A Technology-Driven, Healthcare-Based Intervention to Improve Family Beverage Choices: Results from a Pilot Randomized Trial in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Study Population, Recruitment and Randomization, Reimbursement
2.4. Intervention Rationale and Development
2.5. Control Group
2.6. Outcome Measures
2.7. Fidelity and Acceptability Measures among Intervention Participants
2.8. Other Measures
2.9. Analysis
3. Results
3.1. Participant Characteristics and Retention
3.2. Intervention Fidelity and Acceptability
3.3. Child Beverage Consumption Outcomes
3.4. Parental Beverage Consumption Outcomes
3.5. Parental Knowledge, Attitude, and Belief Outcomes
3.6. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Ruyter, J.C.; Olthof, M.R.; Seidell, J.C.; Katan, M.B. A trial of sugar-free or sugar-sweetened beverages and body weight in children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Ebbeling, C.B.; Feldman, H.A.; Chomitz, V.R.; Antonelli, T.A.; Gortmaker, S.L.; Osganian, S.K.; Ludwig, D.S. A randomized trial of sugar-sweetened beverages and adolescent body weight. N. Engl. J. Med. 2012, 367, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and weight gain in children and adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Bilger, M.; van Dam, R.M.; Finkelstein, E.A. Consumption Of Specific Foods And Beverages And Excess Weight Gain Among Children And Adolescents. Health Aff. 2015, 34, 1940–1948. [Google Scholar] [CrossRef]
- Hu, F.B. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 2013, 14, 606–619. [Google Scholar] [CrossRef]
- Trumbo, P.R.; Rivers, C.R. Systematic review of the evidence for an association between sugar-sweetened beverage consumption and risk of obesity. Nutr. Rev. 2014, 72, 566–574. [Google Scholar] [CrossRef]
- Millar, L.; Rowland, B.; Nichols, M.; Swinburn, B.; Bennett, C.; Skouteris, H.; Allender, S. Relationship between raised BMI and sugar sweetened beverage and high fat food consumption among children. Obesity 2014, 22, E96–E103. [Google Scholar] [CrossRef]
- Pan, L.; Li, R.; Park, S.; Galuska, D.A.; Sherry, B.; Freedman, D.S. A longitudinal analysis of sugar-sweetened beverage intake in infancy and obesity at 6 years. Pediatrics 2014, 134 (Suppl. S1), S29–S35. [Google Scholar] [CrossRef]
- Bleich, S.N.; Vercammen, K.A. The negative impact of sugar-sweetened beverages on children’s health: An update of the literature. BMC Obes. 2018, 5, 6. [Google Scholar] [CrossRef]
- Park, S.; Lin, M.; Onufrak, S.; Li, R. Association of Sugar-Sweetened Beverage Intake during Infancy with Dental Caries in 6-year-olds. Clin. Nutr. Res. 2015, 4, 9–17. [Google Scholar] [CrossRef]
- Warren, J.J.; Weber-Gasparoni, K.; Marshall, T.A.; Drake, D.R.; Dehkordi-Vakil, F.; Dawson, D.V.; Tharp, K.M. A longitudinal study of dental caries risk among very young low SES children. Community Dent. Oral Epidemiol. 2009, 37, 116–122. [Google Scholar] [CrossRef]
- Ambrosini, G.L.; Oddy, W.H.; Huang, R.C.; Mori, T.A.; Beilin, L.J.; Jebb, S.A. Prospective associations between sugar-sweetened beverage intakes and cardiometabolic risk factors in adolescents. Am. J. Clin. Nutr. 2013, 98, 327–334. [Google Scholar] [CrossRef]
- Loh, D.A.; Moy, F.M.; Zaharan, N.L.; Jalaludin, M.Y.; Mohamed, Z. Sugar-sweetened beverage intake and its associations with cardiometabolic risks among adolescents. Pediatr. Obes. 2016, 12, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Van Rompay, M.I.; McKeown, N.M.; Goodman, E.; Eliasziw, M.; Chomitz, V.R.; Gordon, C.M.; Economos, C.D.; Sacheck, J.M. Sugar-Sweetened Beverage Intake Is Positively Associated with Baseline Triglyceride Concentrations, and Changes in Intake Are Inversely Associated with Changes in HDL Cholesterol over 12 Months in a Multi-Ethnic Sample of Children. J. Nutr. 2015, 145, 2389–2395. [Google Scholar] [CrossRef] [PubMed]
- Kosova, E.C.; Auinger, P.; Bremer, A.A. The relationships between sugar-sweetened beverage intake and cardiometabolic markers in young children. J. Acad. Nutr. Diet. 2013, 113, 219–227. [Google Scholar] [CrossRef]
- Malik, A.H.; Akram, Y.; Shetty, S.; Malik, S.S.; Yanchou Njike, V. Impact of sugar-sweetened beverages on blood pressure. Am. J. Cardiol. 2014, 113, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; McKeown, N.M.; Hwang, S.J.; Hoffmann, U.; Jacques, P.F.; Fox, C.S. Sugar-Sweetened Beverage Consumption Is Associated With Change of Visceral Adipose Tissue Over 6 Years of Follow-Up. Circulation 2016, 133, 370–377. [Google Scholar] [CrossRef]
- Campos, V.; Despland, C.; Brandejsky, V.; Kreis, R.; Schneiter, P.; Chiolero, A.; Boesch, C.; Tappy, L. Sugar- and artificially sweetened beverages and intrahepatic fat: A randomized controlled trial. Obesity 2015, 23, 2335–2339. [Google Scholar] [CrossRef]
- Berentzen, N.E.; van Stokkom, V.L.; Gehring, U.; Koppelman, G.H.; Schaap, L.A.; Smit, H.A.; Wijga, A.H. Associations of sugar-containing beverages with asthma prevalence in 11-year-old children: The PIAMA birth cohort. Eur. J. Clin. Nutr. 2015, 69, 303–308. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Pan, A.; De Koning, L.; Schernhammer, E.; Willett, W.C.; Hu, F.B. Long-Term Consumption of Sugar-Sweetened and Artificially Sweetened Beverages and Risk of Mortality in US Adults. Circulation 2019, 139, 2113–2125. [Google Scholar] [CrossRef]
- Powell, E.S.; Smith-Taillie, L.P.; Popkin, B.M. Added Sugars Intake Across the Distribution of US Children and Adult Consumers: 1977–2012. J. Acad. Nutr. Diet. 2016, 116, 1543–1550.e1. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.A.; Clemens, J.C.; Friday, J.E.; Schroeder, N.; LaComb, R.P. Added Sugars in American Children’s Diet: What We Eat in America, NHANES 2015–2016; United States Department of Agriculture: Beltsville, MD, USA, 2019.
- Louie, J.C.; Tapsell, L.C. Association between intake of total vs added sugar on diet quality: A systematic review. Nutr. Rev. 2015, 73, 837–857. [Google Scholar] [CrossRef]
- Shefferly, A.; Scharf, R.J.; DeBoer, M.D. Longitudinal evaluation of 100% fruit juice consumption on BMI status in 2-5-year-old children. Pediatr. Obes. 2015, 11, 221–227. [Google Scholar] [CrossRef]
- Sonneville, K.R.; Long, M.W.; Rifas-Shiman, S.L.; Kleinman, K.; Gillman, M.W.; Taveras, E.M. Juice and water intake in infancy and later beverage intake and adiposity: Could juice be a gateway drink? Obesity 2015, 23, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.K.; Mennella, J.A. Innate and learned preferences for sweet taste during childhood. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kay, M.C.; Welker, E.B.; Jacquier, E.F.; Story, M.T. Beverage Consumption Patterns among Infants and Young Children (0–47.9 Months): Data from the Feeding Infants and Toddlers Study, 2016. Nutrients 2018, 10, 825. [Google Scholar] [CrossRef]
- Bleich, S.N.; Vercammen, K.A.; Koma, J.W.; Li, Z. Trends in Beverage Consumption Among Children and Adults, 2003–2014. Obesity 2018, 26, 432–441. [Google Scholar] [CrossRef]
- Heyman, M.B.; Abrams, S.A. Fruit Juice in Infants, Children, and Adolescents: Current Recommendations. Pediatrics 2017, 139, e20170967. [Google Scholar] [CrossRef]
- Lott, M.; Callahan, E.; Welker Duffy, E.; Story, M.; Daniels, S. Healthy Beverage Consumption in Early Childhood: Recommendations from Key National Health and Nutrition Organizations; Healthy Eating Research: Durham, NC, USA, 2019. [Google Scholar]
- Davis, M.M.; Gance-Cleveland, B.; Hassink, S.; Johnson, R.; Paradis, G.; Resnicow, K. Recommendations for prevention of childhood obesity. Pediatrics 2007, 120 (Suppl. S4), S229–S253. [Google Scholar] [CrossRef]
- Krebs, N.F.; Himes, J.H.; Jacobson, D.; Nicklas, T.A.; Guilday, P.; Styne, D. Assessment of child and adolescent overweight and obesity. Pediatrics 2007, 120 (Suppl. S4), S193–S228. [Google Scholar] [CrossRef]
- Spear, B.A.; Barlow, S.E.; Ervin, C.; Ludwig, D.S.; Saelens, B.E.; Schetzina, K.E.; Taveras, E.M. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics 2007, 120 (Suppl. S4), S254–S288. [Google Scholar] [CrossRef]
- Vercammen, K.A.; Frelier, J.M.; Lowery, C.M.; McGlone, M.E.; Ebbeling, C.B.; Bleich, S.N. A systematic review of strategies to reduce sugar-sweetened beverage consumption among 0-year to 5-year olds. Obes. Rev. 2018, 19, 1504–1524. [Google Scholar] [CrossRef]
- Avery, A.; Bostock, L.; McCullough, F. A systematic review investigating interventions that can help reduce consumption of sugar-sweetened beverages in children leading to changes in body fatness. J. Hum. Nutr. Diet. 2015, 28 (Suppl. S1), 52–64. [Google Scholar] [CrossRef]
- Lane, H.; Porter, K.; Estabrooks, P.; Zoellner, J. A Systematic Review to Assess Sugar-Sweetened Beverage Interventions for Children and Adolescents across the Socioecological Model. J. Acad. Nutr. Diet. 2016, 116, 1295–1307.e6. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Garcia, E.J.; Evans, C.E.L.; Prestwich, A.; Sykes-Muskett, B.J.; Hooson, J.; Cade, J.E. Interventions to reduce consumption of sugar-sweetened beverages or increase water intake: Evidence from a systematic review and meta-analysis. Obes. Rev. 2017, 18, 1350–1363. [Google Scholar] [CrossRef] [PubMed]
- Woo Baidal, J.A.; Nichols, K.; Charles, N.; Chernick, L.; Duong, N.; Finkel, M.A.; Falbe, J.; Valeri, L. Text Messages to Curb Sugar-Sweetened Beverage Consumption among Pregnant Women and Mothers: A Mobile Health Randomized Controlled Trial. Nutrients 2021, 13, 4367. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.N.; Hosterman, J.F.; Wood, G.C.; Cook, A.; Wright, L.; Jamieson, S.T.; Naylor, A.; Lutcher, S.; Mowery, J.; Seiler, C.J.; et al. Family-Based Telehealth Initiative to Improve Nutrition and Physical Activity for Children With Obesity and Its Utility During COVID-19: A Mixed Methods Evaluation. Front. Nutr. 2022, 9, 932514. [Google Scholar] [CrossRef]
- Zoellner, J.M.; Hedrick, V.E.; You, W.; Chen, Y.; Davy, B.M.; Porter, K.J.; Bailey, A.; Lane, H.; Alexander, R.; Estabrooks, P.A. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: A randomized-controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 38. [Google Scholar] [CrossRef]
- Zoellner, J.M.; Porter, K.J.; You, W.; Estabrooks, P.A.; Perzynski, K.; Ray, P.A.; Cantrell, E.S. The reach and effectiveness of SIPsmartER when implemented by rural public health departments: A pilot dissemination and implementation trial to reduce sugar-sweetened beverages. Transl. Behav. Med. 2020, 10, 676–684. [Google Scholar] [CrossRef]
- Lewis, K.H.; Skelton, J.A.; Hsu, F.C.; Ezouah, P.; Taveras, E.M.; Block, J.P. Implementing a novel electronic health record approach to track child sugar-sweetened beverage consumption. Prev. Med. Rep. 2018, 11, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Davison, K.K.; Jurkowski, J.M.; Lawson, H.A. Reframing family-centred obesity prevention using the Family Ecological Model. Public Health Nutr. 2013, 16, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.I.; Hampton, K.E. Encouraging consumption of water in school and child care settings: Access, challenges, and strategies for improvement. Am. J. Public Health 2011, 101, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Grummon, A.H.; Sokol, R.L.; Goodman, D.; Hecht, C.A.; Salvia, M.; Musicus, A.A.; Patel, A.I. Storybooks About Healthy Beverage Consumption: Effects in an Online Randomized Experiment With Parents. Am. J. Prev. Med. 2022, 62, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Bilandzik, H.B.R. Narrative Persuasion. In The SAGE Handbook of Persuasion: Developments in Theory and Practice, 2nd ed.; Dillard, J.P.S.L., Ed.; SAGE: Newbury Park, CA, USA, 2013; pp. 200–219. [Google Scholar]
- Barragan, N.C.; Noller, A.J.; Robles, B.; Gase, L.N.; Leighs, M.S.; Bogert, S.; Simon, P.A.; Kuo, T. The “sugar pack” health marketing campaign in Los Angeles County, 2011–2012. Health Promot. Pract. 2014, 15, 208–216. [Google Scholar] [CrossRef]
- Kerr, D.A.; Harray, A.J.; Pollard, C.M.; Dhaliwal, S.S.; Delp, E.J.; Howat, P.A.; Pickering, M.R.; Ahmad, Z.; Meng, X.; Pratt, I.S.; et al. The connecting health and technology study: A 6-month randomized controlled trial to improve nutrition behaviours using a mobile food record and text messaging support in young adults. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 52. [Google Scholar] [CrossRef]
- Zoellner, J.; Reid, A.; Porter, K.; Frederick, C.; Hilgart, M.; Ritterband, L. Development of a Digital Behavioral Intervention to Reduce the Consumption of Sugar-Sweetened Beverages Among Rural Appalachian Adults: Multiphased, Human-Centered Design Approach. JMIR Hum. Factors 2023, 10, e41262. [Google Scholar] [CrossRef]
- Zoellner, J.; Chen, Y.; Davy, B.; You, W.; Hedrick, V.; Corsi, T.; Estabrooks, P. Talking health, a pragmatic randomized-controlled health literacy trial targeting sugar-sweetened beverage consumption among adults: Rationale, design & methods. Contemp. Clin. Trials 2014, 37, 43–57. [Google Scholar] [CrossRef]
- Hedrick, V.E.; Savla, J.; Comber, D.L.; Flack, K.D.; Estabrooks, P.A.; Nsiah-Kumi, P.A.; Ortmeier, S.; Davy, B.M. Development of a brief questionnaire to assess habitual beverage intake (BEVQ-15): Sugar-sweetened beverages and total beverage energy intake. J. Acad. Nutr. Diet. 2012, 112, 840–849. [Google Scholar] [CrossRef]
- Lora, K.R.; Davy, B.; Hedrick, V.; Ferris, A.M.; Anderson, M.P.; Wakefield, D. Assessing Initial Validity and Reliability of a Beverage Intake Questionnaire in Hispanic Preschool-Aged Children. J. Acad. Nutr. Diet. 2016, 116, 1951–1960. [Google Scholar] [CrossRef]
- Munsell, C.R.; Harris, J.L.; Sarda, V.; Schwartz, M.B. Parents’ beliefs about the healthfulness of sugary drink options: Opportunities to address misperceptions. Public Health Nutr. 2016, 19, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Park, S.; Onufrak, S. Perceptions about energy drinks are associated with energy drink intake among U.S. youth. Am. J. Health Promot. 2015, 29, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.R. The System Usability Scale: Past, Present, and Future. Int. J. Hum.-Comput. Int. 2018, 34, 577–590. [Google Scholar] [CrossRef]
- Morris, N.S.; MacLean, C.D.; Chew, L.D.; Littenberg, B. The Single Item Literacy Screener: Evaluation of a brief instrument to identify limited reading ability. BMC Fam. Pract. 2006, 7, 21. [Google Scholar] [CrossRef]
- Roque, N.A.; Boot, W.R. A New Tool for Assessing Mobile Device Proficiency in Older Adults: The Mobile Device Proficiency Questionnaire. J. Appl. Gerontol. 2018, 37, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Zeger, S. Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhy Indian J. Stat. 2000, 62, 134–148. [Google Scholar]
- Bender, M.S.; Nader, P.R.; Kennedy, C.; Gahagan, S. A culturally appropriate intervention to improve health behaviors in Hispanic mother-child dyads. Child. Obes. 2013, 9, 157–163. [Google Scholar] [CrossRef]
- Woo Baidal, J.A.; Nelson, C.C.; Perkins, M.; Colchamiro, R.; Leung-Strle, P.; Kwass, J.A.; Gortmaker, S.L.; Davison, K.K.; Taveras, E.M. Childhood obesity prevention in the women, infants, and children program: Outcomes of the MA-CORD study. Obesity 2017, 25, 1167–1174. [Google Scholar] [CrossRef]
- Iaia, M.; Pasini, M.; Burnazzi, A.; Vitali, P.; Allara, E.; Farneti, M. An educational intervention to promote healthy lifestyles in preschool children: A cluster-RCT. Int. J. Obes. 2017, 41, 582–590. [Google Scholar] [CrossRef]
- Daniels, L.A.; Mallan, K.M.; Battistutta, D.; Nicholson, J.M.; Meedeniya, J.E.; Bayer, J.K.; Magarey, A. Child eating behavior outcomes of an early feeding intervention to reduce risk indicators for child obesity: The NOURISH RCT. Obesity 2014, 22, E104–E111. [Google Scholar] [CrossRef]
- Strippel, H. Effectiveness of structured comprehensive paediatric oral health education for parents of children less than two years of age in Germany. Community Dent. Health 2010, 27, 74–80. [Google Scholar] [PubMed]
- Beck, A.L.; Fernandez, A.; Rojina, J.; Cabana, M. Randomized Controlled Trial of a Clinic-Based Intervention to Promote Healthy Beverage Consumption Among Latino Children. Clin. Pediatr. 2017, 56, 838–844. [Google Scholar] [CrossRef]
- Schroeder, N.; Rushovich, B.; Bartlett, E.; Sharma, S.; Gittelsohn, J.; Caballero, B. Early Obesity Prevention: A Randomized Trial of a Practice-Based Intervention in 0–24-Month Infants. J. Obes. 2015, 2015, 795859. [Google Scholar] [CrossRef] [PubMed]
- van Grieken, A.; Renders, C.M.; Veldhuis, L.; Looman, C.W.; Hirasing, R.A.; Raat, H. Promotion of a healthy lifestyle among 5-year-old overweight children: Health behavior outcomes of the ‘Be active, eat right’ study. BMC Public Health 2014, 14, 59. [Google Scholar] [CrossRef]
- van Grieken, A.; Vlasblom, E.; Wang, L.; Beltman, M.; Boere-Boonekamp, M.M.; L’Hoir, M.P.; Raat, H. Personalized Web-Based Advice in Combination With Well-Child Visits to Prevent Overweight in Young Children: Cluster Randomized Controlled Trial. J. Med. Internet Res. 2017, 19, e268. [Google Scholar] [CrossRef]
- Cloutier, M.M.; Wiley, J.; Huedo-Medina, T.; Ohannessian, C.M.; Grant, A.; Hernandez, D.; Gorin, A.A. Outcomes from a Pediatric Primary Care Weight Management Program: Steps to Growing Up Healthy. J. Pediatr. 2015, 167, 372–377.e371. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [Google Scholar] [CrossRef]
- Marshall, T.A.; Curtis, A.M.; Cavanaugh, J.E.; Warren, J.J.; Levy, S.M. Child and Adolescent Sugar-Sweetened Beverage Intakes Are Longitudinally Associated with Higher Body Mass Index z Scores in a Birth Cohort Followed 17 Years. J. Acad. Nutr. Diet. 2019, 119, 425–434. [Google Scholar] [CrossRef]
- Martin, J.; Chater, A.; Lorencatto, F. Effective behaviour change techniques in the prevention and management of childhood obesity. Int. J. Obes. 2013, 37, 1287–1294. [Google Scholar] [CrossRef]
- Michie, S.; Ashford, S.; Sniehotta, F.F.; Dombrowski, S.U.; Bishop, A.; French, D.P. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: The CALO-RE taxonomy. Psychol. Health 2011, 26, 1479–1498. [Google Scholar] [CrossRef]
- Chakraborty, D.; Bailey, B.A.; Seidler, A.L.; Yoong, S.; Hunter, K.E.; Hodder, R.K.; Webster, A.C.; Johnson, B.J. Exploring the application of behaviour change technique taxonomies in childhood obesity prevention interventions: A systematic scoping review. Prev. Med. Rep. 2022, 29, 101928. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Walton, A.E.; Collins, L.M.; Klasnja, P.; Lanza, S.T.; Nahum-Shani, I.; Rabbi, M.; Russell, M.A.; Walton, M.A.; Yoo, H.; et al. The microrandomized trial for developing digital interventions: Experimental design and data analysis considerations. Psychol. Methods 2022, 27, 874–894. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.M.; Dziak, J.J.; Kugler, K.C.; Trail, J.B. Factorial experiments: Efficient tools for evaluation of intervention components. Am. J. Prev. Med. 2014, 47, 498–504. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Control (n = 30) | Intervention (n = 30) | Overall (n = 60) |
---|---|---|---|
Parental agea (mean (sd); years) | 32.9 (9.0) | 35.2 (9.6) | 34.1 (9.3) |
Child age b (mean (sd); years) | 3.8 (2.2) | 4.5 (2.1) | 4.2 (2.1) |
Race/ethnic group (n/%) a Non-Hispanic Black Non-Hispanic White Hispanic | 13 (43%) 9 (30%) 8 (27%) | 13 (43%) 9 (30%) 8 (27%) | 26 (43%) 18 (30%) 16 (27%) |
Marital status a Married Divorced/separated/other | 13 (43%) 17 (57%) | 10 (33%) 20 (67%) | 23 (38%) 37 (62%) |
Female Child (n (%)) a | 11 (37%) | 16 (53%) | 27 (45%) |
Parental role is mother a | 28 (93%) | 25 (83%) | 53 (88%) |
Parent education greater than highschool (n (%)) a | 19 (66%) | 19 (66%) | 38 (66%) |
MDPQ score c (mean (sd)) | 37.9 (3.9) | 38.1 (2.4) | 38.0 (3.2) |
Intervention Component | Mean (sd) Parental Rating: Overall Helpfulness for Decreasing Their Family’s Sugary Drink Intake a | Mean (sd) Parental Rating: Overall Helpfulness for Increasing Their Family’s Water Intake a |
---|---|---|
“Get in the Zero Zone!” video | 3.0 (1.9) | 3.0 (1.2) |
Water promotion toolkit | 3.5 (0.7) | 3.6 (0.6) |
“Ready, Set, Gulp!” mobile phone app | 2.3 (1.2) | 2.4 (1.2) |
IVR call series | 3.0 (1.2) | 3.0 (1.1) |
Beverage Intake Metric a | Difference at 3 Months b (95% CI; p-Value) | Difference at 6 Months b (95% CI; p-Value) |
---|---|---|
Children | ||
Combined SSB/FJ frequency c | −0.42 (−1.01, 0.16; 0.15) | −0.27 (−0.97, 0.42; 0.43) |
Combined SSB/FJ volume d | −4.50 (−9.53, 0.54; 0.08) | −1.50 (−6.69, 3.69; 0.56) |
Water frequency | 0.22 (−0.17, 0.60; 0.27) | 0.39 (−0.10, 0.88; 0.12) |
Water volume | 2.55 (−2.77, 7.86; 0.34) | 2.06 (−4.05, 8.17; 0.50) |
SSB frequency | −0.29 (−0.73, 0.14; 0.18) | −0.01 (−0.46, 0.44; 0.95) |
SSB volume | −2.40 (−5.88, 1.08; 0.17) | 0.21 (−3.67, 4.09; 0.91) |
FJ frequency | −0.11 (−0.52, 0.30; 0.60) | −0.25 (−0.69, 0.19; 0.26) |
FJ volume | −2.08 (−6.18, 2.03; 0.32) | −1.86 (−4.42, 0.70; 0.15) |
Parents | ||
Combined SSB/FJ frequency | −0.80 (−1.53, −0.06; 0.03) | −0.27 (−1.05, 0.51; 0.49) |
Combined SSB/FJ volume | −6.04 (−15.62, 3.54; 0.21) | 0.89 (−6.96, 8.73; 0.82) |
Water frequency | 0.01 (−0.47, 0.49; 0.96) | 0.19 (−0.16, 0.55; 0.27) |
Water volume | 1.87 (−6.16, 9.90; 0.64) | 4.69 (−2.15, 11.53; 0.18) |
SSB frequency | −0.78 (−1.42, −0.14; 0.02) | −0.26 (−0.91, 0.39; 0.42) |
SSB volume | −4.96 (−13.45, 3.54; 0.25) | 1.38 (−5.31, 8.06; 0.68) |
FJ frequency | −0.01 (−0.27, 0.25; 0.95) | −0.02 (−0.27, 0.24; 0.89) |
FJ volume | −1.36 (−5.10, 2.38; 0.47) | −0.51 (−3.06, 2.04; 0.69) |
Survey Measure (Domain or Item) a | Baseline Score/Value (Mean (sd)) | 6-Month Score/Value (Mean (sd)) | Difference at 6 Months b (95% CI; p-Value) | ||
---|---|---|---|---|---|
Control | Intervention | Control | Intervention | ||
Knowledge Items | |||||
Identification of health conditions related to sugar intake (range 0–6 points) | 4.7 (1.9) | 4.8 (1.7) | 5.2 (1.5) | 5.4 (1.7) | 0.17 (−0.71, 1.05; 0.70) |
Classification of beverage examples (range 0–10 points) | 7.1 (1.5) | 7.7 (1.5) | 7.2 (1.5) | 7.8 (1.4) | 0.29 (−0.47, 1.05; 0.45) |
9–0.47,Identification of age-specific guidelines for child SSB and fruit juice intake (range 0–5 points) | 2.2 (1.6) | 2.4 (1.7) | 2.1 (1.5) | 2.5 (1.5) | 0.18 (−0.50, 0.87; 0.59) |
Total knowledge score (range 0–21 points) | 14.0 (3.5) | 14.9 (3.9) | 14.5 (3.1) | 15.6 (3.3) | 0.51 (−1.02, 2.04; 0.51) |
Attitude or Belief Items | |||||
Rating of healthfulness for Capri Sun (1–9 scale, 1 = worst or least healthy, 9 = best or most healthy) | 3.3 (2.5) | 3.5 (2.2) | 3.6 (2.4) | 2.4 (1.7) | −1.18 (−2.13, −0.23; 0.02) |
Rating of healthfulness for Snapple Iced Tea (1–9 scale, 1 = worst or least healthy, 9 = best or most healthy) | 2.1 (1.9) | 2.1 (1.9) | 3.0 (2.2) | 1.8 (1.1) | −1.16 (−2.06, −0.26; 0.01) |
Level of agreement with statement: “Most children need to drink sports drinks like Gatorade or Powerade when they are active to keep them hydrated.” (1–5 scale, 1 = strongly disagree, 5 = strongly agree) | 3.3 (1.5) | 3.0 (1.6) | 3.5 (1.3) | 2.4 (1.6) | −0.96 (−1.65, −0.27; 0.01) |
Level of agreement with statement: “Energy drinks such as Red Bull or Monster are a type of sports drink, such as Powerade or Gatorade.” (1–5 scale, 1 = strongly disagree, 5 = strongly agree) | 1.6 (1.3) | 1.6 (1.0) | 1.3 (1.0) | 2.1 (1.7) | 0.78 (0.02, 1.54; 0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, K.H.; Hsu, F.-C.; Block, J.P.; Skelton, J.A.; Schwartz, M.B.; Krieger, J.; Hindel, L.R.; Ospino Sanchez, B.; Zoellner, J. A Technology-Driven, Healthcare-Based Intervention to Improve Family Beverage Choices: Results from a Pilot Randomized Trial in the United States. Nutrients 2023, 15, 2141. https://doi.org/10.3390/nu15092141
Lewis KH, Hsu F-C, Block JP, Skelton JA, Schwartz MB, Krieger J, Hindel LR, Ospino Sanchez B, Zoellner J. A Technology-Driven, Healthcare-Based Intervention to Improve Family Beverage Choices: Results from a Pilot Randomized Trial in the United States. Nutrients. 2023; 15(9):2141. https://doi.org/10.3390/nu15092141
Chicago/Turabian StyleLewis, Kristina H., Fang-Chi Hsu, Jason P. Block, Joseph A. Skelton, Marlene B. Schwartz, James Krieger, Leah Rose Hindel, Beatriz Ospino Sanchez, and Jamie Zoellner. 2023. "A Technology-Driven, Healthcare-Based Intervention to Improve Family Beverage Choices: Results from a Pilot Randomized Trial in the United States" Nutrients 15, no. 9: 2141. https://doi.org/10.3390/nu15092141
APA StyleLewis, K. H., Hsu, F. -C., Block, J. P., Skelton, J. A., Schwartz, M. B., Krieger, J., Hindel, L. R., Ospino Sanchez, B., & Zoellner, J. (2023). A Technology-Driven, Healthcare-Based Intervention to Improve Family Beverage Choices: Results from a Pilot Randomized Trial in the United States. Nutrients, 15(9), 2141. https://doi.org/10.3390/nu15092141