | 36 | 0.1 | 2.0 | 1.1 | 0.4 | ||||||
Chicken (pieces) unbreaded and without marinade (vegetarian and vegan) | 31 | 86.0 | 190.0 | 146.0 | 30.4 | 0.403 | 31 | 9.5 | 27.0 | 17.4 | 3.9 | <0.001 | 31 | 1.5 | 10.5 | 5.3 | 2.8 | 0.849 | 31 | 0.3 | 1.2 | 0.7 | 0.3 | <0.001 | 29 | 0.0 | 9.8 | 4.8 | 2.6 | <0.001 | 31 | 0.8 | 2.2 | 1.3 | 0.4 | <0.001 |
Chicken (pieces) unbreaded and without marinade | 106 | 101.0 | 286.0 | 145.3 | 44.2 | 106 | 13.0 | 25.0 | 20.6 | 2.7 | 106 | 0.8 | 24.0 | 6.9 | 5.7 | 106 | 0.3 | 8.5 | 2.1 | 1.8 | 106 | 0.0 | 1.9 | 0.1 | 0.3 | 106 | 0.1 | 2.3 | 0.3 | 0.3 | ||||||
Chicken (pieces) breaded/with marinade (vegetarian and vegan) | 24 | 90.0 | 245.0 | 183.3 | 42.4 | 0.177 | 24 | 7.1 | 25.0 | 15.9 | 4.6 | 0.022 | 24 | 0.8 | 17.0 | 9.5 | 4.5 | 0.408 | 24 | 0.0 | 3.6 | 1.3 | 0.9 | 0.002 | 24 | 0.5 | 8.5 | 4.9 | 2.0 | <0.001 | 24 | 0.8 | 2.8 | 1.4 | 0.4 | 0.027 |
Chicken (pieces) processed (breaded/with marinade) | 55 | 99.0 | 284.0 | 168.7 | 44.1 | 55 | 9.0 | 26.0 | 18.1 | 3.6 | 55 | 1.1 | 19.0 | 8.6 | 4.6 | 55 | 0.3 | 5.6 | 2.3 | 1.4 | 55 | 0.0 | 3.7 | 0.6 | 0.9 | 55 | 0.3 | 2.4 | 1.2 | 0.4 | ||||||
Steak (vegetarian and vegan) | 15 | 76.0 | 258.0 | 184.9 | 50.4 | <0.001 | 15 | 11.2 | 25.5 | 15.5 | 4.4 | <0.001 | 15 | 0.3 | 18.0 | 9.1 | 4.7 | <0.001 | 15 | 0.1 | 8.0 | 2.1 | 2.1 | 0.094 | 14 | 0.2 | 8.1 | 4.8 | 2.4 | <0.001 | 15 | 1.0 | 1.9 | 1.3 | 0.3 | <0.001 |
Steak | 50 | 96.0 | 274.0 | 120.4 | 36.0 | 50 | 18.0 | 24.0 | 21.9 | 1.3 | 50 | 0.6 | 22.0 | 3.5 | 4.3 | 50 | 0.3 | 9.3 | 1.4 | 1.9 | 50 | 0.0 | 2.5 | 0.1 | 0.4 | 50 | 0.1 | 1.6 | 0.3 | 0.3 | ||||||
Gyros/shoarma/pita meat (vegetarian and vegan) | 23 | 108.0 | 306.0 | 160.7 | 54.7 | 0.059 | 23 | 13.0 | 29.3 | 18.6 | 4.6 | 0.418 | 23 | 0.0 | 16.8 | 6.7 | 4.6 | 0.434 | 23 | 0.0 | 2.0 | 0.8 | 0.4 | <0.001 | 20 | 1.8 | 7.7 | 5.3 | 1.6 | <0.001 | 23 | 1.0 | 1.9 | 1.4 | 0.3 | 0.006 |
Gyros/shoarma/pita meat | 20 | 89.0 | 186.0 | 134.3 | 29.1 | 20 | 11.0 | 22.0 | 17.5 | 3.5 | 20 | 2.0 | 12.3 | 6.5 | 3.2 | 20 | 0.4 | 4.0 | 1.9 | 1.0 | 20 | 0.0 | 2.8 | 0.5 | 0.7 | 20 | 0.8 | 1.9 | 1.2 | 0.3 | ||||||
Bacon (vegetarian and vegan) | 11 | 106.0 | 269.0 | 210.8 | 47.7 | 0.002 | 11 | 14.9 | 21.0 | 17.5 | 1.8 | 0.848 | 11 | 0.6 | 19.3 | 12.7 | 6.5 | <0.001 | 11 | 0.1 | 7.2 | 2.1 | 2.0 | <0.001 | 11 | 1.5 | 6.0 | 3.7 | 1.6 | <0.001 | 11 | 1.1 | 4.1 | 2.1 | 0.9 | 0.036 |
Bacon | 85 | 102.0 | 757.0 | 286.8 | 109.4 | 85 | 2.0 | 55.0 | 18.8 | 6.6 | 85 | 2.3 | 83.0 | 23.2 | 12.1 | 85 | 1.0 | 30.0 | 8.9 | 4.6 | 85 | 0.0 | 1.0 | 0.0 | 0.2 | 85 | 0.1 | 8.1 | 2.7 | 1.2 | ||||||
Sausages (vegetarian and vegan) | 48 | 144.0 | 306.0 | 221.9 | 44.0 | 0.679 | 48 | 5.4 | 31.3 | 14.8 | 6.6 | 0.001 | 48 | 7.3 | 24.0 | 14.4 | 5.0 | 0.060 | 48 | 0.3 | 13.0 | 2.5 | 2.7 | <0.001 | 42 | 0.7 | 7.8 | 3.8 | 1.8 | <0.001 | 48 | 1.0 | 3.0 | 1.5 | 0.4 | 0.004 |
Sausages | 91 | 117.0 | 377.0 | 218.4 | 45.9 | 91 | 4.6 | 20.0 | 16.4 | 2.8 | 91 | 5.0 | 31.0 | 16.1 | 5.2 | 91 | 1.6 | 12.0 | 6.1 | 2.3 | 91 | 0.0 | 2.0 | 0.2 | 0.4 | 91 | 0.7 | 2.4 | 1.4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertens, E.; Deriemaeker, P.; Van Beneden, K. Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients 2024, 16, 1648. https://doi.org/10.3390/nu16111648
Mertens E, Deriemaeker P, Van Beneden K. Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients. 2024; 16(11):1648. https://doi.org/10.3390/nu16111648
Chicago/Turabian StyleMertens, Evelien, Peter Deriemaeker, and Katrien Van Beneden. 2024. "Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium" Nutrients 16, no. 11: 1648. https://doi.org/10.3390/nu16111648
APA StyleMertens, E., Deriemaeker, P., & Van Beneden, K. (2024). Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients, 16(11), 1648. https://doi.org/10.3390/nu16111648