A Review of the Effects of Fucoxanthin on NAFLD
Abstract
:1. Introduction
2. Effect and Mechanisms of Fucoxanthin on NAFLD
2.1. Clinical Trials
Human Trial and Duration of Experiment | Experimental Groups | Effects | Mechanisms | References |
---|---|---|---|---|
42 NAFLD patients 24 weeks | Control group: 3 capsules of 550 mg/capsule cellulose powder Treatment group: 3 capsules of LMF-HSFx (each capsule contains 275 mg LMF and 275 mg HSFx) twice/day | ↓ Hepatic lipotoxicity ↓ Hepatic steatosis ↓ Fibrosis ↓ Insulin resistance ↓ TC ↓ TG | ↓ IL-6 ↓ IFN-γ | Shih et al., 2021 [35] |
42 NAFLD patients 12 weeks | Control group: Placebo; Treatment: 3 capsules of LMF-HSFx (each capsule contains 275 mg LMF and 275 mg HSFx) twice/day | ↓ ALT ↓ Liver injury No effect on liver steatosis | - | Cheng et al., 2019 [39] |
113 NAFLD and 38 NLF patients 16 weeks | Placebo-NAFLD, Xanthigen-NAFLD, placebo-NLF, and Xanthigen-NLF group | ↓ Body weight ↓ Body liver fat content ↓ Waist circumference ↓ CRP ↓ TG ↓ ALT ↓ AST ↓ GGT | - | Abidov et al., 2010 [41] |
2.2. Animal Studies
Animal Model and Duration of Experiment | Experimental Groups | Effects | Mechanisms | References |
---|---|---|---|---|
Male C57BL/6J Mice 8 or 12 weeks | 5 groups 12 weeks: High fat/high sucrose/high cholesterol (HFC) diet, 34% sucrose, 2.0% cholesterol, 34% fat; HFC + 0.015% fucoxanthin, HFC + 0.03% fucoxanthin 8 weeks: High fat/high sucrose (HFS) diet, 34% fat, 35% sucrose; HFS + 0.01% fucoxanthin | HFC + 0.015% or 0.03% fucoxanthin: ↑ BW ↑ Serum TC ↑ Mitochondrial DNA HFS + 0.01% fucoxanthin: ↑ BW ↑ Serum TC ↑ Liver TG | HFC + 0.015% or 0.03% fucoxanthin: ↑ Srebf1 ↑ FAS ↑ Ldlr ↑ Hmgcr ↑ Tfam ↑ Esrrα ↑ Ppargc1a ↑ Acox1 (0.03% fucoxanthin only) HFS + 0.01% fucoxanthin: ↑ Srebf1 ↑ FAS ↑ Ucp2 ↑ Acox1 | Kim et al., 2022 [42] |
Male C57BL/6 mice 16 weeks | 6 groups Normal diet (ND): 200 g of casein and 70 g of soybean oil/kg; ND + 200 mg/kg/BW/day of LMF-HSFx; ND + 400 mg/kg/BW/day of LMF-HSFx; High fat diet (HFD): ND + 60% fat-derived calorie; HFD + 200 mg/kg/BW/day of LMF-HSFx; HFD + 400 mg/kg/BW/day of LMF-HSFx | ↓ Hepatic lipotoxicity ↓ Lipid droplet ↑ Adipogenesis ↓ Blood glucose ↓ TG ↓ TC ↓ AST ↓ ALT | ↑ Adipoq ↑ Adig ↑ Lep | Shih et al., 2021 [35] |
Male C57BL/6J Mice 4 weeks | 3 groups Control diet (Research Diet, Inc. A06071314); Choline-deficient L-amino acid-defined high fat diet (CDAHFD); CDAHFD + 0.2% fucoxanthin | ↓ BW ↓ Liver weight gain ↓ Total lipid ↓ TG ↓ TC ↓ AST ↓ ALT ↓ TBARS ↓ Lipid hydroperoxide ↓ Lipid droplets ↓ Fibrosis ↑ Lipid metabolism ↓ Oxidative stress ↓ Hepatic fat accumulation ↓ Biomakers of inflammation and infiltration | ↓ Tnfα ↓ Il-6 ↓ Il-1b ↓ Mcp-1 ↓ Tgfβ1 ↓ Col1α1 ↑ Timp1 ↓ F4/80 ↓ Cd11c ↓ Ccr2 ↓ Ly6c ↓ αSMA | Takatani et al., 2020 [44] |
Male Sprague-Dawley Rat 4 weeks | 3 groups Normal diet + 7% fat (soybean oil); High fat diet + 20% fat (13% lard, 7% soybean oil) (HF); HF + 0.2% fucoxanthin diet (HF + Fxn) | ↑ Plasma HDL ↓ Hepatic total lipids ↓ Hepatic cholesterols ↓ Hepatic triglycerides ↑ Fecal triglyceride ↑ Fecal cholesterol ↑ Fecal total lipids | ↓ ACC ↓ FAS ↓ G6PDH ↓ SREBP-1c ↑ CPT1 ↑ CYP7A1 ↓ HMG-CoA ↓ ACAT ↑ LCAT | Ha and Kim, 2013 [30] |
Male C57BL/6J Mice 9 weeks | 4 groups Normal diet; High fat control diet (3% corn oil and 17% lard) (HC); HC + 0.02% fucoxanthin; HC + 0.69% U. pinnatifida ethanol extract (UEFx) | ↓ Visceral fat ↓ Adipocyte size ↓ Fasting blood glucose ↓ Plasma insulin ↓ Insulin resistance index ↑ β-oxidation ↑ Glycolytic enzyme ↓ Hepatic lipid accumulation ↑ Glycogen content | ↓ PEPCK ↓ PAP ↑ GK/G6Pase | Park et al., 2011 [45] |
2.3. In Vitro Studies
In Vitro Model | Experimental Design | Effects | Mechanisms | References |
---|---|---|---|---|
Normal human Chang liver cells | NAFLD cells: 1 mM FFA mixture; oleic acid and palmitic acid (2:1, v/v) for 24 h Treatment: 0.125, 0.25, 0.5, 1, 2 and 8 μg/mL of fucoxanthin, incubated for another 24 h | ↓ Oxidative stress ↓ Inflammatory levels ↓ Lipid droplets | ↓ IL-1β ↑ SOD ↓ Keap-1 ↑ Nrf2 ↑ HO-1 ↑ NQO1 ↑ GCLM ↑ AMPK ↓ TLR4 ↓ MyD88 ↓ p-IκBα ↓ p-NF-κB p65 ↓ SREBP-1c ↓ FAS | Ye et al., 2022 [46] |
Human HepaRGTM cells | NAFLD cells: bovine serum-conjugated PA Treatment: 25 μg/mL LMF-HSFx, co-treated for 24 h | ↓ Cell death ↓ DNA fragmentation ↑ Mitochondrial integrity | ↑ SIRT2, 3, 6, ↑ PGC-1β ↑ ATGL | Shih et al., 2021 [35] |
Hepa1-6 cells | TNFα-stimulated cells: carotenoids (2.5 mM) + TNFα (10 ng/mL) for 3 h (gene) or 24 h (for protein secretion) | Anti-inflammatory ↓ Chemokine production | ↓ Mcp-1 ↓ Ccl5 | Takatani et al., 2020 [44] |
FL83B cells | NAFLD cells: 0.5 mM oleic acid for 48 h Treatment: 3–100 mM fucoxanthin, incubated for another 24 h | ↓ Lipid accumulation ↓ Lipid peroxidation ↓ Lipogenesis | ↓ SREBP-1c ↓ PPAR-γ ↑ AMPK ↓ ACC ↑ Sirt1/AMPK | Chang et al., 2018 [47] |
3. Limitation and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Ayada, I.; Zhang, X.; Wang, L.; Li, Y.; Wen, T.; Ma, Z.; Bruno, M.J.; de Knegt, R.J.; Cao, W.; et al. Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Adults. Clin. Gastroenterol. Hepatol. 2023, 20, e573–e582. [Google Scholar] [CrossRef]
- Dorairaj, V.; Sulaiman, S.A.; Abu, N.; Murad, N.A.A. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.A.; Dorairaj, V.; Nafiz, M.; Adrus, H. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022, 11, 106. [Google Scholar] [CrossRef]
- Sarwar, R.; Pierce, N.; Koppe, S. Obesity and nonalcoholic fatty liver disease: Current perspectives. Diabetes Metab Syndr. Obes. Targets Ther. 2018, 11, 533. [Google Scholar] [CrossRef]
- Karjoo, S.; Auriemma, A.; Fraker, T.; Bays, H.E. Nonalcoholic fatty liver disease and obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes. Pillars 2022, 3, 100027. [Google Scholar] [CrossRef]
- Jiang, L.P.; Sun, H.Z. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front. Endocrinol. 2022, 13, 3205. [Google Scholar] [CrossRef]
- Song, K.; Kim, H.S.; Chae, H.W. Nonalcoholic fatty liver disease and insulin resistance in children. Clin. Exp. Pediatr. 2023. [Google Scholar] [CrossRef]
- Yang, D.; Lan, J.; Cen, J.; Han, Y.; Hu, H. Association Between Hypertension and New-Onset Non-Alcoholic Fatty Liver Disease in Chinese Non-Obese People: A Longitudinal Cohort Study. Diabetes Metab Syndr. Obes. 2023, 16, 345–363. [Google Scholar] [CrossRef]
- Nakagawa, N. Fatty liver index has potential as a predictor of hypertension in the Japanese general population. Hypertens. Res. 2023, 46, 896–897. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Lang, S.; Goeser, T.; Demir, M.; Steffen, H.M.; Kasper, P. Management of Dyslipidemia in Patients with Non-Alcoholic Fatty Liver Disease. Curr. Atheroscler. Rep. 2022, 24, 533. [Google Scholar] [CrossRef]
- Abdallah, M.; Brown, L.; Provenza, J.; Tariq, R.; Gowda, S.; Singal, A.K. Safety and efficacy of dyslipidemia treatment in NAFLD patients: A meta-analysis of randomized controlled trials. Ann. Hepatol. 2022, 27, 100738. [Google Scholar] [CrossRef]
- Przybyszewski, E.M.; Targher, G.; Roden, M.; Corey, K.E. Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. Clin. Liver Dis. 2021, 17, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a Continuum: From Obesity to Metabolic Syndrome and Diabetes. Diabetol. Metab Syndr. 2020, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Memaj, P.; Jornayvaz, F.R. Non-Alcoholic Fatty Liver Disease in Type 1 Diabetes: Prevalence and Pathophysiology. Front. Endocrinol. 2022, 13, 3070. [Google Scholar] [CrossRef]
- Patel, A.H.; Peddu, D.; Amin, S.; Elsaid, M.I.; Minacapelli, C.D.; Chandler, T.-M.; Catalano, C.; Rustgi, V.K. Nonalcoholic Fatty Liver Disease in Lean/Nonobese and Obese Individuals: A Comprehensive Review on Prevalence, Pathogenesis, Clinical Outcomes, and Treatment. J. Clin. Transl. Hepatol. Rev. Artic. J. Clin. Transl. Hepatol. 2022, 11, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef]
- Nor, M.H.M.; Ayob, N.; Mokhtar, N.M.; Ali, R.A.R.; Tan, G.C.; Wong, Z.; Shafiee, N.H.; Wong, Y.P.; Mustangin, M.; Nawawi, K.N.M. The Effect of Probiotics (MCP® BCMC® Strains) on Hepatic Steatosis, Small Intestinal Mucosal Immune Function, and Intestinal Barrier in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2021, 13, 3192. [Google Scholar] [CrossRef]
- Zhou, X.D.; Cai, J.; Targher, G.; Byrne, C.D.; Shapiro, M.D.; Sung, K.C.; Somers, V.K.; Chahal, C.A.A.; George, J.; Chen, L.L.; et al. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc. Diabetol. 2022, 21, 1–17. [Google Scholar] [CrossRef]
- García-Compeán, D.; Jiménez-Rodríguez, A.R. NAFLD VS MAFLD. The evidence-based debate has come. Time to change? Ann. Hepatol. 2022, 27, 100765. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.H.; Kim, S.U.; Kim, H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147. [Google Scholar] [CrossRef]
- Wong, V.W.S.; Wong, G.L.H.; Woo, J.; Abrigo, J.M.; Chan, C.K.M.; Shu, S.S.T.; Leung, J.K.Y.; Chim, A.M.L.; Kong, A.P.S.; Lui, G.C.Y.; et al. Impact of the New Definition of Metabolic Associated Fatty Liver Disease on the Epidemiology of the Disease. Clin. Gastroenterol. Hepatol. 2021, 19, 2161–2171. [Google Scholar] [CrossRef]
- Mantovani, A. MAFLD vs NAFLD: Where are we? Dig. Liver Dis. 2021, 53, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Fouad, Y.; Elwakil, R.; Elsahhar, M.; Said, E.; Bazeed, S.; Ali Gomaa, A.; Hashim, A.; Kamal, E.; Mehrez, M.; Attia, D. The NAFLD-MAFLD debate: Eminence vs evidence. Liver Int. 2021, 41, 255–260. [Google Scholar] [CrossRef]
- Shiha, G.; Alswat, K.; Khatry, M.; Sharara, A.I.; Örmeci, N.; Waked, I.; Benazzouz, M.; Al-Ali, F.; Hamed, A.E.; Hamoudi, W.; et al. Nomenclature and definition of metabolic-associated fatty liver disease: A consensus from the Middle East and North Africa. lancet Gastroenterol. Hepatol. 2021, 6, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Lai, J. Exosomal microRNAs and Progression of Nonalcoholic Steatohepatitis (NASH). Int. J. Mol. Sci. 2022, 23, 13501. [Google Scholar] [CrossRef] [PubMed]
- Parlati, L.; Régnier, M.; Guillou, H.; Postic, C. New targets for NAFLD. JHEP Rep. 2021, 3, 100346. [Google Scholar] [CrossRef]
- Ayob, N.; Muhammad Nawawi, K.N.; Mohamad Nor, M.H.; Raja Ali, R.A.; Ahmad, H.F.; Oon, S.F.; Mohd Mokhtar, N. The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023, 11, 640. [Google Scholar] [CrossRef]
- Willstatter, R.; Page, H. The pigments of the brown algae. Chemistry 1914, 404, 237–271. [Google Scholar]
- Woo, M.N.; Jeon, S.M.; Kim, H.J.; Lee, M.K.; Shin, S.K.; Shin, Y.C.; Park, Y.B.; Choi, M.S. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem. Biol. Interact. 2010, 186, 316–322. [Google Scholar] [CrossRef]
- Ha, A.W.; Kim, W.K. The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr. Res. Pract. 2013, 7, 287–293. [Google Scholar] [CrossRef]
- Kumar, S.R.; Hosokawa, M.; Miyashita, K. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms. Mar. Drugs 2013, 11, 5130. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. Anti-Obesity Activity of the Marine Carotenoid Fucoxanthin. Mar. Drugs 2015, 13, 2196. [Google Scholar] [CrossRef]
- Kawee-Ai, A.A.; Kuntiya, A.; Kim, S.M. Anticholinesterase and Antioxidant Activities of Fucoxanthin Purified from the Microalga Phaeodactylum tricornutum. Nat. Prod. Commun. 2013, 8, 1381–1386. [Google Scholar] [CrossRef]
- Lee, A.H.; Shin, H.Y.; Park, J.H.; Koo, S.Y.; Kim, S.M.; Yang, S.H. Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome activation. Sci. Rep. 2021, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.H.; Shiue, S.J.; Chen, C.N.; Cheng, S.W.; Lin, H.Y.; Wu, L.W.; Wu, M.S. Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis. Mar. Drugs 2021, 19, 148. [Google Scholar] [CrossRef]
- Zou, Y.; Zhong, L.; Hu, C.; Sheng, G. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in a nonobese Chinese population: A population-based longitudinal study. Lipids Health Dis. 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; Acierno, C.; Nevola, R.; Pafundi, P.C.; Galiero, R.; Rinaldi, L.; Salvatore, T.; Adinolfi, L.E.; Sasso, F.C. Non-Alcoholic Fatty Liver Disease: From Pathogenesis to Clinical Impact. Processes 2021, 9, 135. [Google Scholar] [CrossRef]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Cheng, I.C.; Weng, S.Y.; Wu, M.S.; Suk, F.M.; Lien, G.S.; Chen, C.N. Low-molecular-weight fucoidan and high-stability fucoxanthin decrease serum alanine transaminase in patients with nonalcoholic fatty liver disease—A double-blind, randomized controlled trial. Adv. Dig. Med. 2019, 6, 116–122. [Google Scholar] [CrossRef]
- Heyens, L.J.M.; Busschots, D.; Koek, G.H.; Robaeys, G.; Francque, S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front. Med. 2021, 8, 476. [Google Scholar] [CrossRef] [PubMed]
- Abidov, M.; Ramazanov, Z.; Seifulla, R.; Grachev, S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 2010, 12, 72–81. [Google Scholar] [CrossRef]
- Kim, M.B.; Bae, M.; Lee, Y.; Kang, H.; Hu, S.; Pham, T.X.; Park, Y.K.; Lee, J.Y. Consumption of Low Dose Fucoxanthin Does Not Prevent Hepatic and Adipose Inflammation and Fibrosis in Mouse Models of Diet-Induced Obesity. Nutrients 2022, 14, 2280. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Rao, H.; Liu, F.; Wei, L.; Li, H.; Wu, C. Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells 2021, 10, 3300. [Google Scholar] [CrossRef] [PubMed]
- Takatani, N.; Kono, Y.; Beppu, F.; Okamatsu-Ogura, Y.; Yamano, Y.; Miyashita, K.; Hosokawa, M. Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice. Biochem. Biophys. Res. Commun. 2020, 528, 305–310. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, M.K.; Park, Y.B.; Shin, Y.C.; Choi, M.S. Beneficial effects of Undaria pinnatifida ethanol extract on diet-induced-insulin resistance in C57BL/6J. mice. Food Chem. Toxicol. 2011, 49, 727–733. [Google Scholar] [CrossRef]
- Ye, J.; Zheng, J.; Tian, X.; Xu, B.; Yuan, F.; Wang, B.; Yang, Z.; Huang, F. Fucoxanthin Attenuates Free Fatty Acid-Induced Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism/Oxidative Stress/Inflammation via the AMPK/Nrf2/TLR4 Signaling Pathway. Mar. Drugs 2022, 20, 225. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chen, Y.L.; Huang, W.C.; Liou, C.J. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem. Biophys. Res. Commun. 2018, 495, 197–203. [Google Scholar] [CrossRef]
- Mohibbullah, M.; Haque, M.N.; Sohag, A.A.M.; Hossain, M.T.; Zahan, M.S.; Uddin, M.J.; Hannan, M.A.; Moon, I.S.; Choi, J.S. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar. Drugs 2022, 20, 279. [Google Scholar] [CrossRef]
- Iio, K.; Okada, Y.; Ishikura, Y. Single and 13-week oral toxicity study of fucoxanthin oil from microalgae in rats. Shokuhin Eiseigaku Zasshi 2011, 52, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Kadekaru, T.; Toyama, H.; Yasumoto, T. Safety evaluation of fucoxanthin purified from Undaria pinnatifida. Nippon Shokuhin Kagaku Kogaku Kaishi 2008, 55, 304–308. [Google Scholar] [CrossRef]
- Zaragozá, M.C.; López, D.; Sáiz, M.P.; Poquet, M.; Pérez, J.; Puig-Parellada, P.; Màrmol, F.; Simonetti, P.; Gardana, C.; Lerat, Y.; et al. Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J. Agric. Food Chem. 2008, 56, 7773–7780. [Google Scholar] [CrossRef] [PubMed]
- Shoup, M.E. Algatech Receives NDI for New Microalgae Ingredient; William Reed Ltd.: Chicago, IL, USA, 2018; Available online: https://www.nutraingredients-usa.com/Article/2018/06/06/Algatech-receives-NDI-for-new-microalgae-ingredient (accessed on 8 February 2023).
- Bae, M.; Kim, M.B.; Park, Y.K.; Lee, J.Y. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tang, Y.; Zhang, Y.; Zhang, S.; Qu, J.; Wang, X.; Kong, R.; Han, C.; Liu, Z. Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. Evidence-Based Complement. Altern. Med. 2015, 2015, 723515. [Google Scholar] [CrossRef]
- Prom-in, S.; Wongwitwichot, P.; Wangpradit, N.; Chua, K.H.; Kamisah, Y.; Kumar, J.; Kaewsrichan, J. Abelmoschus esculentus L. mitigates NAFLD pathologic phenotypes in C57BL/6J. mouse model. Int. J. Pharm. Sci. Res. 2021, 12, 5715–5722. [Google Scholar]
- Kim, D.Y.; Park, J.Y. Genetic risk factors associated with NAFLD. Hepatoma Res. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2017, 23, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayuti, N.H.; Muhammad Nawawi, K.N.; Goon, J.A.; Mokhtar, N.M.; Makpol, S.; Tan, J.K. A Review of the Effects of Fucoxanthin on NAFLD. Nutrients 2023, 15, 1954. https://doi.org/10.3390/nu15081954
Sayuti NH, Muhammad Nawawi KN, Goon JA, Mokhtar NM, Makpol S, Tan JK. A Review of the Effects of Fucoxanthin on NAFLD. Nutrients. 2023; 15(8):1954. https://doi.org/10.3390/nu15081954
Chicago/Turabian StyleSayuti, Nor Hafiza, Khairul Najmi Muhammad Nawawi, Jo Aan Goon, Norfilza Mohd Mokhtar, Suzana Makpol, and Jen Kit Tan. 2023. "A Review of the Effects of Fucoxanthin on NAFLD" Nutrients 15, no. 8: 1954. https://doi.org/10.3390/nu15081954
APA StyleSayuti, N. H., Muhammad Nawawi, K. N., Goon, J. A., Mokhtar, N. M., Makpol, S., & Tan, J. K. (2023). A Review of the Effects of Fucoxanthin on NAFLD. Nutrients, 15(8), 1954. https://doi.org/10.3390/nu15081954