Influence of Pre-Pregnancy Obesity on Carbohydrate and Lipid Metabolism with Selected Adipokines in the Maternal and Fetal Compartment
Abstract
:1. Introduction
1.1. Obesity as a Clinical Problem
1.2. Characteristics of Selected Adipokines
1.2.1. Leptin
1.2.2. Adiponectin
1.2.3. Resistin
1.2.4. TNF-α
2. Aim of the Study
3. Materials and Methods
3.1. Characteristics of the Study and Control Groups
3.2. Methods
3.3. Statistical Analysis
4. Results
4.1. Comparative Analysis of Selected Parameters of Carbohydrate Metabolism in the Study and Control Group
4.2. Comparative Analysis of Selected Parameters of Lipid Metabolism
4.3. Comparative Analysis of Serum Concentrations of Leptin, Adiponectin, Resistin, and TNF-α in the Study and Control Groups
4.4. Analysis of the Relationship between the Concentration of Leptin, Adiponectin, Resistin, TNF-α, and Pre-Pregnancy BMI of the Mothers
4.5. Analysis of the Relationship between the Concentration of Leptin, Adiponectin, Resistin, TNF-α, and the Birth Weight of the Newborn
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
HOMA-IR | Homeostatic Model Assessment Insulin Resistance |
VLDL | Very Low Density Lipoproteins |
TG | Triglycerides |
HDL | High Density Lipoproteins |
LDL | Low Density Lipoproteins |
TNF-α | Tumor Necrosis Factor alpha |
IR | Insulin Resistance |
References
- Relph, S.; Guo, Y.; Harvey, A.; Vieira, M.C.; Corsi, D.J.; Gaudet, L.M.; Pasupathy, D. Characteristics associated with uncomplicated pregnancies in women with obesity: A population-based cohort study. BMC Pregnancy Childbirth 2021, 21, 182. [Google Scholar] [CrossRef] [PubMed]
- WHO/NUT/NCD/98.1; Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity: Geneva, 3–5 June 1997. World Health Organization: Geneva, Switzerland, 1997.
- WHO. Obesity and Overweight. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 31 January 2023).
- Lim, C.C.; Mahmood, T. Obesity in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 309–319. [Google Scholar] [CrossRef] [PubMed]
- James, W.P.T. The epidemiology of obesity: The size of the problem. J. Intern. Med. 2008, 263, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Pietrzykowska, E.; Wierusz-Wysocka, B. Psychological aspects of overweight, obesity and dieting. Pol. Merk. Lek. 2008, 24, 472–476. [Google Scholar]
- Sommer, C.; Mørkrid, K.; Jenum, A.K.; Sletner, L.; Mosdøl, A.; Birkeland, K.I. Weight gain, total fat gain and regional fat gain during pregnancy and the association with gestational diabetes: A population-based cohort study. Int. J. Obes. 2014, 38, 76–81. [Google Scholar] [CrossRef] [PubMed]
- ACOG. ACOG Committee opinion no. 549: Obesity in Pregnancy. Obs. Gynecol. 2013, 121, 213–217. [Google Scholar] [CrossRef]
- Mourtakos, S.P.; Tambalis, K.D.; Panagiotakos, D.B.; Antonogeorgos, G.; Alexi, C.D.; Georgoulis, M.; Saade, G.; Sidossis, L.S. Association between gestational weight gain and risk of obesity in preadolescence: A longitudinal study (1997–2007) of 5125 children in Greece. J. Hum. Nutr. Diet. 2017, 30, 51–58. [Google Scholar] [CrossRef]
- Su, R.; Zhu, W.; Wei, Y.; Wang, C.; Feng, H.; Lin, L.; Hod, M.; Hadar, E.; Yang, H. Relationship of maternal birth weight on maternal and neonatal outcomes: A multicenter study in Beijing. J. Perinatol. 2016, 36, 1061–1066. [Google Scholar] [CrossRef]
- Westermeier, F.; Sáez, P.J.; Villalobos-Labra, R.; Sobrevia, L.; Farías-Jofré, M. Programming of fetal insulin resistance in pregnancies with maternal obesity by ER stress and inflammation. BioMed Res. Int. 2014, 2014, 917672. [Google Scholar] [CrossRef]
- Imoh, L.C.; Ocheke, A.N. Correlation between maternal weight and insulin resistance in second half of pregnancy. Niger. Med. J. 2014, 55, 465–468. [Google Scholar] [CrossRef]
- Tinius, R.A.; Cahill, A.G.; Strand, E.A.; Cade, W.T. Altered maternal lipid metabolism is associated with higher inflammation in obese women during late pregnancy. Integr. Obes. Diabetes 2015, 2, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Seremak-Mrozikiewicz, A.; Barlik, M.; Drews, K. Fetal programming as a cause of chronic diseases in adult life. Ginekol. Pol. 2014, 85, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kessous, R.; Davidson, E.; Meirovitz, M.; Sergienko, R.; Sheiner, E. Prepregnancy obesity: A risk factor for future development of ovarian and breast cancer. Eur. J. Cancer. Prev. 2016, 26, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.; Borowski, K. Pregnancy complications and the risk of metabolic syndrome for the offspring. Curr. Cardiovasc. Risk Rep. 2013, 7, 217–223. [Google Scholar] [CrossRef]
- Shin, D.; Lee, K.W.; Song, W.O. Pre-Pregnancy Weight Status Is Associated with Diet Quality and Nutritional Biomarkers during Pregnancy. Nutrients 2016, 8, 162. [Google Scholar] [CrossRef]
- Butte, N.F. Carbohydrate and lipid metabolism in pregnancy: Normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 1256S–1261S. [Google Scholar] [CrossRef]
- Grimes, S.B.; Wild, R. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK498654/ (accessed on 31 January 2023).
- Reynolds, L.P.; Caton, J.S. Role of the pre- and post-natal environment in developmental programming of health and productivity. Mol. Cell Endocrinol. 2012, 354, 54–59. [Google Scholar] [CrossRef]
- Şengül, O. Maternal and Fetal Carbohydrate, Lipid and Protein Metabolisms. Eur. J. Gen. Med. 2014, 11, 299–304. [Google Scholar] [CrossRef]
- Gutaj, P.; Wender-Ożegowska, E.; Mantaj, U.; Zawiejska, A.; Brązert, J. Maternal body mass index and gestational weight gain with gestational diabetes. Ginekol. Pol. 2011, 82, 827–833. [Google Scholar]
- Chehab, F.F. 20 years of leptin: Leptin and reproduction: Past milestones, present undertakings, and future endeavors. J. Endocrinol. 2014, 223, T37–T48. [Google Scholar] [CrossRef]
- Solis-Paredes, M.; Espino y Sosa, S.; Estrada-Gutierrez, G.; Nava-Salazar, S.; Ortega-Castillo, V.; Rodriguez-Bosch, M.; Bravo-Flores, E.; Espejel-Nuñez, A.; Tolentino-Dolores, M.; Gaona-Estudillo, R.; et al. Maternal and fetal lipid and adipokine profiles and their association with obesity. Int. J. Endocrinol. 2016, 2016, 7015626. [Google Scholar] [CrossRef] [PubMed]
- Gargari, B.P.; Houjeghani, S.; Farzadi, L.; Houjeghani, S.; Safaeiyan, A. Relationship between Serum Leptin, Ghrelin and Dietary Macronutrients in Women with Polycystic Ovary Syndrome. Int. J. Fertil. Steril. 2015, 9, 313–321. [Google Scholar]
- Al-Suhaimi, E.A.; Shehzad, A. Leptin, resistin and visfatin: The missing link between endocrine metabolic disorders and immunity. Eur. J. Med. Res. 2013, 18, 12. [Google Scholar] [CrossRef]
- Sivan, E.; Whittaker, P.G.; Sinha, D.; Homko, C.J.; Lin, M.; Reece, E.A.; Boden, G. Leptin in human pregnancy: The relationship with gestational hormones. Am. J. Obstet. Gynecol. 1998, 179, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Masuzaki, H.; Ogawa, Y.; Sagawa, N.; Hosoda, K.; Matsumoto, T.; Mise, H.; Nishimura, H.; Yoshimasa, Y.; Tanaka, I.; Mori, T.; et al. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997, 3, 1029–1033. [Google Scholar] [CrossRef]
- D’Ippolito, S.; Tersigni, C.; Scambia, G.; Di Simone, N. Adipokines, an adipose tissue and placental product with biological functions during pregnancy. BioFactors 2012, 38, 14–23. [Google Scholar] [CrossRef]
- Mazaki-Tovi, S.; Kanety, H.; Pariente, C.; Hemi, R.; Wiser, A.; Schiff, E.; Sivan, E. Maternal serum adiponectin levels during human pregnancy. J. Perinatol. 2007, 27, 77–81. [Google Scholar] [CrossRef]
- Balsan, G.A.; Vieira, J.L.D.C.; Oliveira, A.M.; Portal, V.L. Relationship between adiponectin, obesity and insulin resistance. Rev. Assoc. Med. Bras. 2015, 61, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Yokota, I.; Kitamura, S.; Matsuda, J.; Naito, E.; Kuroda, Y. Plasma adiponectin levels in newborns are higher than those in adults and positively correlated with birth weight. Clin. Endocrinol. (Oxf) 2004, 61, 418–423. [Google Scholar] [CrossRef]
- Ichida, K.; Moriyama, T.; Morita, H.; Kondo, T.; Yoshida, S.; Ohara, N.; Maruo, T. Plasma adiponectin concentrations and placental adiponectin expression in pre-eclamptic women. Gynecol. Endocrinol. 2007, 23, 238–243. [Google Scholar] [CrossRef]
- Lappas, M.; Yee, K.; Permezel, M.; Rice, G.E. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol. 2005, 186, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Aye, I.L.M.H.; Powell, T.L.; Jansson, T. Review: Adiponectin-the missing link between maternal adiposity, placental transport and fetal growth? Placenta 2013, 34, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef]
- Jiang, S.; Park, D.W.; Tadie, J.M.; Gregoire, M.; Deshane, J.; Pittet, J.F.; Abraham, E.; Zmijewski, J.W. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J. Immunol. 2014, 192, 4795–4803. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.S.; Park, K.H.; Cho, Y.M.; Chung, S.S.; Cho, H.J.; Cho, S.Y.; Kim, S.J.; Kim, S.Y.; Lee, H.K.; Park, K.S. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc. Res. 2006, 69, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Patel, L.; Buckels, A.C.; Kinghorn, I.J.; Murdock, P.R.; Holbrook, J.D.; Plumpton, C.; Macphee, C.H.; Smith, S.A. Resistin is expressed in human macrophages and directly regulated by PPARγ activators. Biochem. Biophys. Res. Commun. 2003, 300, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Cortelazzi, D.; Corbetta, S.; Ronzoni, S.; Pelle, F.; Marconi, A.; Cozzi, V.; Cetin, I.; Cortelazzi, R.; Beck-Peccoz, P.; Spada, A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. (Oxf) 2007, 66, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Farid, S.D.; Najati, N.; Gharebaghi, M.M.; Haghjo, A.G.; Ghojazadeh, M. Resistin in cord blood of small for gestation age and appropriate for gestation age term neonates. Iran. J. Pediatr. 2013, 23, 659–663. [Google Scholar]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Hotamisligil, G.S.; Arner, P.; Caro, J.F.; Atkinson, R.L.; Spiegelman, B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest 1995, 95, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Romanowska-Próchnicka, K.; Felis-Giemza, A.; Olesińska, M.; Wojdasiewicz, P.; Paradowska-Gorycka, A.; Szukiewicz, D. The Role of TNF-α and Anti-TNF-α Agents during Preconception, Pregnancy, and Breastfeeding. Int. J. Mol. Sci. 2021, 22, 2922. [Google Scholar] [CrossRef] [PubMed]
- Brogin Moreli, J.; Cirino Ruocco, A.M.; Vernini, J.M.; Rudge, M.V.C.; Calderon, I.M.P. Interleukin 10 and tumor necrosis factor-alpha in pregnancy: Aspects of interest in clinical obstetrics. ISRN Obstet. Gynecol. 2011, 2012, 230742. [Google Scholar] [CrossRef]
- Azizieh, F.Y.; Raghupathy, R.G. Tumor Necrosis Factor-α and Pregnancy Complications: A Prospective Study. Med. Princ. Pract. 2015, 24, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction 2017, 153, 97–108. [Google Scholar] [CrossRef]
- Barker, G.; Lim, R.; Georgiou, H.M.; Lappas, M. Omentin-1 is decreased in maternal plasma, placenta and adipose tissue of women with pre-existing obesity. PLoS ONE 2012, 7, e42943. [Google Scholar] [CrossRef]
- Catalano, P.M.; Presley, L.; Minium, J.; Hauguel-de Mouzon, S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009, 32, 1076–1080. [Google Scholar] [CrossRef]
- Thakali, K.M.; Saben, J.; Faske, J.B.; Lindsey, F.; Gomez-Acevedo, H.; Lowery, C.L.; Badger, T.M.; Andres, A.; Shankar, K. Maternal pregravid obesity changes gene expression profiles toward greater inflammation and reduced insulin sensitivity in umbilical cord. Pediatr. Res. 2014, 76, 202–210. [Google Scholar] [CrossRef]
- Meyer, B.J.; Stewart, F.M.; Brown, E.A.; Cooney, J.; Nilsson, S.; Olivecrona, G.; Ramsay, J.E.; Griffin, B.A.; Caslake, M.J.; Freeman, D.J. Maternal obesity is associated with the formation of small dense LDL and hypoadiponectinemia in the third trimester. J. Clin. Endocrinol. Metab. 2013, 98, 643–652. [Google Scholar] [CrossRef]
- Bozkurt, L.; Göbl, C.S.; Hörmayer, A.T.; Luger, A.; Pacini, G.; Kautzky-Willer, A. The impact of preconceptional obesity on trajectories of maternal lipids during gestation. Sci. Rep. 2016, 6, 29971. [Google Scholar] [CrossRef]
- Misra, V.K.; Straughen, J.K.; Trudeau, S. Maternal serum leptin during pregnancy and infant birth weight: The influence of maternal overweight and obesity. Obesity 2013, 21, 1064–1069. [Google Scholar] [CrossRef]
- Brynhildsen, J.; Sydsjö, G.; Blomberg, M.; Claesson, I.M.; Theodorsson, E.; Nyström, F.; Sydsjö, A.; Josefsson, A. Leptin and adiponectin in cord blood from children of normal weight, overweight and obese mothers. Acta Paediatr. 2013, 102, 620–624. [Google Scholar] [CrossRef]
- Karakosta, P.; Georgiou, V.; Fthenou, E.; Papadopoulou, E.; Roumeliotaki, T.; Margioris, A.; Castanas, E.; Kampa, M.; Kogevinas, M.; Chatzi, L. Maternal weight status, cord blood leptin and fetal growth: A prospective mother-child cohort study (Rhea study). Paediatr. Perinat. Epidemiol. 2013, 27, 461–471. [Google Scholar] [CrossRef]
- Valsamakis, G.; Papatheodorou, D.C.; Naoum, A.; Margeli, A.; Papassotiriou, I.; Kapantais, E.; Creatsas, G.; Kumar, S.; Mastorakos, G. Neonatal birth waist is positively predicted by second trimester maternal active ghrelin, a pro-appetite hormone, and negatively associated with third trimester maternal leptin, a pro-satiety hormone. Early Hum. Dev. 2014, 90, 487–492. [Google Scholar] [CrossRef]
- Lepercq, J.; Guerre-Millo, M.; André, J.; Caüzac, M.; Hauguel-de Mouzon, S. Leptin: A potential marker of placental insufficiency. Gynecol. Obstet. Invest 2003, 55, 151–155. [Google Scholar] [CrossRef]
- Smith, J.T.; Waddell, B.J. Leptin distribution and metabolism in the pregnant rat: Transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology 2003, 144, 3024–3030. [Google Scholar] [CrossRef]
- West, J.; Wright, J.; Fairley, L.; Sattar, N.; Whincup, P.; Lawlor, D.A. Do ethnic differences in cord blood leptin levels differ by birthweight category? Findings from the Born in Bradford cohort study. Int. J. Epidemiol. 2014, 43, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.J.; Santos, A.C. Umbilical cord blood adipokines and newborn weight change. Arch. Gynecol. Obstet. 2015, 291, 1037–1040. [Google Scholar] [CrossRef]
- Varvarigou, A.; Mantzoros, C.S.; Beratis, N.G. Cord blood leptin concentrations in relation to intrauterine growth. Clin. Endocrinol. (Oxf) 1999, 50, 177–183. [Google Scholar] [CrossRef]
- Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001, 86, 1930–1935. [Google Scholar] [CrossRef]
- Zavalza-Gómez, A.B.; Anaya-Prado, R.; Rincón-Sánchez, A.R.; Mora-Martínez, J.M. Adipokines and insulin resistance during pregnancy. Diabetes Res. Clin. Pract. 2008, 80, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Lord, E.; Ledoux, S.; Murphy, B.D.; Beaudry, D.; Palin, M.F. Expression of adiponectin and its receptors in swine. J. Anim. Sci. 2005, 83, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Winer, J.C.; Zern, T.L.; Taksali, S.E.; Dziura, J.; Cali, A.M.; Wollschlager, M.; Seyal, A.A.; Weiss, R.; Burgert, T.S.; Caprio, S. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 4415–4423. [Google Scholar] [CrossRef] [PubMed]
- Zembala-Szczerba, M.; Jaworowski, A.; Huras, H.; Babczyk, D.; Jach, R. Low-Grade Metabolically-Induced Inflammation Mediators Interleukin-6, Adiponectin, and TNF-α Serum Levels in Obese Pregnant Patients in the Perinatal Period. Med. Sci. Monit. Basic. Res. 2017, 23, 1. [Google Scholar] [CrossRef]
- Vernini, J.M.; Moreli, J.B.; Costa, R.A.; Negrato, C.A.; Rudge, M.V.; Calderon, I.M. Maternal adipokines and insulin as biomarkers of pregnancies complicated by overweight and obesity. Diabetol. Metab. Syndr. 2016, 8, 68. [Google Scholar] [CrossRef]
- Wang, J.; Shang, L.X.; Dong, X.; Wang, X.; Wu, N.; Wang, S.H.; Zhang, F.; Xu, L.M.; Xiao, Y. Relationship of adiponectin and resistin levels in umbilical serum, maternal serum and placenta with neonatal birth weight. Aust. N. Z. J. Obstet. Gynaecol. 2010, 50, 432–438. [Google Scholar] [CrossRef]
- Lowe, L.P.; Metzger, B.E.; Lowe Jr, W.L.; Dyer, A.R.; McDade, T.W.; McIntyre, H.D.; HAPO Study Cooperative Research Group. Inflammatory mediators and glucose in pregnancy: Results from a subset of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. J. Clin. Endocrinol. Metab. 2010, 95, 5427–5434. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Walker, J.D.; Havel, P.J.; Hamilton, B.A.; Calder, A.A.; Johnstone, F.D.; Scottish Multicentre Study of Diabetes in Pregnancy. Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care 2003, 26, 2244–2249. [Google Scholar] [CrossRef]
- Kajantie, E.; Hytinantti, T.; Hovi, P.; Andersson, S. Cord plasma adiponectin: A 20-fold rise between 24 weeks gestation and term. J. Clin. Endocrinol. Metab. 2004, 89, 4031–4036. [Google Scholar] [CrossRef]
- Vatish, M.; Chen, J.; Karteris, E.; Zervou, S.; Digby, J.E.; Hillhouse, E.W.; Randeva, H.S. Secretion of adiponectin by human placenta: Differential modulation of adiponectin and its receptors by cytokines. Diabetologia 2006, 49, 1292–1302. [Google Scholar]
- Lee, J.H.; Chan, J.L.; Yiannakouris, N.; Kontogianni, M.; Estrada, E.; Seip, R.; Orlova, C.; Mantzoros, C.S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 2003, 88, 4848–4856. [Google Scholar] [CrossRef]
- Noureldeen, A.F.; Qusti, S.Y.; Al-Seeni, M.N.; Bagais, M.H. Maternal leptin, adiponectin, resistin, visfatin and tumor necrosis factor-alpha in normal and gestational diabetes. Indian J. Clin. Biochem. 2014, 29, 462–470. [Google Scholar] [CrossRef]
- Nien, J.K.; Mazaki-Tovi, S.; Romero, R.; Kusanovic, J.P.; Erez, O.; Gotsch, F.; Pineles, B.L.; Friel, L.A.; Espinoza, J.; Goncalves, L.; et al. Resistin: A hormone which induces insulin resistance is increased in normal pregnancy. J. Perinat. Med. 2007, 35, 513–521. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Hauguel-De Mouzon, S.; Lepercq, J.; Challier, J.C.; Huston-Presley, L.; Friedman, J.E.; Kalhan, S.C.; Catalano, P.M. TNF-α Is a Predictor of Insulin Resistance in Human Pregnancy. Diabetes 2002, 51, 2207–2213. [Google Scholar] [CrossRef]
- Challier, J.C.; Basu, S.; Bintein, T.; Minium, J.; Hotmire, K.; Catalano, P.M.; Hauguel-de Mouzon, S. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta 2008, 29, 274–281. [Google Scholar] [CrossRef]
- Aye, I.L.; Lager, S.; Ramirez, V.I.; Gaccioli, F.; Dudley, D.J.; Jansson, T.; Powell, T.L. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol. Reprod. 2014, 90, 129. [Google Scholar] [CrossRef]
- de Toledo Baldi, E.; Dias Bobbo, V.C.; Melo Lima, M.H.; Velloso, L.A.; Pereira de Araujo, E. Tumor necrosis factor-alpha levels in blood cord is directly correlated with the body weight of mothers. Obes. Sci. Pract. 2016, 2, 210–214. [Google Scholar] [CrossRef]
- Zahorska-Markiewicz, B.; Janowska, J.; Olszanecka-Glinianowicz, M.; Zurakowski, A. Serum concentrations of TNF-alpha and soluble TNF-alpha receptors in obesity. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1392–1395. [Google Scholar] [CrossRef]
- Cheung, A.T.; Ree, D.; Kolls, J.K.; Fuselier, J.; Coy, D.H.; Bryer-Ash, M. An in vivo model for elucidation of the mechanism of tumor necrosis factor-alpha (TNF-alpha)-induced insulin resistance: Evidence for differential regulation of insulin signaling by TNF-alpha. Endocrinology 1998, 139, 4928–4935. [Google Scholar] [CrossRef]
- Kirchgessner, T.G.; Uysal, K.T.; Wiesbrock, S.M.; Marino, M.W.; Hotamisligil, G.S. Tumor Necrosis Factor-α Contributes to Obesity-related Hyperleptinemia by Regulating Leptin Release from Adipocytes. J. Clin. Invest. 1997, 100, 2777–2782. [Google Scholar] [CrossRef]
- Stupak, A.; Geca, T.; Krzyzanowski, A.; Kwiatek, M.; Slowik-Kwiatkowska, I.; Kwasniewska, A. Obesity—A still underestimated risk factor during antenatal corticosteroids therapy. Ginekol. Pol. 2022. ahead of print. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, J.; Wang, W.; Qiou, J.; Yang, L.; Chen, S. Maternal fat free mass during pregnancy is associated with birth weight. Reprod Health 2017, 14, 47. [Google Scholar] [CrossRef]
- Most, J.; Marlatt, K.L.; Altazan, A.D.; Redman, L.M. Advances in assessing body composition during pregnancy. Eur. J. Clin. Nutr. 2018, 72, 645–656. [Google Scholar] [CrossRef]
General Characteristics | Median | Percentile | Range | ||
---|---|---|---|---|---|
25 | 75 | ||||
Age (years) | O | 30.5 | 28 | 33 | 25–43 |
C | 27 | 25 | 32 | 21–38 | |
Height (cm) | O | 167 | 160 | 171 | 150–179 |
C | 165 | 162 | 170 | 155–184 | |
Weight before pregnancy (kg) | O | 94 | 79 | 103 | 69–130 |
C | 59 | 54 | 63 | 45–73 | |
BMI before pregnancy (kg/m2) | O | 32.7 | 30.1 | 35.6 | 30–44.5 |
C | 21.2 | 19.4 | 22.8 | 18.5–25 | |
Body weight in third trimester (kg) | O | 108.5 | 95 | 115 | 85–138 |
C | 73 | 67 | 78 | 59.5–100 | |
Systolic blood pressure (mmHg) | O | 131 | 117 | 131 | 109–136 |
C | 118 | 105 | 128 | 110–134 | |
Diastolic blood pressure (mmHg) | O | 83 | 71 | 83 | 68–88 |
C | 79 | 69 | 81 | 67–86 | |
Weight gain during pregnancy (kg) | O | 12 | 9 | 16 | 3–28 |
C | 14.75 | 11.5 | 19 | 8–30 | |
Gestational age (weeks) | O | 40 | 39 | 40 | 37–41 |
C | 40 | 39 | 40 | 37–42 |
Neonatal Birth Weight (g) | ||||||
---|---|---|---|---|---|---|
Median | Percentile | Range | Statistical Analysis | |||
25 | 75 | |||||
Neonates | O | 3745 | 3490 | 4170 | 2880–4420 | p < 0.01 |
C | 3310 | 3100 | 3630 | 2940–4500 |
Median | Percentile | Min–Max | Statistical Analysis | |||
---|---|---|---|---|---|---|
25 | 75 | |||||
Insulin (M) (µlU/mL) | O | 14.0 | 10.4 | 20.4 | 3.2–55.6 | p = 0.7 |
C | 12.9 | 9.2 | 21.4 | 4.4–68.4 | ||
Insulin (U) (µlU/mL) | O | 6.7 | 4.5 | 11.2 | 2.2–30 | p = 0.88 |
C | 8.1 | 4.5 | 9.4 | 2.8–14.1 | ||
Glucose (M) (mmol/L) | O | 4.7 | 3.6 | 5.4 | 1.9–6.7 | p = 0.95 |
C | 4.3 | 3.9 | 5.2 | 2–6.6 | ||
Glucose (U) (mmol/L) | O | 3.8 | 3.0 | 4.7 | 0.8–7.3 | p = 0.59 |
C | 3.7 | 3.1 | 5.7 | 0.6–6.4 | ||
HOMA-IR (M) | O | 2.4 | 1.6 | 4.4 | 0.6–15.3 | p = 0.91 |
C | 2.5 | 1.5 | 4.5 | 0.7–19.1 | ||
HOMA-IR (U) | O | 1.1 | 0.7 | 2.0 | 0.2–3.7 | p = 0.86 |
C | 1.3 | 0.8 | 1.8 | 0.3–3.7 |
Substance | Median | Percentile | Range | Statistical Analysis | ||
---|---|---|---|---|---|---|
25 | 75 | |||||
Total cholesterol M (mg/dL) | O | 265.5 | 242.4 | 288 | 205.1–385.1 | p < 0.05 |
C | 296.5 | 259 | 319.9 | 185–398 | ||
Total cholesterol U (mg/dL) | O | 53.7 | 42 | 70.2 | 32.7–105.9 | p < 0.001 |
C | 78 | 67.6 | 87 | 53.2–110.6 | ||
TG M (mg/dL) | O | 317.5 | 267.9 | 350.9 | 123.2–540.4 | p < 0.05 |
C | 280.9 | 203.0 | 303 | 123.5–376.7 | ||
TG U (mg/dL) | O | 26.1 | 13.8 | 43.7 | 1–73.4 | p = 0.67 |
C | 28.9 | 19.1 | 39.9 | 13.7–80.4 | ||
HDL M (mg/dL) | O | 61.2 | 53.2 | 68.8 | 36.7–102.9 | p < 0.001 |
C | 76.8 | 66.1 | 83 | 42.7–115 | ||
HDL U (mg/dL) | O | 18.2 | 11.3 | 30.7 | 9.4–41.2 | p < 0.001 |
C | 35.6 | 34.1 | 40.2 | 29.8–49.7 | ||
LDL M (mg/dL) | O | 162 | 138.6 | 190.7 | 98.7–267.7 | p = 0.99 |
C | 168.8 | 147 | 188.5 | 95–216.2 | ||
LDL U (mg/dL) | O | 20.6 | 14.6 | 30.2 | 1.6–61.2 | p < 0.001 |
C | 31.4 | 26.8 | 39.1 | 19.9–56 | ||
VLDL M (nmol/mL) | O | 546.5 | 498 | 1418.7 | 320.3–7422.6 | p = 0.24 |
C | 666.7 | 555.7 | 1085.8 | 415.5–7748.3 | ||
VLDL U (nmol/mL) | O | 576 | 506.1 | 1566.6 | 360.5–7107.2 | p = 0.48 |
C | 697.9 | 522.1 | 1690.1 | 402.1–7050.4 |
Adipokines | Median | Percentile | Range | Statistical Analysis | ||
---|---|---|---|---|---|---|
25 | 75 | |||||
Leptin M (ng/mL) | O | 36.4 | 27.9 | 54.1 | 4.1–124.4 | p < 0.001 |
C | 16.5 | 10.1 | 34.3 | 4.2–95 | ||
Leptin U (ng/mL) | O | 10.7 | 6.8 | 22.0 | 1.7–51.3 | p < 0.05 |
C | 7.0 | 4.4 | 13.1 | 1.1–20.1 | ||
Adiponectin M (μg/mL) | O | 5.9 | 4.4 | 8.5 | 2.5–18.4 | p = 0.08 |
C | 8.4 | 5.1 | 10.4 | 2–18 | ||
Adiponectin U (μg/mL) | O | 29.0 | 24.2 | 34.9 | 15.4–41.8 | p = 0.4 |
C | 33.4 | 24.0 | 37.1 | 10.9–4.0 | ||
Resistin M (ng/mL) | O | 13.4 | 9.1 | 17.8 | 5.4–30.4 | p < 0.05 |
C | 8.9 | 7.4 | 12.7 | 4.9–24.7 | ||
Resistin U (ng/mL) | O | 14.4 | 12.0 | 20.6 | 8.9–56.8 | p = 0.24 |
C | 12.6 | 11.4 | 18.6 | 8.2–22.7 | ||
TNF-α M (pg/mL) | O | 10.1 | 3.1 | 32.7 | 0.001–2001.9 | p = 0.13 |
C | 26.2 | 6.1 | 257.2 | 0.006–1906.5 | ||
TNF-α U (pg/mL) | O | 24.8 | 4.6 | 50.4 | 0.006–1526.3 | p = 0.8 |
C | 12.3 | 6.1 | 50.2 | 0.4–972.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miturski, A.; Gęca, T.; Stupak, A.; Kwaśniewski, W.; Semczuk-Sikora, A. Influence of Pre-Pregnancy Obesity on Carbohydrate and Lipid Metabolism with Selected Adipokines in the Maternal and Fetal Compartment. Nutrients 2023, 15, 2130. https://doi.org/10.3390/nu15092130
Miturski A, Gęca T, Stupak A, Kwaśniewski W, Semczuk-Sikora A. Influence of Pre-Pregnancy Obesity on Carbohydrate and Lipid Metabolism with Selected Adipokines in the Maternal and Fetal Compartment. Nutrients. 2023; 15(9):2130. https://doi.org/10.3390/nu15092130
Chicago/Turabian StyleMiturski, Andrzej, Tomasz Gęca, Aleksandra Stupak, Wojciech Kwaśniewski, and Anna Semczuk-Sikora. 2023. "Influence of Pre-Pregnancy Obesity on Carbohydrate and Lipid Metabolism with Selected Adipokines in the Maternal and Fetal Compartment" Nutrients 15, no. 9: 2130. https://doi.org/10.3390/nu15092130
APA StyleMiturski, A., Gęca, T., Stupak, A., Kwaśniewski, W., & Semczuk-Sikora, A. (2023). Influence of Pre-Pregnancy Obesity on Carbohydrate and Lipid Metabolism with Selected Adipokines in the Maternal and Fetal Compartment. Nutrients, 15(9), 2130. https://doi.org/10.3390/nu15092130