Beyond the Plate: Uncovering Inequalities in Fruit and Vegetable Intake across Indonesian Districts
Abstract
1. Background
2. Methods
2.1. Study Design
2.2. Independent Variables
2.3. Dependent Variables
2.4. Data Analysis
3. Results
3.1. Provincial-Level Results
3.2. District-Level Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Noncommunicable Diseases: Childhood Overweight and Obesity. 2020. Available online: https://www.who.int/news-room/questions-and-answers/item/noncommunicable-diseases-childhood-overweight-and-obesity (accessed on 22 February 2023).
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health Research and Development (NIHRD). Report of Riskesdas. 2018. Available online: http://repository.bkpk.kemkes.go.id/3514/1/Laporan%20Riskesdas%202018%20Nasional.pdf (accessed on 15 April 2023).
- Jones, A.D.; Shrinivas, A.; Bezner-Kerr, R. Farm production diversity is associated with greater household dietary diversity in Malawi: Findings from nationally representative data. Food Policy 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Drewnowski, A.; Darmon, N. The economics of obesity: Dietary energy density and energy cost. Am. J. Clin. Nutr. 2005, 82, 265S–273S. [Google Scholar] [CrossRef]
- Gibson, E.L.; Wardle, J.; Watts, C.J. Fruit and Vegetable Consumption, Nutritional Knowledge and Beliefs in Mothers and Children. Appetite 1998, 31, 205–228. [Google Scholar] [CrossRef][Green Version]
- Bodor, J.N.; Rose, D.; AFarley, T.; Swalm, C.; Scott, S.K. Neighbourhood fruit and vegetable availability and consumption: The role of small food stores in an urban environment. Public Health Nutr. 2008, 11, 413–420. [Google Scholar] [CrossRef][Green Version]
- Reicks, M.; Trofholz, A.C.; Stang, J.S.; Laska, M.N. Impact of Cooking and Home Food Preparation Interventions Among Adults: Outcomes and Implications forFuture Programs. J. Nutr. Educ. Behav. 2014, 46, 259–276. [Google Scholar] [CrossRef][Green Version]
- Desbouys, L.; Méjean, C.; De Henauw, S.; Castetbon, K. Socio-economic and cultural disparities in diet among adolescents and young adults: A systematic review. Public Health Nutr. 2020, 23, 843–860. [Google Scholar] [CrossRef][Green Version]
- Dubowitz, T.; Heron, M.; E Bird, C.; Lurie, N.; Finch, B.K.; Basurto-Dávila, R.; Hale, L.; Escarce, J.J. Neighborhood socioeconomic status and fruit and vegetable intake among whites, blacks, and Mexican Americans in the United States. Am. J. Clin. Nutr. 2008, 87, 1883–1891. [Google Scholar] [CrossRef][Green Version]
- Menezes, M.C.; Costa, B.V.L.; Oliveira, C.D.L.; Lopes, A.C.S. Local food environment and fruit and vegetable consumption: An ecological study. Prev. Med. Rep. 2017, 5, 13–20. [Google Scholar] [CrossRef][Green Version]
- Hosseinpoor, A.R.; Bergen, N.; Kunst, A.; Harper, S.; Guthold, R.; Rekve, D.; D’Espaignet, E.T.; Naidoo, N.; Chatterji, S. Socioeconomic inequalities in risk factors for non communicable diseases in low-income and middle-income countries: Results from the World Health Survey. BMC Public Health 2012, 12, 912. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Giskes, K.; Van Lenthe, F.J.; Kamphuis, C.B.M.; Huisman, M.; Brug, J.; MacKenbach, J.P. Household and food shopping environments: Do they play a role in socioeconomic inequalities in fruit and vegetable consumption? A multilevel study among Dutch adults. J. Epidemiol. Community Health 2009, 63, 113–120. [Google Scholar] [CrossRef]
- de Azevedo Barros, M.B.; Lima, M.G.; Medina LD, P.B.; Szwarcwald, C.L.; Malta, D.C. Social inequalities in health behaviors among Brazilian adults: National Health Survey, 2013. Int. J. Equity Health 2016, 15, 148. [Google Scholar] [CrossRef][Green Version]
- Amo-Adjei, J.; Kumi-Kyereme, A. Fruit and Vegetable Consumption by Ecological Zone and Socioeconomic Status in Ghana. J. Biosoc. Sci. 2015, 47, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Ayuningtyas, D.; Hapsari, D.; Rachmalina, R.; Amir, V.; Rachmawati, R.; Kusuma, D. Geographic and Socioeconomic Disparity in Child Undernutrition across 514 Districts in Indonesia. Nutrients 2022, 14, 843. [Google Scholar] [CrossRef] [PubMed]
- Ayuningtyas, D.; Kusuma, D.; Amir, V.; Tjandrarini, D.H.; Andarwati, P. Disparities in Obesity Rates among Adults: Analysis of 514 Districts in Indonesia. Nutrients 2022, 14, 3332. [Google Scholar] [CrossRef]
- Bella, A.; Akbar, M.T.; Kusnadi, G.; Herlinda, O.; Regita, P.A.; Kusuma, D. Socioeconomic and Behavioral Correlates of COVID-19 Infections among Hospital Workers in the Greater Jakarta Area, Indonesia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 5048. [Google Scholar] [CrossRef]
- Indonesian Statistics Bureau (BPS). [Poverty and Inequality Concept]. 2020. Available online: https://www.bps.go.id/subject/23/kemiskinan-dan-ketimpangan.html (accessed on 1 April 2023).
- Megatsari, H.; Kusuma, D.; Ernawaty, E.; Putri, N.K. Geographic and Socioeconomic Inequalities in Delays in COVID-19 Vaccinations: A Cross-Sectional Study in Indonesia. Vaccines 2022, 10, 1857. [Google Scholar] [CrossRef]
- Oktamianti, P.; Kusuma, D.; Amir, V.; Tjandrarini, D.H.; Paramita, A. District-Level Inequalities in Hypertension among Adults in Indonesia: A Cross-Sectional Analysis by Sex and Age Group. Int. J. Environ. Res. Public Health 2022, 19, 13268. [Google Scholar] [CrossRef]
- Song, P.; Gupta, A.; Goon, I.Y.; Hasan, M.; Mahmood, S.; Page, P.; Pradeepa, R.; Siddiqui, S.; Silva, W.; Aarthi, G.R.; et al. Data Resource Profile: Understanding the patterns and determinants of health in South Asians-South Asia Biobank. Int. J. Epidemiol. 2021, 50, 717–718e. [Google Scholar] [CrossRef]
- Kusuma, D.; Pradeepa, R.; Khawaja, K.I.; Hasan, M.; Siddiqui, S.; Mahmood, S.; Shah, S.M.A.; De Silva, C.K.; de Silva, L.; Gamage, M.; et al. Low uptake of COVID-19 prevention behaviours and high socioeconomic impact of lockdown measures in South Asia: Evidence from a large-scale multi-country surveillance programme. SSM—Popul. Health 2021, 13, 100751. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, M.; Khang, Y.-H.; Asaria, P.; Blakely, T.; Cowan, M.J.; Farzadfar, F.; Guerrero, R.; Ikeda, N.; Kyobutungi, C.; Msyamboza, K.P.; et al. Inequalities in non-communicable diseases and effective responses. Lancet 2013, 381, 585–597. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mwenda, V.; Mwangi, M.; Nyanjau, L.; Gichu, M.; Kyobutungi, C.; Kibachio, J. Dietary risk factors for non-communicable diseases in Kenya: Findings of the STEPS survey, 2015. BMC Public Health 2018, 18, 1218. [Google Scholar] [CrossRef][Green Version]
- Gelibo, T.; Amenu, K.; Taddele, T.; Taye, G.; Getnet, M.; Getachew, T.; Defar, A.; Teklie, H.; Bekele, A.; Shiferaw, F.; et al. Low fruit and vegetable intake and its associated factors in Ethiopia: A community based cross sectional NCD steps survey. Ethiop. J. Health Dev. 2018, 31, 355–361. [Google Scholar]
- Rafique, I.; Saqib, M.A.; Munir, M.A.; Qureshi, H.; Rizwanullah, K.S.; Khan, S.A.; Fouad, H. Prevalence of risk factors for noncommunicable diseases in adults: Key findings from the Pakistan steps survey. East. Mediterr. Health J. 2018, 24, 33–41. [Google Scholar] [CrossRef]
- Tripathy, J.P.; Thakur, J.S.; Jeet, G.; Chawla, S.; Jain, S.; Prasad, R. Urban rural differences in diet, physical activity and obesity in India: Are we witnessing the great Indian equalisation? Results from a cross-sectional STEPS survey. BMC Public Health 2016, 16, 816. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aryal, K.K.; Mehata, S.; Neupane, S.; Vaidya, A.; Dhimal, M.; Dhakal, P.; Rana, S.; Bhusal, C.L.; Lohani, G.R.; Paulin, F.H.; et al. The Burden and Determinants of Non Communicable Diseases Risk Factors in Nepal: Findings from a Nationwide STEPS Survey. PLoS ONE 2015, 10, e0134834. [Google Scholar] [CrossRef]
- Widener, M.J.; Metcalf, S.S.; Bar-Yam, Y. Dynamic Urban food environments: A temporal analysis of access to healthy foods. Am. J. Prev. Med. 2011, 41, 439–441. [Google Scholar] [CrossRef]
- Hawkes, C.; Smith, T.G.; Jewell, J.; Wardle, J.; Hammond, R.A.; Friel, S.; Thow, A.M.; Kain, J. Smart food policies for obesity prevention. Lancet 2015, 385, 2410–2421. [Google Scholar] [CrossRef]
- Miller, V.; Yusuf, S.; Chow, C.K.; Dehghan, M.; Corsi, D.J.; Lock, K.; Popkin, B.; Rangarajan, S.; Khatib, R.; A Lear, S.; et al. Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet Glob. Health 2016, 4, e695–e703. [Google Scholar] [CrossRef][Green Version]
- Adisasmito, W.; Amir, V.; Atin, A.; Megraini, A.; Kusuma, D. Geographic and socioeconomic disparity in cardiovascular risk factors in Indonesia: Analysis of the Basic Health Research 2018. BMC Public Health 2020, 20, 1004. [Google Scholar] [CrossRef] [PubMed]
- FAO. Nutrition and Food Systems. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. September 2017. Available online: https://www.fao.org/documents/card/en/c/I7846E (accessed on 8 April 2023).
- Story, M.; Kaphingst, K.M.; Robinson-O'Brien, R.; Glanz, K. Creating Healthy Food and Eating Environments: Policy and Environmental Approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Drobniewski, F.; Kusuma, D.; Broda, A.; Castro-Sánchez, E.; Ahmad, R. COVID-19 Vaccine Hesitancy in Diverse Groups in the UK—Is the Driver Economic or Cultural in Student Populations. Vaccines 2022, 10, 501. [Google Scholar] [CrossRef] [PubMed]
Low FV Intake Prevalence (%) | |||||||
---|---|---|---|---|---|---|---|
Poverty Rates (%) | All | Males | Females | Young Adults | Adults | Older Adults | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
Bali | 4.5 | 94.8 | 95.0 | 94.5 | 95.6 | 94.4 | 95.6 |
South Kalimantan | 4.8 | 98.8 | 99.1 | 98.5 | 99.7 | 98.6 | 98.6 |
Central Kalimantan | 5.0 | 97.5 | 97.9 | 97.1 | 98.2 | 97.4 | 97.0 |
Jakarta | 5.0 | 95.9 | 96.6 | 95.3 | 97.7 | 96.1 | 92.6 |
Banten | 5.3 | 97.7 | 98.3 | 97.1 | 98.3 | 97.5 | 97.8 |
Bangka Belitung | 5.4 | 98.1 | 98.4 | 97.7 | 98.9 | 97.9 | 97.7 |
West Sumatera | 6.6 | 98.0 | 98.3 | 97.7 | 98.5 | 97.8 | 98.1 |
North Kalimantan | 7.0 | 94.6 | 95.4 | 93.7 | 96.4 | 94.0 | 95.7 |
East Kalimantan | 7.1 | 96.2 | 96.3 | 96.0 | 97.2 | 96.0 | 95.6 |
Riau Islands | 7.6 | 94.7 | 95.3 | 94.1 | 96.9 | 94.2 | 95.9 |
Jambi | 7.8 | 98.1 | 98.2 | 98.0 | 98.6 | 97.9 | 98.6 |
North Maluku | 7.9 | 94.5 | 94.7 | 94.3 | 96.2 | 93.9 | 96.1 |
West Java | 7.9 | 98.6 | 98.8 | 98.3 | 99.1 | 98.4 | 98.6 |
West Kalimantan | 8.1 | 94.7 | 95.0 | 94.4 | 95.4 | 94.4 | 95.6 |
North Sulawesi | 8.5 | 97.3 | 97.7 | 96.9 | 98.0 | 97.3 | 96.8 |
Riau | 8.8 | 97.0 | 97.5 | 96.4 | 97.7 | 96.8 | 97.0 |
South Sulawesi | 9.8 | 97.9 | 97.9 | 97.9 | 97.9 | 97.9 | 98.0 |
West Sulawesi | 10.3 | 95.0 | 95.4 | 94.6 | 96.0 | 94.6 | 95.7 |
East Java | 10.9 | 96.0 | 96.4 | 95.7 | 96.8 | 95.8 | 96.2 |
Central Java | 10.9 | 96.9 | 97.2 | 96.5 | 98.1 | 96.6 | 96.6 |
North Sumatera | 11.3 | 95.5 | 95.9 | 95.0 | 96.4 | 95.2 | 95.6 |
Lampung | 12.6 | 92.6 | 93.2 | 92.0 | 95.5 | 91.7 | 93.4 |
Yogyakarta | 12.7 | 94.4 | 94.4 | 94.5 | 96.0 | 93.9 | 95.1 |
Southeast Sulawesi | 13.0 | 96.9 | 97.3 | 96.6 | 97.1 | 96.8 | 97.6 |
South Sumatera | 13.1 | 98.0 | 98.0 | 97.9 | 98.5 | 97.9 | 97.8 |
Central Sulawesi | 14.6 | 95.7 | 96.1 | 95.3 | 96.3 | 95.4 | 96.4 |
West Nusa Tenggara | 14.8 | 96.7 | 97.7 | 95.9 | 96.8 | 96.7 | 96.8 |
Bengkulu | 15.0 | 96.1 | 96.2 | 95.9 | 96.7 | 95.9 | 96.5 |
Aceh | 16.4 | 98.1 | 98.1 | 98.0 | 98.7 | 97.8 | 98.6 |
Gorontalo | 16.8 | 95.7 | 95.9 | 95.6 | 97.0 | 95.3 | 96.1 |
Maluku | 21.8 | 94.2 | 94.2 | 94.1 | 94.8 | 93.8 | 95.4 |
East Nusa Tenggara | 22.0 | 94.9 | 95.4 | 94.3 | 95.9 | 94.6 | 94.9 |
West Papua | 26.5 | 93.1 | 93.2 | 92.9 | 93.6 | 92.8 | 94.4 |
Papua | 29.4 | 96.3 | 96.5 | 96.0 | 96.2 | 96.3 | 96.3 |
Average | 96.2 | 96.5 | 95.8 | 97.1 | 95.9 | 96.4 |
All | Urban | Rural | Difference | |||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | % | p-Value | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) = (4–6) | ||
(a) Characteristics (#) | ||||||||
Sample size district | 514 | 100% | 97 | 100% | 417 | 100% | 0% | |
Region | ||||||||
Papua | 95 | 18.5% | 9 | 9.3% | 86 | 20.6% | 11.3% | 0.008 |
Java | 128 | 24.9% | 35 | 36.1% | 93 | 22.3% | −13.8% | |
Sumatera | 154 | 30.0% | 33 | 34.0% | 121 | 29.0% | −5.0% | |
Kalimantan | 56 | 10.9% | 9 | 9.3% | 47 | 11.3% | 2.0% | |
Sulawesi | 81 | 15.8% | 11 | 11.3% | 70 | 16.8% | 5.4% | |
514 | 97 | 417 | ||||||
Income | ||||||||
Q1 poor | 102 | 19.8% | 3 | 3.1% | 99 | 23.7% | 20.6% | <0.001 |
Q2 | 103 | 20.0% | 5 | 5.2% | 98 | 23.5% | 18.3% | |
Q3 | 103 | 20.0% | 13 | 13.4% | 90 | 21.6% | 8.2% | |
Q4 | 103 | 20.0% | 22 | 22.7% | 81 | 19.4% | −3.3% | |
Q5 rich | 103 | 20.0% | 54 | 55.7% | 49 | 11.8% | −43.9% | |
514 | 97 | 417 | ||||||
Education | ||||||||
Q1 least | 103 | 20.0% | 0 | 0.0% | 103 | 24.7% | 24.7% | <0.001 |
Q2 | 103 | 20.0% | 11 | 11.3% | 92 | 22.1% | 10.7% | |
Q3 | 103 | 20.0% | 17 | 17.5% | 86 | 20.6% | 3.1% | |
Q4 | 103 | 20.0% | 29 | 29.9% | 74 | 17.7% | −12.2% | |
Q5 most | 102 | 19.8% | 40 | 41.2% | 62 | 14.9% | −26.4% | |
514 | 97 | 417 | ||||||
(b) Inadequate FV intake (%) | ||||||||
All adults | n/a | 96.3% | n/a | 95.8% | n/a | 96.5% | −0.7% | 0.093 |
Male adults | n/a | 96.7% | n/a | 96.4% | n/a | 96.7% | −0.3% | 0.375 |
Female adults | n/a | 96.0% | n/a | 95.2% | n/a | 96.2% | −1.0% | 0.020 |
Young adults | n/a | 97.0% | n/a | 97.4% | n/a | 97.0% | 0.4% | 0.309 |
Adults | n/a | 96.1% | n/a | 95.4% | n/a | 96.3% | −0.9% | 0.050 |
Older adults | n/a | 96.7% | n/a | 95.2% | n/a | 97.0% | −1.8% | <0.001 |
Inadequate FV Intake (N = 514 Districts) | ||||||
---|---|---|---|---|---|---|
All Adults | Males | Females | Young Adults | Adults | Older Adults | |
Region | ||||||
Papua | 94.9% | 95.1% | 94.6% | 95.2% | 94.6% | 95.9% |
Sulawesi | 96.5% | 96.8% | 96.3% | 97.0% | 96.3% | 96.9% |
Kalimantan | 96.8% | 97.2% | 96.4% | 97.6% | 96.6% | 97.1% |
Sumatera | 97.2% | 97.5% | 97.0% | 98.0% | 97.1% | 97.2% |
Java | 96.1% | 96.5% | 95.6% | 97.0% | 95.8% | 96.2% |
Absolute | 1.2% | 1.4% | 1.0% | 1.8% | 1.2% | 0.3% |
Relative | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.00 |
Income | ||||||
Q1 poor | 95.7% | 95.8% | 95.6% | 95.9% | 95.6% | 96.5% |
Q2 | 95.9% | 96.3% | 95.5% | 96.6% | 95.6% | 96.6% |
Q3 | 96.7% | 97.1% | 96.4% | 97.5% | 96.5% | 96.8% |
Q4 | 96.9% | 97.2% | 96.5% | 97.6% | 96.7% | 97.0% |
Q5 rich | 96.5% | 96.9% | 96.2% | 97.6% | 96.3% | 96.4% |
Absolute | 0.8% | 1.1% | 0.6% | 1.7% | 0.7% | −0.1% |
Relative | 1.01 | 1.01 | 1.01 | 1.02 | 1.01 | 1.00 |
Education | ||||||
Q1 least | 96.6% | 96.8% | 96.5% | 96.8% | 96.5% | 97.2% |
Q2 | 96.5% | 96.8% | 96.1% | 97.1% | 96.2% | 97.0% |
Q3 | 96.0% | 96.3% | 95.7% | 96.7% | 95.8% | 96.2% |
Q4 | 96.2% | 96.5% | 95.9% | 97.0% | 96.0% | 96.5% |
Q5 most | 96.4% | 96.8% | 96.0% | 97.6% | 96.1% | 96.4% |
Absolute | −0.2% | 0.0% | −0.5% | 0.8% | −0.4% | −0.8% |
Relative | 1.00 | 1.00 | 0.99 | 1.01 | 1.00 | 0.99 |
Inadequate FV intake (N = 514 districts) | ||||||
---|---|---|---|---|---|---|
All Adults | Males | Females | Young Adults | Adults | Older Adults | |
Coef (p-Value) | Coef (p-Value) | Coef (p-Value) | Coef (p-Value) | Coef (p-Value) | Coef (p-Value) | |
Region | ||||||
Papua | Reference | |||||
Java | 1.176 * | 1.130 * | 1.228 * | 1.274 * | 1.194 * | 0.583 |
(0.042) | (0.047) | (0.047) | (0.037) | (0.047) | (0.343) | |
Sumatera | 2.587 ** | 2.332 ** | 2.828 ** | 2.524 ** | 2.715 ** | 1.776 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.003) | |
Kalimantan | 1.691 * | 1.617 * | 1.714 * | 1.633 * | 1.740 * | 1.365 |
(0.020) | (0.023) | (0.027) | (0.032) | (0.021) | (0.077) | |
Sulawesi | 1.859 ** | 1.647 ** | 2.075 ** | 1.618 * | 1.956 ** | 1.262 |
(0.002) | (0.006) | (0.001) | (0.011) | (0.002) | (0.051) | |
Income | ||||||
Quintile 1 poor | Reference | |||||
Quintile 2 | −0.359 | −0.040 | −0.683 | 0.013 | −0.491 | −0.135 |
(0.521) | (0.942) | (0.254) | (0.983) | (0.401) | (0.822) | |
Quintile 3 | 0.374 | 0.653 | 0.089 | 0.791 | 0.297 | 0.055 |
(0.523) | (0.258) | (0.887) | (0.200) | (0.626) | (0.930) | |
Quintile 4 | 0.389 | 0.710 | 0.058 | 0.808 | 0.321 | 0.094 |
(0.507) | (0.218) | (0.926) | (0.191) | (0.598) | (0.881) | |
Quintile 5 rich | 0.341 | 0.601 | 0.076 | 1.014 | 0.242 | −0.301 |
(0.585) | (0.328) | (0.909) | (0.123) | (0.710) | (0.651) | |
Education | ||||||
Quintile 1 least | Reference | |||||
Quintile 2 | −0.628 | −0.482 | −0.790 | −0.323 | −0.750 | −0.451 |
(0.235) | (0.356) | (0.162) | (0.562) | (0.174) | (0.424) | |
Quintile 3 | −1.171 * | −1.030 * | −1.319 * | −0.763 | −1.285 * | −1.336 * |
(0.027) | (0.048) | (0.019) | (0.170) | (0.020) | (0.018) | |
Quintile 4 | −1.059 * | −0.925 | −1.195 * | −0.581 | −1.197 * | −1.007 |
(0.045) | (0.076) | (0.035) | (0.297) | (0.030) | (0.074) | |
Quintile 5 most | −1.066 | −0.855 | −1.284 * | −0.262 | −1.280 * | −1.246 * |
(0.057) | (0.122) | (0.032) | (0.657) | (0.029) | (0.038) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmawan, E.S.; Kusuma, D.; Permanasari, V.Y.; Amir, V.; Tjandrarini, D.H.; Dharmayanti, I. Beyond the Plate: Uncovering Inequalities in Fruit and Vegetable Intake across Indonesian Districts. Nutrients 2023, 15, 2160. https://doi.org/10.3390/nu15092160
Darmawan ES, Kusuma D, Permanasari VY, Amir V, Tjandrarini DH, Dharmayanti I. Beyond the Plate: Uncovering Inequalities in Fruit and Vegetable Intake across Indonesian Districts. Nutrients. 2023; 15(9):2160. https://doi.org/10.3390/nu15092160
Chicago/Turabian StyleDarmawan, Ede Surya, Dian Kusuma, Vetty Yulianty Permanasari, Vilda Amir, Dwi Hapsari Tjandrarini, and Ika Dharmayanti. 2023. "Beyond the Plate: Uncovering Inequalities in Fruit and Vegetable Intake across Indonesian Districts" Nutrients 15, no. 9: 2160. https://doi.org/10.3390/nu15092160
APA StyleDarmawan, E. S., Kusuma, D., Permanasari, V. Y., Amir, V., Tjandrarini, D. H., & Dharmayanti, I. (2023). Beyond the Plate: Uncovering Inequalities in Fruit and Vegetable Intake across Indonesian Districts. Nutrients, 15(9), 2160. https://doi.org/10.3390/nu15092160