Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017–2018
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Ethical Considerations
2.4. Study Variables
2.4.1. Measurement of NAFLD and Advanced Liver Fibrosis
2.4.2. Measurement of Indicators of NPAR and NLR
2.4.3. Covariates
2.5. Statistical Analysis
3. Results
3.1. Study Cohort Selection
3.2. Clinical Characteristics of the Study Sample
3.3. Associations between NPAR, NLR, FLI, the Presence of NAFLD and Advanced Liver Fibrosis
3.4. Associations between NPAR and Presence of NAFLD and Advanced Liver Fibrosis Stratified by DM Status
3.5. ROC Analysis of the Predictive Value of NPAR for NAFLD in Nondiabetic Individuals
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.; Kim, W.R.; Kim, H.J.; Therneau, T.M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 2012, 57, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M.; Tampi, R.; Priyadarshini, M.; Nader, F.; Younossi, I.M.; Racila, A. Burden of Illness and Economic Model for Patients With Nonalcoholic Steatohepatitis in the United States. Hepatology 2019, 69, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Altajar, S.; Baffy, G. Skeletal Muscle Dysfunction in the Development and Progression of Nonalcoholic Fatty Liver Disease. J. Clin. Transl. Hepatol. 2020, 8, 414–423. [Google Scholar] [CrossRef]
- Chen, K.; Ma, J.; Jia, X.; Ai, W.; Ma, Z.; Pan, Q. Advancing the understanding of NAFLD to hepatocellular carcinoma development: From experimental models to humans. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2018, 1871, 117–125. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Ng, C.H.; Muthiah, M.D.; Loomba, R.; Huang, D.Q. Clinical features and outcomes of NAFLD-related hepatocellular carcinoma—Authors’ reply. Lancet Oncol. 2022, 23, e244. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef]
- Cheung, A.; Figueredo, C.; Rinella, M.E. Nonalcoholic Fatty Liver Disease: Identification and Management of High-Risk Patients. Am. J. Gastroenterol. 2019, 114, 579–590. [Google Scholar] [CrossRef]
- Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018, 22, 23–37. [Google Scholar] [CrossRef]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Amarapurkar, D.N.; Dharod, M.; Gautam, S.; Patel, N. Risk of development of hepatocellular carcinoma in patients with NASH-related cirrhosis. Trop. Gastroenterol. 2013, 34, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Csak, T.; Ganz, M.; Pespisa, J.; Kodys, K.; Dolganiuc, A.; Szabo, G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011, 54, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biyik, M.; Ucar, R.; Solak, Y.; Gungor, G.; Polat, I.; Gaipov, A.; Cakir, O.O.; Ataseven, H.; Demir, A.; Turk, S.; et al. Blood neutrophil-to-lymphocyte ratio independently predicts survival in patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 435–441. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; He, Y.; Wei, Q.; Xie, Q.; Zhang, L.; Xia, Y.; Zhou, X.; Zhang, L.; Feng, X.; et al. The role of neutrophil to lymphocyte ratio for the assessment of liver fibrosis and cirrhosis: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Shen, H.; Guo, Q.; Yang, J.; Zhai, G.; Zhang, J.; Zhang, B.; Ding, Y.; Cai, C.; Zhou, Y. Association between Neutrophil Percentage-to-Albumin Ratio and All-Cause Mortality in Critically Ill Patients with Coronary Artery Disease. Biomed Res. Int. 2020, 2020, 8137576. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, D.; Cheng, B.; Ying, B.; Gong, Y. The Neutrophil Percentage-to-Albumin Ratio Is Associated with All-Cause Mortality in Critically Ill Patients with Acute Kidney Injury. Biomed Res. Int. 2020, 2020, 5687672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, M.; Babă, D.-F.; de Cobelli, O.; Musi, G.; Lucarelli, G.; Terracciano, D.; Porreca, A.; Busetto, G.M.; Del Giudice, F.; Soria, F.; et al. Neutrophil percentage-to-albumin ratio predicts mortality in bladder cancer patients treated with neoadjuvant chemotherapy followed by radical cystectomy. Futur. Sci. OA 2021, 7, FSO709. [Google Scholar] [CrossRef] [PubMed]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National Health and Nutrition Examination Survey: Plan and Operations, 1999–2010; Vital Health Statistics Series 1; U. S. Department of Health and Human Services: Hyattsville, MD, USA, 2013; pp. 1–37.
- Pu, K.; Wang, Y.; Bai, S.; Wei, H.; Zhou, Y.; Fan, J.; Qiao, L. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: A systematic review and meta-analysis. BMC Gastroenterol. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, S.-A.; Alavian, S.-M.; Gholami-Fesharaki, M. Assessment of transient elastography (FibroScan) for diagnosis of fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Casp. J. Intern. Med. 2016, 7, 242–252. [Google Scholar]
- Heredia, N.I.; Zhang, X.; Balakrishnan, M.; Hwang, J.P.; Thrift, A.P. Association of lifestyle behaviors with non-alcoholic fatty liver disease and advanced fibrosis detected by transient elastography among Hispanic/Latinos adults in the U.S. Ethn. Health 2022, 28, 299–312. [Google Scholar] [CrossRef]
- Sterling, R.K.; King, W.C.; Wahed, A.S.; Kleiner, D.E.; Khalili, M.; Sulkowski, M.; Chung, R.T.; Jain, M.K.; Lisker-Melman, M.; Wong, D.K.; et al. Evaluating Noninvasive Markers to Identify Advanced Fibrosis by Liver Biopsy in HBV/HIV Co-infected Adults. Hepatology 2019, 71, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Rayburn, W.F. Diagnosis and classification of diabetes mellitus: Highlights from the American Diabetes Association. J. Reprod. Med. 1997, 42, 585–586. [Google Scholar] [PubMed]
- Spinella, R.; Sawhney, R.; Jalan, R. Albumin in chronic liver disease: Structure, functions and therapeutic implications. Hepatol. Int. 2015, 10, 124–132. [Google Scholar] [CrossRef]
- Domenicali, M.; Baldassarre, M.; Giannone, F.A.; Naldi, M.; Mastroroberto, M.; Biselli, M.; Laggetta, M.; Patrono, D.; Bertucci, C.; Bernardi, M.; et al. Posttranscriptional changes of serum albumin: Clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology 2014, 60, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Tingle, S.J.; Ma, G.R.S.; Goodfellow, M.; Moir, J.A.; White, S.A. NARCA: A novel prognostic scoring system using neutrophil-albumin ratio and Ca19-9 to predict overall survival in palliative pancreatic cancer. J. Surg. Oncol. 2018, 118, 680–686. [Google Scholar] [CrossRef]
- Gong, Y.; Li, D.; Cheng, B.; Ying, B.; Wang, B. Increased neutrophil percentage-to-albumin ratio is associated with all-cause mortality in patients with severe sepsis or septic shock. Epidemiology Infect. 2020, 148, e87. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lin, Z.; Zhu, C.; Song, D.; Wu, B.; Ji, K.; Li, J. The Neutrophil Percentage-to-Albumin Ratio is Associated with All-Cause Mortality in Patients with Atrial Fibrillation: A Retrospective Study. J. Inflamm. Res. 2023, 16, 691–700. [Google Scholar] [CrossRef]
- Du, X.; Wei, X.; Ma, L.; Liu, X.; Guo, H.; Liu, Y.; Zhang, J. Higher levels of neutrophil percentage-to-albumin ratio predict increased mortality risk in patients with liver cirrhosis: A retrospective cohort study. Eur. J. Gastroenterol. Hepatol. 2022, 35, 198–203. [Google Scholar] [CrossRef]
- Marjot, T.; Moolla, A.; Cobbold, J.F.; Hodson, L.; Tomlinson, J.W. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr. Rev. 2020, 41, 66–117. [Google Scholar] [CrossRef]
- Abdel-Razik, A.; Mousa, N.; Shabana, W.; Refaey, M.; ElMahdy, Y.; Elhelaly, R.; Awad, M. A novel model using mean platelet volume and neutrophil to lymphocyte ratio as a marker of nonalcoholic steatohepatitis in NAFLD patients: Multicentric study. Eur. J. Gastroenterol. Hepatol. 2016, 28, e1–e9. [Google Scholar] [CrossRef]
- Thomas, C.E.; Yu, Y.; Luu, H.N.; Wang, R.; Paragomi, P.; Behari, J.; Yuan, J. Neutrophil-lymphocyte ratio in relation to risk of hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. Cancer Med. 2022, 12, 3589–3600. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, N.; Li, P.; He, Y.; Tong, L.; Xie, W. The correlation between neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with nonalcoholic fatty liver disease: A cross-sectional study. Eur. J. Gastroenterol. Hepatol. 2022, 34, 1158–1164. [Google Scholar] [CrossRef]
- Lesmana, C.R.A.; Kencana, Y.; Rinaldi, I.; Kurniawan, J.; Hasan, I.; Sulaiman, A.S.; Gani, R.A. Diagnostic Value of Neutrophil to Lymphocyte Ratio in Non-Alcoholic Fatty Liver Disease Evaluated Using Transient Elastography (TE) with Controlled Attenuated Parameter (CAP). Diabetes Metab. Syndr. Obesity Targets Ther. 2022, 15, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Demir, M.; Kunstein, A.; Jördens, M.; Qvarskhava, N.; Luedde, M.; Luedde, T.; Roderburg, C.; Kostev, K. Variables associated with increased incidence of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2021, 9, e002243. [Google Scholar] [CrossRef] [PubMed]
- Okdahl, T.; Wegeberg, A.-M.; Pociot, F.; Brock, B.; Størling, J.; Brock, C. Low-grade inflammation in type 2 diabetes: A cross-sectional study from a Danish diabetes outpatient clinic. BMJ Open 2022, 12, e062188. [Google Scholar] [CrossRef] [PubMed]
Total | NAFLD a | Advanced Liver Fibrosis | |||||
---|---|---|---|---|---|---|---|
Study Variables | Yes | No | Yes | No | |||
n = 3991 | n = 1355 | n = 2474 | p-Value | n = 162 | n = 3829 | p-Value | |
NLR | 2.1 ± 0.03 | 2.1 ± 0.04 | 2.1 ± 0.04 | 0.595 | 2.2 ± 0.07 | 2.1 ± 0.03 | 0.068 |
Q1 | 1004 (21.6) | 332 (19.8) | 649 (23.1) | 0.129 | 23 (11.4) | 981 (22.0) | 0.128 |
Q2 | 989 (26.5) | 325 (24.2) | 621 (27.1) | 43 (34.4) | 946 (26.1) | ||
Q3 | 1004 (25.4) | 339 (27.1) | 623 (24.6) | 42 (24.5) | 962 (25.4) | ||
Q4 | 992 (26.6) | 359 (28.8) | 579 (25.2) | 54 (29.7) | 938 (26.4) | ||
Missing | 2 | 0 | 2 | 0 | 2 | ||
NPAR | 14.1 ± 0.1 | 14.3 ± 0.1 | 13.9 ± 0.1 | 0.013 | 14.9 ± 0.3 | 14.0 ± 0.1 | 0.013 |
Q1 | 1009 (24.4) | 324 (22.0) | 661 (26.3) | 0.009 | 24 (13.0) | 985 (24.8) | 0.081 |
Q2 | 999 (25.4) | 321 (22.9) | 649 (26.8) | 29 (23.8) | 970 (25.5) | ||
Q3 | 989 (24.5) | 354 (27.7) | 594 (22.7) | 41 (28.0) | 948 (24.4) | ||
Q4 | 992 (25.7) | 356 (27.4) | 568 (24.2) | 68 (35.3) | 924 (25.3) | ||
Missing | 2 | 0 | 2 | 0 | 2 | ||
FLI | 54.5 ± 1.5 | 77.7 ± 1.6 | 40.4 ± 1.5 | <0.001 | 92.1 ± 1.6 | 53.1 ± 1.5 | <0.001 |
Q1 | 963 (26.1) | 41 (2.6) | 920 (39.7) | <0.001 | 2 (0.7) | 961 (27.0) | <0.001 |
Q2 | 962 (23.7) | 239 (17.6) | 718 (28.0) | 5 (2.3) | 957 (24.5) | ||
Q3 | 961 (24.5) | 419 (29.4) | 512 (22.5) | 30 (16.2) | 931 (24.8) | ||
Q4 | 964 (25.7) | 623 (50.3) | 235 (9.9) | 106 (80.9) | 858 (23.7) | ||
Missing | 122 | 33 | 89 | 19 | 122 | ||
Age, years | 45.3 ± 0.7 | 48.7 ± 0.7 | 43.2 ± 0.7 | <0.001 | 50.7 ± 1.7 | 45.1 ± 0.7 | 0.005 |
18–49 | 2074 (58.7) | 590 (50.1) | 1432 (63.9) | <0.001 | 52 (45.1) | 2022 (59.2) | 0.100 |
50–59 | 642 (18.2) | 273 (22.5) | 337 (15.6) | 32 (24.9) | 610 (17.9) | ||
60–69 | 744 (13.6) | 304 (16.3) | 390 (11.9) | 50 (19.1) | 694 (13.4) | ||
70–79 | 351 (6.9) | 137 (8.9) | 194 (5.8) | 20 (7.5) | 331 (6.9) | ||
80+ | 180 (2.6) | 51 (2.2) | 121 (2.7) | 8 (3.5) | 172 (2.5) | ||
Sex | |||||||
Male | 1922 (48.8) | 749 (56.0) | 1078 (44.6) | <0.001 | 95 (57.1) | 1827 (48.5) | 0.200 |
Female | 2069 (51.2) | 606 (44.0) | 1396 (55.4) | 67 (42.9) | 2002 (51.5) | ||
Race | |||||||
Non-Hispanic White | 1285 (60.4) | 450 (60.1) | 770 (60.2) | 0.090 | 65 (65.7) | 1220 (60.2) | 0.267 |
Non-Hispanic Black | 913 (11.2) | 259 (8.9) | 628 (12.6) | 26 (8.0) | 887 (11.4) | ||
Hispanic | 399 (7.4) | 125 (6.6) | 258 (8.0) | 16 (4.2) | 383 (7.5) | ||
Others | 1394 (21.0) | 521 (24.5) | 818 (19.2) | 55 (22.1) | 1339 (21.0) | ||
BMI, kg/m2 (Missing = 27) | 29.8 ± 0.3 | 33.6 ± 0.5 | 27.1 ± 0.3 | <0.001 | 41.9 ± 1.1 | 29.3 ± 0.3 | <0.001 |
Poverty-to-income ratio | |||||||
Not poor (>1) | 2822 (86.8) | 983 (88.2) | 1718 (85.9) | 0.706 | 121 (89.5) | 2701 (86.7) | 0.493 |
Poor (≤1) | 665 (13.2) | 201 (11.8) | 442 (14.1) | 22 (10.5) | 643 (13.3) | ||
Missing | 485 | 171 | 314 | 39 | 465 | ||
Education level | |||||||
High school and above | 3187 (89.2) | 1085 (89.6) | 1978 (89.2) | 0.515 | 124 (87.0) | 3063 (89.3) | 0.420 |
Never attended high school | 749 (10.8) | 262 (10.4) | 450 (10.8) | 37 (13.0) | 712 (10.7) | ||
Missing | 54 | 8 | 46 | 1 | 54 | ||
Smoking status | |||||||
Never | 2470 (60.9) | 784 (57.3) | 1598 (63.2) | <0.001 | 88 (53.6) | 2382 (61.2) | 0.036 |
Former | 871 (23.5) | 360 (27.7) | 457 (20.8) | 54 (34.2) | 817 (23.1) | ||
Current smoker | 650 (15.5) | 211 (15.0) | 419 (15.9) | 20 (12.2) | 630 (15.6) | ||
DM | 776 (13.5) | 399 (23.3) | 291 (6.6) | <0.001 | 86 (47.0) | 690 (12.2) | <0.001 |
Hypertension | 1593 (33.7) | 710 (48.2) | 773 (24.6) | <0.001 | 110 (64.5) | 1483 (32.6) | <0.001 |
History of CVD | 361 (7.1) | 142 (9.1) | 190 (5.4) | 0.002 | 29 (18.2) | 332 (6.7) | <0.001 |
CKD | 289 (6.6) | 103 (7.7) | 166 (6.0) | 0.076 | 20 (8.0) | 269 (6.5) | 0.509 |
Laboratory data | |||||||
AST, U/L | 21.6 ± 0.2 | 22.4 ± 0.3 | 20.7 ± 0.3 | 0.001 | 29.5 ± 2.5 | 21.3 ± 0.2 | 0.005 |
ALT, U/L | 22.7 ± 0.4 | 27.6 ± 0.8 | 19.6 ± 0.3 | <0.001 | 33.3 ± 2.3 | 22.3 ± 0.4 | <0.001 |
Total cholesterol, mg/dL (Missing = 4) | 187.7 ± 1.7 | 192.0 ± 2.1 | 185.5 ± 1.6 | 0.002 | 187.8 ± 5.8 | 187.7 ± 1.6 | 0.982 |
Triglycerides, mg/dL | 141.0 ± 3.2 | 182.8 ± 4.6 | 117.4 ± 2.1 | <0.001 | 180.2 ± 15.2 | 139.5 ± 3.2 | 0.017 |
Platelet, 109/L(Missing = 1) | 246.9 ± 2.7 | 253.2 ± 3.2 | 244.4 ± 2.9 | 0.002 | 236.0 ± 5.8 | 247.3 ± 2.7 | 0.056 |
Lymphocyte count, 109/L (Missing = 2) | 2.2 ± 0.03 | 2.4 ± 0.04 | 2.1 ± 0.02 | <0.001 | 2.3 ± 0.1 | 2.2 ± 0.03 | 0.083 |
Neutrophil count, 109/L (Missing = 2) | 4.3 ± 0.1 | 4.6 ± 0.1 | 4.1 ± 0.1 | <0.001 | 4.7 ± 0.1 | 4.3 ± 0.1 | 0.001 |
Albumin, g/dL | 41.1 ± 0.2 | 40.8 ± 0.2 | 41.3 ± 0.2 | 0.010 | 39.7 ± 0.3 | 41.1 ± 0.2 | <0.001 |
HbA1c, % (Missing = 1) | 5.7 ± 0.02 | 6.0 ± 0.04 | 5.4 ± 0.02 | <0.001 | 6.4 ± 0.13 | 5.6 ± 0.02 | <0.001 |
NAFLD | Advanced Fibrosis | |||
---|---|---|---|---|
aOR a (95% CI) | p-Value | aOR a (95% CI) | p-Value | |
NLR | 0.88 (0.77–1.00) | 0.032 | 0.79 (0.60–1.04) | 0.068 |
Q1 | 1 | 1 | ||
Q2 | 0.86 (0.58–1.28) | 0.416 | 1.91 (0.65–5.66) | 0.202 |
Q3 | 0.96 (0.72–1.29) | 0.784 | 0.87 (0.29–2.56) | 0.776 |
Q4 | 0.73 (0.48–1.10) | 0.101 | 0.69 (0.24–1.96) | 0.453 |
NPAR | 0.93 (0.88–0.99) | 0.017 | 0.89 (0.79–0.99) | 0.019 |
Q1 | 1 | 1 | ||
Q2 | 0.86 (0.59–1.27) | 0.420 | 1.43 (0.50–4.07) | 0.469 |
Q3 | 0.98 (0.68–1.42) | 0.923 | 1.12 (0.47–2.64) | 0.781 |
Q4 | 0.64 (0.43–0.95) | 0.016 | 0.63 (0.24–1.68) | 0.317 |
FLI | 1.04 (1.03–1.05) | <0.001 | 1.03 (1.00–1.05) | 0.022 |
Q1 | 1 | 1 | ||
Q2 | 6.52 (3.36–12.64) | <0.001 | 1.17 (0.17–8.21) | 0.860 |
Q3 | 11.07 (5.27–23.26) | <0.001 | 4.46 (0.82–24.19) | 0.060 |
Q4 | 33.14 (14.35–76.51) | <0.001 | 5.41 (0.77–38.05) | 0.065 |
NAFLD | Advance Fibrosis | |||
---|---|---|---|---|
aOR a (95% CI) | p-Value | aOR a (95% CI) | p-Value | |
Individuals with DM | ||||
NPAR, continuous | 1.02 (0.90–1.16) | 0.733 | 0.89 (0.73–1.08) | 0.200 |
NPAR, in quartiles | ||||
Q1 | 1 | 1 | ||
Q2 | 1.38 (0.57–3.31) | 0.437 | 0.86 (0.21–3.59) | 0.827 |
Q3 | 1.14 (0.41–3.17) | 0.779 | 0.55 (0.13–2.28) | 0.368 |
Q4 | 1.13 (0.39–3.22) | 0.811 | 0.41 (0.13–1.24) | 0.085 |
FLI, continuous | 1.04 (1.02–1.06) | <0.001 | 1.03 (0.99–1.07) | 0.112 |
FLI, in quartiles | ||||
Q1 | 1 | 1 | ||
Q2 | 3.29(1.02–10.60) | 0.030 | N/A | N/A |
Q3 | 6.01 (1.48–24.44) | 0.006 | N/A | N/A |
Q4 | 9.23 (1.39–61.30) | 0.012 | N/A | N/A |
Individuals without DM | ||||
NPAR, continuous | 0.91 (0.85–0.97) | 0.002 | 0.88 (0.75–1.02) | 0.073 |
NPAR, in quartiles | ||||
Q1 | 1 | 1 | ||
Q2 | 0.81 (0.54–1.22) | 0.267 | 2.09 (0.61–7.14) | 0.199 |
Q3 | 0.95 (0.68–1.33) | 0.748 | 1.78 (0.47–6.72) | 0.357 |
Q4 | 0.56 (0.36–0.88) | 0.006 | 0.87 (0.25–2.98) | 0.808 |
FLI, continuous | 1.04 (1.03–1.05) | <0.001 | 1.02 (0.99–1.05) | 0.105 |
FLI, in quartiles | ||||
Q1 | 1 | 1 | ||
Q2 | 7.00 (3.43–14.29) | <0.001 | 0.30 (0.03–3.18) | 0.275 |
Q3 | 12.09 (5.48–26.65) | <0.001 | 2.82 (0.46–17.43) | 0.226 |
Q4 | 41.01 (16.30–103.17) | <0.001 | 2.36 (0.25–22.56) | 0.418 |
Variable | AUROC a | 95% CI | Youden Index | Sensitivity | Specificity |
---|---|---|---|---|---|
NPAR | 0.810 | 0.794–0.825 | 0.476 | 0.761 | 0.715 |
FLI | 0.838 | 0.824–0.853 | 0.507 | 0.824 | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-F.; Chien, L.-W. Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017–2018. Nutrients 2023, 15, 1892. https://doi.org/10.3390/nu15081892
Liu C-F, Chien L-W. Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017–2018. Nutrients. 2023; 15(8):1892. https://doi.org/10.3390/nu15081892
Chicago/Turabian StyleLiu, Chi-Feng, and Li-Wei Chien. 2023. "Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017–2018" Nutrients 15, no. 8: 1892. https://doi.org/10.3390/nu15081892
APA StyleLiu, C. -F., & Chien, L. -W. (2023). Predictive Role of Neutrophil-Percentage-to-Albumin Ratio (NPAR) in Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in Nondiabetic US Adults: Evidence from NHANES 2017–2018. Nutrients, 15(8), 1892. https://doi.org/10.3390/nu15081892