Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment
2.3. Biochemical Parameters
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INEGI. Estadísticas de Defunciones Registradas (EDR) 2022. Available online: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/EDR/EDR2022-Dft.pdf (accessed on 15 April 2023).
- Secretaría de Salud. Boletines Epidemiológicos históricos. 2023. Available online: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico (accessed on 16 April 2023).
- Candelino, M.; Tagi, V.M.; Chiarelli, F. Cardiovascular risk in children: A burden for future generations. Ital. J. Pediatr. 2022, 48, 57. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimäki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N. Engl. J. Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, W.; Srinivasan, S.R.; Bond, M.G.; Tang, R.; Urbina, E.M.; Berenson, G.S. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: The Bogalusa Heart Study. JAMA 2003, 290, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.H.; Dawson, J.D.; Riley, W.A.; Lauer, R.M. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: The Muscatine Study. Circulation 2001, 104, 2815–2819. [Google Scholar] [CrossRef]
- Costa-Urrutia, P.; Colistro, V.; Franco-Trecu, V.; Granados, J.; Álvarez Fariña, R.; Rodríguez-Arellano, M.E. Dyslipidemia, Obesity, and Ethnicity in Mexican Children. Int. J. Environ. Res. Public Health 2021, 18, 12659. [Google Scholar] [CrossRef]
- Bibiloni, M.D.; Salas, R.; De la Garza, Y.E.; Villarreal, J.Z.; Sureda, A.; Tur, J.A. Serum Lipid Profile, Prevalence of Dyslipidaemia, and Associated Risk Factors Among Northern Mexican Adolescents. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 544–549. [Google Scholar] [CrossRef]
- Posadas-Sanchez, R.; Posadas-Romero, C.; Zamora-Gonzalez, J.; Mendoza-Perez, E.; Cardoso-Saldana, G.; Yamamoto-Kimura, L. Lipid and lipoprotein profiles and prevalence of dyslipidemia in Mexican adolescents. Metabolism 2007, 56, 1666–1672. [Google Scholar] [CrossRef]
- Velasco-Martinez, R.M.; Jimenez-Cruz, A.; Higuera Dominguez, F.; Dominguez de la Piedra, E.; Bacardi-Gascon, M. Obesity and insulin resistance among adolescents from Chiapas. Nutr. Hosp. 2009, 24, 187–192. [Google Scholar] [PubMed]
- Flores-Guillén, E.; Castro-Quezada, I.; Irecta-Nájera, C.A.; Núñez-Ortega, P.E.; Solís-Hernández, R.; García-Miranda, R.; Cruz-Cruz, P.; Medina-Gómez, C.; Sánchez-Chino, X.M.; Olivo-Vidal, Z.E.; et al. Sociodemographic inequalities in cardiovascular risk factors among adolescents from indigenous areas in Chiapas, Mexico. Cad. Saude Publica 2023, 39, e00024623. [Google Scholar] [CrossRef]
- NHLBI. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. S5), S213–S256. [Google Scholar] [CrossRef]
- Aston, L.M. Glycaemic index and metabolic disease risk. Proc. Nutr. Soc. 2006, 65, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef]
- Wolever, T. Physiological mechanisms and observed health impacts related to the glycaemic index: Some observations. Int. J. Obes. 2006, 30, S72–S78. [Google Scholar] [CrossRef]
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hobl, L.P.; Hoffmann, G. Effects of low glycaemic index/low glycaemic load vs. high glycaemic index/high glycaemic load diets on overweight/obesity and associated risk factors in children and adolescents: A systematic review and meta-analysis. Nutr. J. 2015, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzopoulou, I.; Theodoridis, X.; Kotzakioulafi, E.; Evripidou, K.; Chourdakis, M. The Effectiveness of a Low Glycemic Index/Load Diet on Cardiometabolic, Glucometabolic, and Anthropometric Indices in Children with Overweight or Obesity: A Systematic Review and Meta-Analysis. Children 2023, 10, 1481. [Google Scholar] [CrossRef]
- Castro-Quezada, I.; Flores-Guillén, E.; Núñez-Ortega, P.E.; Irecta-Nájera, C.A.; Sánchez-Chino, X.M.; Mendez-Flores, O.G.; Olivo-Vidal, Z.E.; García-Miranda, R.; Solís-Hernández, R.; Ochoa-Díaz-López, H. Dietary Carbohydrates and Insulin Resistance in Adolescents from Marginalized Areas of Chiapas, México. Nutrients 2019, 11, 3066. [Google Scholar] [CrossRef]
- Flores-Guillén, E.; Ochoa-Díaz-López, H.; Castro-Quezada, I.; Irecta-Nájera, C.A.; Cruz, M.; Meneses, M.E.; Gurri, F.D.; Solís-Hernández, R.; García-Miranda, R. Intrauterine growth restriction and overweight, obesity, and stunting in adolescents of indigenous communities of Chiapas, Mexico. Eur. J. Clin. Nutr. 2020, 74, 149–157. [Google Scholar] [CrossRef]
- Ramirez-Ortiz, M.A.; Rodriguez-Almaraz, M.; Ochoa-Diazlopez, H.; Diaz-Prieto, P.; Rodriguez-Suárez, R.S. Randomised equivalency trial comparing 2.5% povidone-iodine eye drops and ophthalmic chloramphenicol for preventing neonatal conjunctivitis in a trachoma endemic area in southern Mexico. Br. J. Ophthalmol. 2007, 91, 1430–1434. [Google Scholar] [CrossRef]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; p. 1358. [Google Scholar]
- Chavez Villasana, A. Tablas de Uso Práctico de los Alimentos de Mayor Consumo, 3rd ed.; McGraw Hill Mexico: Mexico City, Mexico, 2013. [Google Scholar]
- Ramírez Silva, I.; Barragán-Vázquez, S.; Rodríguez Ramírez, S.; Rivera Dommarco, J.A.; Mejía-Rodríguez, F.; Barquera Cervera, S.; Tolentino Mayo, L.; Flores Aldana, M.; Villalpando Hernández, S.; Ancira Moreno, M. Base de Alimentos de México (BAM): Compilación de la Composición de los Alimentos Frecuentemente Consumidos en el País; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2021. [Google Scholar]
- US Department of Agriculture; Agricultural Research Service; Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 28; USDA: Washington, DC, USA, 2015.
- Louie, J.C.; Flood, V.; Turner, N.; Everingham, C.; Gwynn, J. Methodology for adding glycemic index values to 24-hour recalls. Nutrition 2011, 27, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Buitimea, N.Y.; Bacardí-Gascón, M.; Castañeda-González, L.; Jiménez-Cruz, A. Glycaemic index and glycaemic load of three traditional Mexican dishes. Int. J. Food Sci. Nutr. 2012, 63, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Bacardi-Gascon, M.; Dueñas-Mena, D.; Jimenez-Cruz, A. Lowering effect on postprandial glycemic response of nopales added to Mexican breakfasts. Diabetes Care 2007, 30, 1264–1265. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Yang, M.; Zeng, X.Y.; Atkinson, F.; Brand-Miller, J.C. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. Am. J. Clin. Nutr. 2006, 83, 1306–1312. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, W.H. Kinanthropometry, International Society for the Advancement of Kinanthropometry. In International Standards for Anthropometric Assessment, 3rd ed.; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011. [Google Scholar]
- World Health Organization. WHO AnthroPlus Software for Assessing Growth of the World’s Children and Adolescents. Available online: http://www.who.int/growthref/tools/en/ (accessed on 21 September 2023).
- Williams, D.P.; Going, S.B.; Lohman, T.G.; Harsha, D.W.; Srinivasan, S.R.; Webber, L.S.; Berenson, G.S. Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am. J. Public Health 1992, 82, 358–363. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Model building strategy for logistic regression: Purposeful selection. Ann. Transl. Med. 2016, 4, 111. [Google Scholar] [CrossRef] [PubMed]
- Suissa, K.; Benedetti, A.; Henderson, M.; Gray-Donald, K.; Paradis, G. Effects of dietary glycemic index and load on children’s cardiovascular risk factors. Ann. Epidemiol. 2019, 40, 1–7.e3. [Google Scholar] [CrossRef]
- Slyper, A.; Jurva, J.; Pleuss, J.; Hoffmann, R.; Gutterman, D. Influence of glycemic load on HDL cholesterol in youth. Am. J. Clin. Nutr. 2005, 81, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Carrasco, W.; Lichtenstein, A.H.; Welty, F.K.; Li, Z.; Lamon-Fava, S.; Dolnikowski, G.G.; Schaefer, E.J. Dietary restriction of saturated fat and cholesterol decreases HDL ApoA-I secretion. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Eissa, M.A.; Mihalopoulos, N.L.; Holubkov, R.; Dai, S.; Labarthe, D.R. Changes in Fasting Lipids during Puberty. J. Pediatr. 2016, 170, 199–205. [Google Scholar] [CrossRef]
- Jung, M.K.; Yoo, E.G. Hypertriglyceridemia in Obese Children and Adolescents. J. Obes. Metab. Syndr. 2018, 27, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Argumedo, G.; López, J.R.; Ortiz Brunel, J.; Gaytán-González, A.; González-Casanova, I.; González Villalobos, M.F.; Jáuregui, A.; Jáuregui Ulloa, E.; Medina, C.; Pacheco Miranda, Y.S.; et al. Results from the 2022 Mexican report card on physical activity for children and adolescents. Front. Public Health 2024, 11, 1304719. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Culberson, A.; Kafai, M.R.; Ganji, V. Glycemic load is associated with HDL cholesterol but not with the other components and prevalence of metabolic syndrome in the third National Health and Nutrition Examination Survey, 1988–1994. Int. Arch. Med. 2009, 2, 3. [Google Scholar] [CrossRef]
- de Mello Fontanelli, M.; Sales, C.H.; Carioca, A.A.F.; Marchioni, D.M.; Fisberg, R.M. The relationship between carbohydrate quality and the prevalence of metabolic syndrome: Challenges of glycemic index and glycemic load. Eur. J. Nutr. 2018, 57, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Goff, L.M.; Cowland, D.E.; Hooper, L.; Frost, G.S. Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1–10. [Google Scholar] [CrossRef]
- Fleming, P.; Godwin, M. Low-glycaemic index diets in the management of blood lipids: A systematic review and meta-analysis. Fam. Pract. 2013, 30, 485–491. [Google Scholar] [CrossRef]
- Clar, C.; Al-Khudairy, L.; Loveman, E.; Kelly, S.A.; Hartley, L.; Flowers, N.; Germanò, R.; Frost, G.; Rees, K. Low glycaemic index diets for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2017, 7, CD004467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Y.; Cai, L.; Ma, L.; Jing, J.; Guo, L.; Jin, Y.; Ma, Y.; Chen, Y. Dietary glycemic index and glycemic load and their relationship to cardiovascular risk factors in Chinese children. Appl. Physiol. Nutr. Metab. 2016, 41, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Silva, I.; Villalpando, S.; Moreno-Saracho, J.E.; Bernal-Medina, D. Fatty acids intake in the Mexican population. Results of the National Nutrition Survey 2006. Nutr. Metab. 2011, 8, 33. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The Evidence for Saturated Fat and for Sugar Related to Coronary Heart Disease. Prog. Cardiovasc. Dis. 2016, 58, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Siri, P.W.; Krauss, R.M. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr. Atheroscler. Rep. 2005, 7, 455–459. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, G.; Qian, S.; Zhang, Q.; Tan, M. Associations between dietary fiber intake and cardiovascular risk factors: An umbrella review of meta-analyses of randomized controlled trials. Front. Nutr. 2022, 9, 972399. [Google Scholar] [CrossRef]
- Muñoz Cano, J.M.; Aguilar, A.C.; Hernández, J.C. Lipid-lowering effect of maize-based traditional Mexican food on a metabolic syndrome model in rats. Lipids Health Dis. 2013, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Olendzki, B.C.; Pagoto, S.L.; Hurley, T.G.; Magner, R.P.; Ockene, I.S.; Schneider, K.L.; Merriam, P.A.; Hébert, J.R. Number of 24-hour diet recalls needed to estimate energy intake. Ann. Epidemiol. 2009, 19, 553–559. [Google Scholar] [CrossRef] [PubMed]
Variables a | Dietary GI | p-Value b | |||
---|---|---|---|---|---|
T1 | T2 | T3 | Total | ||
n = 71 | n = 71 | n = 71 | n = 213 | ||
Dietary GI (units) c | 46.5 (44.5–47.7) | 51.4 (50.1–52.2) | 56.2 (54.4–58.0) | 51.4 (47.7–54.4) | <0.001 d |
Sociodemographic characteristics | |||||
Sex (% females) | 42.3 | 52.1 | 54.9 | 49.8 | 0.284 |
Age (years) c | 14.2 (14.0–14.4) | 14.1 (14.0–14.3) | 14.0 (13.9–14.2) | 14.1 (14.0–14.3) | <0.001 d |
Geographic area (%) | 0.002 | ||||
Urban | 63.4 | 76.1 | 88.7 | 76.1 | |
Rural | 36.6 | 23.9 | 11.3 | 23.9 | |
Mother’s schooling level (%) | 0.005 | ||||
Illiterate | 52.1 | 33.8 | 23.9 | 36.6 | |
Elementary school | 39.4 | 45.1 | 59.2 | 47.9 | |
Middle school, high School or bachelor’s degree | 8.5 | 21.1 | 16.9 | 15.5 | |
Mother’s language (%) | <0.001 | ||||
Spanish | 39.4 | 53.5 | 73.2 | 55.4 | |
Indigenous (Mayan) | 60.6 | 46.5 | 26.8 | 44.6 | |
Health and anthropometric characteristics | |||||
Family history of diabetes (%) | 35.2 | 42.3 | 57.8 | 45.1 | 0.022 |
Family history of obesity (%) | 19.7 | 25.4 | 25.4 | 23.5 | 0.658 |
Family history of CVD (%) | 36.6 | 36.6 | 57.8 | 43.7 | 0.014 |
Weight (kg) c | 46.6 (41.8–51.0) | 48.8 (43.9–54.1) | 50.7 (45.9–56.3) | 48.8 (44.0–53.4) | 0.004 d |
Weight status (%) | 0.313 | ||||
Underweight/normal weight | 78.9 | 71.8 | 67.6 | 72.8 | |
Overweight/obesity | 21.1 | 28.2 | 32.4 | 27.2 | |
Waist circumference (cm) c | 70.5 (67.5–76.0) | 72.8 (69.0–77.0) | 72.5 (68.0–77.8) | 72.0 (68.0–77.0) | 0.094 d |
Abdominal obesity (%) | 9.9 | 16.9 | 15.5 | 14.1 | 0.443 |
% Body fat c | 18.0 (12.7–25.1) | 23.4 (15.4–29.0) | 25.9 (18.9–29.8) | 22.9 (15.1–28.4) | 0.001 d |
Body fat excess (%) | 12.7 | 21.1 | 31 | 21.6 | 0.03 |
Energy and nutrient intakes | |||||
Energy intake (kcal per day) c | 2107 (1803–2480) | 2088 (1642–2663) | 2132 (1860–2586) | 2125 (1775–2553) | 0.814 d |
Total carbohydrates (g per day) e | 336.1 (57.6) | 340.9 (40.0) | 320.9 (48.1) | 332.6 (49.6) | 0.042 |
Total carbohydrates (% Energy per day) | 61.2 (11.1) | 62.3 (7.7) | 58.4 (8.9) | 60.7 (9.4) | 0.041 |
Protein (g per day) ce | 71.4 (64.0–88.0) | 67.6 (59.8–83.1) | 67.0 (49.5–81.1) | 69.4 (58.7–82.5) | 0.007 d |
Protein (% Energy per day) c | 13.2 (11.6–15.5) | 12.2 (10.6–14.6) | 12.1 (9.1–14.3) | 12.6 (10.6–14.6) | 0.005 d |
Total fat (g per day) ce | 65.8 (44.8–84.6) | 61.4 (51.9–76.6) | 73.4 (60.9–84.3) | 68.0 (54.2–81.8) | 0.007 d |
Total fat (% Energy per day) | 26.0 (9.9) | 25.9 (7.0) | 30.7 (8.8) | 27.5 (8.9) | 0.001 |
Dietary fiber (g per day) ce | 32.6 (23.9–42.2) | 29.9 (22.1–35.0) | 22.2 (16.8–26.4) | 26.5 (20.1–34.1) | <0.001 d |
Total sugars (g per day) ce | 72.0 (51.8–91.3) | 79.2 (55.3–98.1) | 84.8 (58.2–126.2) | 77.4 (54.4–102.1) | 0.044 d |
Variables a | Energy-Adjusted Dietary GL | p-Value b | |||
---|---|---|---|---|---|
T1 | T2 | T3 | Total | ||
n = 71 | n = 71 | n = 71 | n = 213 | ||
Dietary GL (g/day) c | 137.3 (17.6) | 170.7 (7.5) | 198.5 (13.9) | 168.8 (28.5) | <0.001 |
Sociodemographic characteristics | |||||
Sex (% female) | 54.9 | 56.3 | 38 | 49.8 | 0.052 |
Age (years) d | 14.1 (14.0–14.2) | 14.1 (13.9–14.3) | 14.2 (13.9–14.3) | 14.1 (14.0–14.3) | 0.784 e |
Geographic area (%) | 0.009 | ||||
Urban | 88.7 | 70.4 | 69 | 76.1 | |
Rural | 11.3 | 29.6 | 31 | 23.9 | |
Mother’s schooling level (%) | 0.113 | ||||
Illiterate | 28.2 | 42.3 | 39.4 | 36.6 | |
Elementary school | 47.9 | 45.1 | 50.7 | 47.9 | |
Middle school, high school or bachelor’s degree | 23.9 | 12.7 | 9.9 | 15.5 | |
Mother’s language (%) | 0.040 | ||||
Spanish | 66.2 | 54.9 | 45.1 | 55.4 | |
Indigenous (Mayan) | 33.8 | 45.1 | 54.9 | 44.6 | |
Health and anthropometric characteristics | |||||
Family history of diabetes (%) | 54.9 | 43.7 | 36.6 | 45.1 | 0.087 |
Family history of obesity (%) | 19.7 | 25.4 | 25.4 | 23.5 | 0.658 |
Family history of CVD (%) | 40.9 | 43.7 | 46.5 | 43.7 | 0.795 |
Weight (kg) d | 47.1 (42.2–52.8) | 48.6 (44.8–53.4) | 49.8 (44.0–54.3) | 48.8 (44.0–53.4) | 0.361 e |
Weight status (%) | 0.515 | ||||
Underweight/normal weight | 71.8 | 77.5 | 69 | 72.8 | |
Overweight/obesity | 28.2 | 22.5 | 31 | 27.2 | |
Waist circumference (cm) d | 70.0 (67.0–76.0) | 72.8 (69.0–77.0) | 73.0 (67.5–77.7) | 72.0 (68.0–77.0) | 0.156 e |
Abdominal obesity (%) | 12.7 | 15.5 | 14.1 | 14.1 | 0.89 |
% Body fat d | 23.4 (15.4–29.4) | 23.3 (16.7–29.0) | 22.1 (14.7–27.4) | 22.9 (15.1–28.4) | 0.842 e |
Body fat excess (%) | 21.1 | 18.3 | 25.4 | 21.6 | 0.59 |
Energy and nutrient intakes | |||||
Energy intake (kcal/day) d | 2187 (1915–2532) | 2052 (1700–2516) | 2104 (1759–2663) | 2125 (1775–2553) | 0.309 e |
Total carbohydrates (g/day) c | 289.2 (40.9) | 332.1 (30.3) | 376.5 (31.6) | 332.6 (49.6) | <0.001 |
Total carbohydrates (% Energy/day) | 52.4 (7.7) | 60.7 (6.2) | 68.9 (5.9) | 60.7 (9.4) | <0.001 |
Protein (g/day) cd | 76.2 (65.2–93.7) | 69.3 (59.7–85.5) | 62.3 (51.9–71.8) | 69.4 (58.7–82.5) | <0.001 e |
Protein (% Energy/day) d | 14.0 (11.9–17.6) | 12.7 (10.6–15.4) | 11.3 (9.4–13.0) | 12.6 (10.6–14.6) | <0.001 e |
Total fat (g/day) cd | 83.8 (74.9–90.5) | 69.6 (57.5–77.7) | 53.3 (42.1–61.4) | 68.0 (54.2–81.8) | <0.001 e |
Total fat (% Energy/day) | 33.9 (8.2) | 27.5 (7.1) | 21.1 (6.3) | 27.5 (8.9) | <0.001 |
Dietary fiber (g/day) cd | 23.9 (18.6–30.5) | 27.5 (20.1–34.1) | 31.1 (23.0–38.1) | 26.5 (20.1–34.1) | 0.001 e |
Total sugars (g/day) cd | 68.7 (47.6–91.4) | 77.1 (55.2–114.1) | 83.6 (62.1–109.5) | 77.4 (54.4–102.1) | 0.032 e |
Variables a | Dietary GI | p-Value b | Energy-Adjusted Dietary GL | p-Value b | ||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |||
n = 71 | n = 71 | n = 71 | n = 71 | n = 71 | n = 71 | |||
Total cholesterol ≥ 200 mg/dL (%) | 4.2 | 1.4 | 7.0 | 0.249 | 4.2 | 5.6 | 2.8 | 0.706 |
HDL-c < 40 mg/dL (%) | 42.3 | 54.9 | 45.1 | 0.283 | 35.2 | 49.3 | 57.8 | 0.025 |
LDL-c ≥ 110 mg/dL (%) | 4.2 | 2.8 | 8.5 | 0.288 | 4.23 | 8.45 | 2.82 | 0.288 |
Triglycerides ≥ 130 mg/dL | 28.2 | 22.5 | 25.4 | 0.743 | 21.1 | 23.9 | 31.0 | 0.380 |
Variables | Dietary GI | p-Trend | |||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
n = 71 | n = 71 | n = 71 | |||
GI Median | 46.5 | 51.4 | 56.2 | ||
Total cholesterol ≥ 200 mg/dL | Cases | 3 | 1 | 5 | |
Model 1 a | 1 (Ref.) | 0.28 (0.03–2.84) | 1.49 (0.33–6.60) | 0.516 | |
Model 2 b | 1 (Ref.) | 0.23 (0.02–2.38) | 1.08 (0.23–5.16) | 0.769 | |
Model 3 c | 1 (Ref.) | 0.31 (0.03–3.38) | 1.51 (0.28–8.06) | 0.510 | |
HDL-c < 40 mg/dL | Cases | 30 | 39 | 32 | |
Model 1 a | 1 (Ref.) | 1.75 (0.89–3.42) | 1.19 (0.61–2.32) | 0.612 | |
Model 2 d | 1 (Ref.) | 1.91 (0.96–3.80) | 1.44 (0.71–2.93) | 0.305 | |
Model 3 e | 1 (Ref.) | 1.77 (0.88–3.54) | 1.23 (0.59–2.56) | 0.573 | |
LDL-c ≥ 110 mg/dL | Cases | 3 | 2 | 6 | |
Model 1 a | 1 (Ref.) | 0.57 (0.09–3.57) | 1.79 (0.42–7.61) | 0.361 | |
Model 2 b | 1 (Ref.) | 0.48 (0.07–3.15) | 1.40 (0.31–6.29) | 0.545 | |
Model 3 f | 1 (Ref.) | 0.80 (0.11–5.88) | 2.64 (0.48–14.47) | 0.209 | |
Triglycerides ≥ 130 mg/dL | Cases | 20 | 16 | 18 | |
Model 1 a | 1 (Ref.) | 0.70 (0.32–1.51) | 0.81 (0.38–1.71) | 0.571 | |
Model 2 b | 1 (Ref.) | 0.63 (0.29–1.40) | 0.66 (0.30–1.45) | 0.295 | |
Model 3 g | 1 (Ref.) | 0.75 (0.33–1.70) | 1.03 (0.42–2.51) | 0.992 |
Variables | Energy-Adjusted Dietary GL | p-Trend | |||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
n = 71 | n = 71 | n = 71 | |||
GL Median | 143 | 171.9 | 197.1 | ||
Total cholesterol ≥ 200 mg/dL | Cases | 3 | 4 | 2 | |
Model 1 a | 1 (Ref.) | 1.34 (0.29–6.27) | 0.80 (0.13–5.04) | 0.870 | |
Model 2 b | 1 (Ref.) | 1.53 (0.31–7.46) | 0.69 (0.11–4.46) | 0.764 | |
Model 3 c | 1 (Ref.) | 2.39 (0.41–13.78) | 1.54 (0.17–13.58) | 0.602 | |
HDL-c < 40 mg/dL | Cases | 25 | 35 | 41 | |
Model 1 a | 1 (Ref.) | 1.80 (0.92–3.55) | 2.39 (1.21–4.74) | 0.012 | |
Model 2 d | 1 (Ref.) | 1.71 (0.86–3.38) | 2.30 (1.16–4.58) | 0.017 | |
Model 3 e | 1 (Ref.) | 1.66 (0.83–3.30) | 2.19 (1.08–4.42) | 0.029 | |
LDL-c ≥ 110 mg/dL | Cases | 3 | 6 | 2 | |
Model 1 a | 1 (Ref.) | 2.09 (0.49–8.83) | 0.82 (0.13–5.20) | 0.977 | |
Model 2 f | 1 (Ref.) | 2.33 (0.52–10.37) | 0.63 (0.10–4.15) | 0.757 | |
Model 3 g | 1 (Ref.) | 4.63 (0.82–26.24) | 1.90 (0.20–17.63) | 0.422 | |
Triglycerides ≥ 130 mg/dL h | Males (n = 107) | n = 36 | n = 36 | n = 35 | |
Median (sex-specific) | 142.9 | 177.0 | 199.0 | ||
Cases | 9 | 5 | 8 | ||
Model 1 i | 1 (Ref.) | 0.50 (0.15–1.68) | 1.05 (0.34–3.22) | 0.888 | |
Model 2 j | 1 (Ref.) | 0.50 (0.14–1.74) | 0.93 (0.29–3.00) | 0.754 | |
Model 3 k | 1 (Ref.) | 0.55 (0.16–1.97) | 1.25 (0.36–4.36) | 0.919 | |
Females (n = 106) | n = 36 | n = 35 | n = 35 | ||
Median (sex-specific) | 143.3 | 165.4 | 192.6 | ||
Cases | 6 | 11 | 15 | ||
Model 1 i | 1 (Ref.) | 1.97 (0.62–6.25) | 3.20 (1.03–9.88) | 0.043 | |
Model 2 j | 1 (Ref.) | 1.97 (0.61–6.37) | 3.18 (1.01–9.99) | 0.047 | |
Model 3 k | 1 (Ref.) | 3.16 (0.84–11.83) | 6.71 (1.56–28.98) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Quezada, I.; Núñez-Ortega, P.E.; Flores-Guillén, E.; García-Miranda, R.; Irecta-Nájera, C.A.; Solís-Hernández, R.; Medina-Gómez, C.; Ochoa-Díaz-López, H. Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico. Nutrients 2024, 16, 1483. https://doi.org/10.3390/nu16101483
Castro-Quezada I, Núñez-Ortega PE, Flores-Guillén E, García-Miranda R, Irecta-Nájera CA, Solís-Hernández R, Medina-Gómez C, Ochoa-Díaz-López H. Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico. Nutrients. 2024; 16(10):1483. https://doi.org/10.3390/nu16101483
Chicago/Turabian StyleCastro-Quezada, Itandehui, Pilar Elena Núñez-Ortega, Elena Flores-Guillén, Rosario García-Miranda, César Antonio Irecta-Nájera, Roberto Solís-Hernández, Christian Medina-Gómez, and Héctor Ochoa-Díaz-López. 2024. "Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico" Nutrients 16, no. 10: 1483. https://doi.org/10.3390/nu16101483
APA StyleCastro-Quezada, I., Núñez-Ortega, P. E., Flores-Guillén, E., García-Miranda, R., Irecta-Nájera, C. A., Solís-Hernández, R., Medina-Gómez, C., & Ochoa-Díaz-López, H. (2024). Glycemic Index, Glycemic Load and Dyslipidemia in Adolescents from Chiapas, Mexico. Nutrients, 16(10), 1483. https://doi.org/10.3390/nu16101483