Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease
Abstract
:1. Clinical Relevance of Vitamin D and Its Analogues
Indication | Approved Drug | Mechanism of Action |
---|---|---|
rickets/osteomalacia | cholecalciferol, ergo-calciferol, calcidiol (25-hydroxycholecalciferol), calcitriol | increased reabsorption of calcium and phosphate in the intestine and kidney increase in bone mineral density [16] |
osteoporosis, renal osteopathy | cholecalciferol, ergo-calciferol, calcitriol, alfacalcidol, eldecalcitol (Japan) | |
psoriasis | calcitriol, calcipotriol, tacalcitol, maxacalcitol (Japan) | inhibition of proliferation of epidermal keratinocytes and T-lymphocytes inhibition of chemokines that trigger psoriasis [12,13] |
hypoparathyroidism | calcitriol, alfacalcidol | compensation of the vitamin D deficit, which resulted from the lack of vitamin D synthesis due to parathyroid hormone deficiency [17,18] |
chronic renal insufficiency, hyperparathyroidism | calcitriol, doxercalciferol, alfacalcidol, paricalcitol, maxacalcitol (Japan), fale-calcitriol (Japan) | reduction of parathyroid hormone release [8,19,20] |
2. Metabolic Steps of Synthesis of Vitamin D and Its Analogues
2.1. 25-Hydroxylases and Vitamin D Analogues
2.2. 1α-Hydroxylase and Vitamin D Analogues
2.3. Vitamin D Binding Protein and Vitamin D Analogues
3. Side Effects of Vitamin D Analogues
4. Potential Use of Vitamin D Analogues in Geriatrics
5. Alzheimer’s Disease and Vitamin D Analogues
5.1. Vitamin Analogues, Extracellular Amyloid Plaques, and Intraneuronal Neurofibrillary Tangles
Author | Year | Type of Study/Duration/n | Main Findings |
---|---|---|---|
Shen, L. et al. [68] | 2015 | Meta-Analysis/until February 2015/2 prospective cohort studies and 3 cross-sectional studies (10,019 participants) | Vitamin D deficiency (25(OH)D level < 50 nmol/L) was associated with a 21%increased risk of developing AD compared to adequate vitamin D levels (25(OH)D level > 50 nmol/L). |
Jayedi, A. et al. [69] | 2019 | Meta-Analysis/until September 2017/7 prospective cohort studies and 1 retrospective cohort study (28,354 participants) | The risk of developing AD decreased with increasing vitamin D levels up to ∼35 ng/mL. Vitamin D insufficiency (10–20 ng/mL) resulted in HR of 1.19 (95% CI: 0.96, 1.41) and vitamin D deficiency (<10 ng/mL) resulted in HR of 1.31 (95% CI: 0.98, 1.65). |
Chai, B. et al. [70] | 2019 | Meta-Analysis/until 1 January 2019/12 prospective cohort studies and 4 cross-sectional studies (21,784 participants) | Vitamin D deficiency (<20 ng/mL) was significantly positively associated with the risk of dementia and AD. In the case of vitamin D deficiency (<20 ng/mL) the pooled HR was 1.34 (95% CI: 1.13, 1.60) in comparison to sufficient vitamin D supply. |
Jia, J. et al. [84] | 2019 | RCT/12 months/210 participants with AD | Intervention with 800 IU/day of vitamin D in patients with AD may ameliorate the cognitive function and reduce Aβ-associated biomarkers. The results of the intervention group showed significant amelioration of plasma Aβ42, APP, BACE1, APP mRNA, BACE1 mRNA (p < 0.001) levels and information, arithmetic, digit span, vocabulary, block design and picture arrange scores (p < 0.05) unlike the control group. |
Miller, B. et al. [83] | 2016 | RCT/8 weeks/24 participants | Intervention with vitamin D (50,000 IU/week) resulted in greater plasma Aβ40 change than in the control group (+14.9 ± 12.0 and +12.8 ± 12.8 pg/mL; p = 0.045; effect size, 0.228) especially in older participants (≥60 y), where the change in Aβ40 was + 18.3 ± 33.6 and −3.2 ± 44.5 pg/mL for vitamin (n = 4) and placebo (n = 4) groups (effect size, 0.295), which insinuates reduced brain Aβ. |
Cellular and Animal Studies | |||
Saad El-Din, S. et al. [100] | 2020 | In vivo study/lipopolysaccharide-induced rat model of AD/maxacalcitol by intraperitoneal injection in a dose of 1 μg/kg/day, twice a day for 4 weeks | Improvement of cognitive dysfunction; increased expression of Nrf2; decreased neuro-inflammation/amyloid-β load/hyperphosphorylation of MAPK-38, ERK1/2, tau proteins. |
Fan, Y. et al. [99] | 2019 | In vivo study/APP/PS1 transgenic mice/paricalcitol by intraperitoneal injection in a dose of 200 ng/kg every two days for 15 weeks | Reduction of Aβ formation by acceleration of lysosomal BACE1 degradation, inhibition of neuronal loss. |
Grimm, M. et al. [98] | 2017 | In vitro and ex vivo study/neuroblastoma cells or vitamin D-deficient mouse brains/incubation of 100 nm calcifediol or maxacalcitol/calcipotriol/alfacalcidol/paricalcitol/doxercalciferol | Significantly decreased Aβ production and increased Aβ degradation, mediated by affecting the activity, protein level, and expression of β- and γ-secretases. |
5.2. Vitamin D, Its Analogues, and Parallels to Antidementia Drugs
5.3. Vitamin D Analogues and Non-Pharmacological Approaches for Alzheimer’s Disease
5.4. Vitamin D Analogues and Benefits in Comorbidities of Alzheimer’s Disease
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin d from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Skrabakova, Z.; Gonzalez-Gross, M.; Valtuena, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Molgaard, C.; et al. Vitamin d deficiency in europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Kostenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin d deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Aguilar-Shea, A.L. Vitamin d, the natural way. Clin. Nutr. ESPEN 2021, 41, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin d status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev. 2016, 64, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Moonga, I.; Niccolini, F.; Wilson, H.; Pagano, G.; Politis, M.; Alzheimer’s Disease Neuroimaging, I. Hypertension is associated with worse cognitive function and hippocampal hypometabolism in alzheimer’s disease. Eur. J. Neurol. 2017, 24, 1173–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; Sprague, S.M. Use of vitamin d analogs in chronic renal failure. Adv. Ren. Replace Ther. 2002, 9, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J. New vitamin d analogues for osteodystrophy in chronic kidney disease. Pediatr. Nephrol. 2004, 19, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Maestro, M.A.; Molnar, F.; Carlberg, C. Vitamin d and its synthetic analogs. J. Med. Chem. 2019, 62, 6854–6875. [Google Scholar] [CrossRef]
- Brown, A.J. Therapeutic uses of vitamin d analogues. Am. J. Kidney Dis. 2001, 38, S3–S19. [Google Scholar] [CrossRef]
- Lung, B.E.; Mowery, M.L.; Komatsu, D.E.E. Calcitriol; Statpearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Leyssens, C.; Verlinden, L.; Verstuyf, A. The future of vitamin d analogs. Front. Physiol. 2014, 5, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprague, S.M.; Llach, F.; Amdahl, M.; Taccetta, C.; Batlle, D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 2003, 63, 1483–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin d and risk of cardiovascular events: Reanalysis of the women’s health initiative limited access dataset and meta-analysis. Br. Med. J. 2011, 342, d2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianferotti, L.; Cricelli, C.; Kanis, J.A.; Nuti, R.; Reginster, J.Y.; Ringe, J.D.; Rizzoli, R.; Brandi, M.L. The clinical use of vitamin d metabolites and their potential developments: A position statement from the european society for clinical and economic aspects of osteoporosis and osteoarthritis (esceo) and the international osteoporosis foundation (iof). Endocrine 2015, 50, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Bollerslev, J.; Rejnmark, L.; Marcocci, C.; Shoback, D.M.; Sitges-Serra, A.; van Biesen, W.; Dekkers, O.M. European society of endocrinology clinical guideline: Treatment of chronic hypoparathyroidism in adults. Eur. J. Endocrinol. 2015, 173, G1–G20. [Google Scholar] [CrossRef] [Green Version]
- Petersenn, S.; Bojunga, J.; Brabant, G.; Etzrodt-Walter, G.; Finke, R.; Scharla, S.; Stamm, B.; Weber, M.M.; Wicke, C.; Siggelkow, H. Hypoparathyroidism—Un underestimated problem? MMW Fortschr. Med. 2019, 161, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Brogan, M.; Astor, B.C.; Melamed, M.L. Vitamin d in chronic kidney disease: Is there a role outside of pth control? Curr. Opin. Nephrol. Hypertens. 2020, 29, 243–247. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Cozzolino, M.; Marangella, M.; Strippoli, G.F.; Messa, P.; Societa Italiana di, N. Calcimimetics, phosphate binders, vitamin d and its analogues for treating secondary hyperparathyroidism in chronic kidney disease: Guideline from the italian society of nephrology. G. Ital. Nefrol. 2007, 24 (Suppl. 37), S107–S124. [Google Scholar]
- Ali, N. Role of vitamin d in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef]
- Bassatne, A.; Basbous, M.; Chakhtoura, M.; El Zein, O.; Rahme, M.; El-Hajj Fuleihan, G. The link between COVID-19 and vitamin d (vivid): A systematic review and meta-analysis. Metabolism 2021, 119, 154753. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, W.-D.; Mühlbauer, B.; Seifert, R. Arzneiverordnungs-Report 2021; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Schaffler, A. Hormone replacement after thyroid and parathyroid surgery. Dtsch. Arztebl. Int. 2010, 107, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Hackl, D.; Kossack, N.; Schoenfelder, T. Prevalence, costs of medical treatment and modalities of dialysis-dependent chronic renal failure in germany: Comparison of dialysis care of nursing home residents and in outpatient units. Gesundheitswesen 2021, 83, 818–828. [Google Scholar]
- Goring, H. Vitamin d in nature: A product of synthesis and/or degradation of cell membrane components. Biochemistry 2018, 83, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.R.; Kodicek, E. Unique biosynthesis by kidney of a biological active vitamin d metabolite. Nature 1970, 228, 764–766. [Google Scholar] [CrossRef]
- Barchetta, I.; Carotti, S.; Labbadia, G.; Gentilucci, U.V.; Muda, A.O.; Angelico, F.; Silecchia, G.; Leonetti, F.; Fraioli, A.; Picardi, A.; et al. Liver vitamin d receptor, cyp2r1, and cyp27a1 expression: Relationship with liver histology and vitamin d3 levels in patients with nonalcoholic steatohepatitis or hepatitis c virus. Hepatology 2012, 56, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Ravaioli, F.; Pivetti, A.; Di Marco, L.; Chrysanthi, C.; Frassanito, G.; Pambianco, M.; Sicuro, C.; Gualandi, N.; Guasconi, T.; Pecchini, M.; et al. Role of vitamin d in liver disease and complications of advanced chronic liver disease. Int. J. Mol. Sci. 2022, 23, 9016. [Google Scholar] [CrossRef]
- Bengoa, J.M.; Bolt, M.J.; Rosenberg, I.H. Hepatic vitamin d 25-hydroxylase inhibition by cimetidine and isoniazid. J. Lab. Clin. Med. 1984, 104, 546–552. [Google Scholar]
- Adams, J.S.; Gacad, M.A. Characterization of 1 alpha-hydroxylation of vitamin d3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med. 1985, 161, 755–765. [Google Scholar] [CrossRef]
- Zaheer, S.; de Boer, I.; Allison, M.; Brown, J.M.; Psaty, B.M.; Robinson-Cohen, C.; Ix, J.H.; Kestenbaum, B.; Siscovick, D.; Vaidya, A. Parathyroid hormone and the use of diuretics and calcium-channel blockers: The multi-ethnic study of atherosclerosis. J. Bone Miner. Res. 2016, 31, 1137–1145. [Google Scholar] [CrossRef] [Green Version]
- Omdahl, J.L.; Bobrovnikova, E.A.; Choe, S.; Dwivedi, P.P.; May, B.K. Overview of regulatory cytochrome p450 enzymes of the vitamin d pathway. Steroids 2001, 66, 381–389. [Google Scholar] [CrossRef]
- Omdahl, J.L.; Morris, H.A.; May, B.K. Hydroxylase enzymes of the vitamin d pathway: Expression, function, and regulation. Annu. Rev. Nutr. 2002, 22, 139–166. [Google Scholar] [CrossRef]
- Park, J.; Rhee, C.M.; Lau, W.L.; Kalantar-Zadeh, K. Clinical uses of 1-alpha-hydroxy-ergocalciferol. Curr. Vasc. Pharmacol. 2014, 12, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.; Mast, N.; Pikuleva, I.A. Drugs and scaffold that inhibit cytochrome p450 27a1 in vitro and in vivo. Mol. Pharmacol. 2018, 93, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome p450-mediated metabolism of vitamin d. J. Lipid Res. 2014, 55, 13–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Chan, E.; Lim, L.Y.; Boelsterli, U.A.; Li, S.C.; Wang, J.; Zhang, Q.; Huang, M.; Xu, A. Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome p450 3a4. Curr. Drug Metab. 2004, 5, 415–442. [Google Scholar] [CrossRef]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between vitamin d and the drug metabolizing enzyme cyp3a4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Girndt, M.; Trocchi, P.; Scheidt-Nave, C.; Markau, S.; Stang, A. The prevalence of renal failure. Results from the german health interview and examination survey for adults, 2008-2011 (degs1). Dtsch. Arztebl. Int. 2016, 113, 85–91. [Google Scholar]
- Xiang, W.; Liao, W.; Yi, Z.; He, X.; Ding, Y. 25-hydroxyvitamin d-1-alpha-hydroxylase in apoliporotein e knockout mice: The role of protecting vascular smooth muscle cell from calcification. BioMed. Pharmacother. 2017, 88, 971–977. [Google Scholar] [CrossRef]
- de Zeeuw, D.; Agarwal, R.; Amdahl, M.; Audhya, P.; Coyne, D.; Garimella, T.; Parving, H.H.; Pritchett, Y.; Remuzzi, G.; Ritz, E.; et al. Selective vitamin d receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (vital study): A randomised controlled trial. Lancet 2010, 376, 1543–1551. [Google Scholar] [CrossRef]
- Moe, S.M.; Saifullah, A.; LaClair, R.E.; Usman, S.A.; Yu, Z. A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Roncal-Jimenez, C.; Lanaspa, M.; Gerard, S.; Chonchol, M.; Johnson, R.J.; Jalal, D. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism 2014, 63, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somjen, D.; Knoll, E.; Sharon, O.; Many, A.; Stern, N. Calciotrophic hormones and hyperglycemia modulate vitamin d receptor and 25 hydroxyy vitamin d 1-alpha hydroxylase mrna expression in human vascular smooth muscle cells. J. Steroid Biochem. Mol. Biol. 2015, 148, 210–213. [Google Scholar] [CrossRef]
- Chi, Y.; Sun, J.; Pang, L.; Jiajue, R.; Jiang, Y.; Wang, O.; Li, M.; Xing, X.; Hu, Y.; Zhou, X.; et al. Mutation update and long-term outcome after treatment with active vitamin d(3) in chinese patients with pseudovitamin d-deficiency rickets (pddr). Osteoporos Int. 2019, 30, 481–489. [Google Scholar] [CrossRef]
- Bacchetta, J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Wesseling-Perry, K.; Gales, B.; Adams, J.S.; Salusky, I.B.; Hewison, M. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin d in human monocytes. J. Bone Miner. Res. 2013, 28, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Perwad, F.; Zhang, M.Y.; Tenenhouse, H.S.; Portale, A.A. Fibroblast growth factor 23 impairs phosphorus and vitamin d metabolism in vivo and suppresses 25-hydroxyvitamin d-1alpha-hydroxylase expression in vitro. Am. J. Physiol. Renal Physiol. 2007, 293, F1577–F1583. [Google Scholar] [CrossRef] [Green Version]
- Krajisnik, T.; Bjorklund, P.; Marsell, R.; Ljunggren, O.; Akerstrom, G.; Jonsson, K.B.; Westin, G.; Larsson, T.E. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol. 2007, 195, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Fan, H.; Jiang, Y.; Liao, L.; Li, L.; Zhao, J.; Zhang, H.; Shrestha, C.; Xie, Z. Regulation of 25-hydroxyvitamin d-1-hydroxylase and 24-hydroxylase in keratinocytes by pth and fgf23. Exp. Dermatol. 2018, 27, 1201–1209. [Google Scholar] [CrossRef]
- Chanakul, A.; Zhang, M.Y.; Louw, A.; Armbrecht, H.J.; Miller, W.L.; Portale, A.A.; Perwad, F. Fgf-23 regulates cyp27b1 transcription in the kidney and in extra-renal tissues. PLoS ONE 2013, 8, e72816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewendt, F.; Feger, M.; Foller, M. Role of fibroblast growth factor 23 (fgf23) and alphaklotho in cancer. Front. Cell Dev. Biol. 2020, 8, 601006. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.S.; Heath, H., 3rd; Kumar, R.; Riggs, B.L. Impaired vitamin d metabolism with aging in women. Possible role in pathogenesis of senile osteoporosis. J. Clin. Investig. 1984, 73, 1668–1672. [Google Scholar] [CrossRef] [Green Version]
- Armbrecht, H.J.; Zenser, T.V.; Davis, B.B. Effect of age on the conversion of 25-hydroxyvitamin d3 to 1,25-dihydroxyvitamin d3 by kidney of rat. J. Clin. Investig. 1980, 66, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Caniggia, A.; Lore, F.; di Cairano, G.; Nuti, R. Main endocrine modulators of vitamin d hydroxylases in human pathophysiology. J. Steroid Biochem. 1987, 27, 815–824. [Google Scholar]
- Pike, J.W.; Spanos, E.; Colston, K.W.; MacIntyre, I.; Haussler, M.R. Influence of estrogen on renal vitamin d hydroxylases and serum 1alpha,25-(oh)2d3 in chicks. Am. J. Physiol. 1978, 235, E338–E343. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Castillo, L.; DeLuca, H.F. Control of renal vitamin d hydroxylases in birds by sex hormones. Proc. Natl. Acad. Sci. USA 1976, 73, 2701–2705. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current understanding of the molecular actions of vitamin d. Physiol. Rev. 1998, 78, 1193–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, T.; Tsugawa, N.; Masuda, S.; Takeuchi, A.; Kobayashi, T.; Nishii, Y. Protein-binding properties of 22-oxa-1 alpha,25-dihydroxyvitamin d3, a synthetic analogue of 1 alpha,25-dihydroxyvitamin d3. J. Nutr. Sci. Vitaminol. 1989, 35, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Burke, R.R.; Rybicki, B.A.; Rao, D.S. Calcium and vitamin d in sarcoidosis: How to assess and manage. Semin. Respir. Crit. Care Med. 2010, 31, 474–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenell, A.; Mak, J.C.; O’Connell, D. Vitamin d and vitamin d analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014, 2014, CD000227. [Google Scholar]
- Tebben, P.J.; Singh, R.J.; Kumar, R. Vitamin d-mediated hypercalcemia: Mechanisms, diagnosis, and treatment. Endocr. Rev. 2016, 37, 521–547. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.; Mangini, P.; Schroen, C.; Aziz, R.; Tobia, A. Prolonged hypercalcemia-induced psychosis. Case Rep. Psychiatry 2020, 2020, 6954036. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Souberbielle, J.C.; Schott, A.M.; de Decker, L.; Berrut, G.; Beauchet, O. Vitamin d in the elderly: 5 points to remember. Geriatr. Psychol. Neuropsychiatr. Vieil. 2011, 9, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Rocca, W.A.; Hofman, A.; Brayne, C.; Breteler, M.M.; Clarke, M.; Copeland, J.R.; Dartigues, J.F.; Engedal, K.; Hagnell, O.; Heeren, T.J.; et al. Frequency and distribution of alzheimer’s disease in europe: A collaborative study of 1980-1990 prevalence findings. The eurodem-prevalence research group. Ann. Neurol. 1991, 30, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Doblhammer, G. Prevalence and incidence of dementia in germany--a study based on data from the public sick funds in 2002. Gesundheitswesen 2009, 71, 281–290. [Google Scholar] [CrossRef]
- Patterson, C. The state of the art of dementia research: New frontiers. An analysis of prevalence, incidence, cost and trends. In World Alzheimer Report 2018; Alzheimer’s Disease International: London, UK, 2018. [Google Scholar]
- Shen, L.; Ji, H.F. Vitamin d deficiency is associated with increased risk of alzheimer’s disease and dementia: Evidence from meta-analysis. Nutr. J. 2015, 14, 76. [Google Scholar] [CrossRef] [Green Version]
- Jayedi, A.; Rashidy-Pour, A.; Shab-Bidar, S. Vitamin d status and risk of dementia and alzheimer’s disease: A meta-analysis of dose-response (dagger). Nutr. Neurosci. 2019, 22, 750–759. [Google Scholar] [CrossRef]
- Chai, B.; Gao, F.; Wu, R.; Dong, T.; Gu, C.; Lin, Q.; Zhang, Y. Vitamin d deficiency as a risk factor for dementia and alzheimer’s disease: An updated meta-analysis. BMC Neurol. 2019, 19, 284. [Google Scholar] [CrossRef]
- Cao, L.; Tan, L.; Wang, H.F.; Jiang, T.; Zhu, X.C.; Lu, H.; Tan, M.S.; Yu, J.T. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol. Neurobiol. 2016, 53, 6144–6154. [Google Scholar] [CrossRef]
- Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin d deficiency as a risk factor for dementia: A systematic review and meta-analysis. BMC Geriatr. 2017, 17, 16. [Google Scholar] [CrossRef] [Green Version]
- Etgen, T.; Sander, D.; Bickel, H.; Sander, K.; Forstl, H. Vitamin d deficiency, cognitive impairment and dementia: A systematic review and meta-analysis. Dement. Geriatr. Cogn. Disord. 2012, 33, 297–305. [Google Scholar] [CrossRef]
- van der Schaft, J.; Koek, H.L.; Dijkstra, E.; Verhaar, H.J.; van der Schouw, Y.T.; Emmelot-Vonk, M.H. The association between vitamin d and cognition: A systematic review. Ageing Res. Rev. 2013, 12, 1013–1023. [Google Scholar] [CrossRef]
- van Schoor, N.M.; Comijs, H.C.; Llewellyn, D.J.; Lips, P. Cross-sectional and longitudinal associations between serum 25-hydroxyvitamin d and cognitive functioning. Int. Psychogeriatr. 2016, 28, 759–768. [Google Scholar] [CrossRef]
- Aguilar-Navarro, S.G.; Mimenza-Alvarado, A.J.; Jimenez-Castillo, G.A.; Bracho-Vela, L.A.; Yeverino-Castro, S.G.; Avila-Funes, J.A. Association of vitamin d with mild cognitive impairment and alzheimer’s dementia in older mexican adults. Rev. Investig. Clin. 2019, 71, 381–386. [Google Scholar]
- Miller, J.W.; Harvey, D.J.; Beckett, L.A.; Green, R.; Farias, S.T.; Reed, B.R.; Olichney, J.M.; Mungas, D.M.; DeCarli, C. Vitamin d status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 2015, 72, 1295–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin d, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annweiler, C.; Llewellyn, D.J.; Beauchet, O. Low serum vitamin d concentrations in alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer’s Dis. 2013, 33, 659–674. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Sun, Y.; Ji, H.F.; Shen, L. Vitamin d levels in alzheimer’s and parkinson’s diseases: A meta-analysis. Nutrition 2013, 29, 828–832. [Google Scholar] [CrossRef]
- Lopes da Silva, S.; Vellas, B.; Elemans, S.; Luchsinger, J.; Kamphuis, P.; Yaffe, K.; Sijben, J.; Groenendijk, M.; Stijnen, T. Plasma nutrient status of patients with alzheimer’s disease: Systematic review and meta-analysis. Alzheimer’s Dement. 2014, 10, 485–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.; Almqvist, E.G.; Johansson, J.O.; Mattsson, N.; Andreasson, U.; Hansson, O.; Wallin, A.; Blennow, K.; Zetterberg, H.; Svensson, J. Cerebrospinal fluid (csf) 25-hydroxyvitamin d concentration and csf acetylcholinesterase activity are reduced in patients with alzheimer’s disease. PLoS ONE 2013, 8, e81989. [Google Scholar] [CrossRef]
- Miller, B.J.; Whisner, C.M.; Johnston, C.S. Vitamin d supplementation appears to increase plasma abeta40 in vitamin d insufficient older adults: A pilot randomized controlled trial. J. Alzheimer’s Dis. 2016, 52, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin d supplementation on cognitive function and blood abeta-related biomarkers in older adults with alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar] [PubMed]
- Beydoun, M.A.; Hossain, S.; Fanelli-Kuczmarski, M.T.; Beydoun, H.A.; Canas, J.A.; Evans, M.K.; Zonderman, A.B. Vitamin d status and intakes and their association with cognitive trajectory in a longitudinal study of urban adults. J. Clin. Endocrinol. Metab. 2018, 103, 1654–1668. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ying, J.; Fan, P.; Weamer, E.A.; DeMichele-Sweet, M.A.A.; Lopez, O.L.; Kofler, J.K.; Sweet, R.A. Effects of vitamin d use on outcomes of psychotic symptoms in alzheimer disease patients. Am. J. Geriatr. Psychiatry 2019, 27, 908–917. [Google Scholar] [CrossRef]
- Ballard, C.; Hanney, M.L.; Theodoulou, M.; Douglas, S.; McShane, R.; Kossakowski, K.; Gill, R.; Juszczak, E.; Yu, L.M.; Jacoby, R.; et al. The dementia antipsychotic withdrawal trial (dart-ad): Long-term follow-up of a randomised placebo-controlled trial. Lancet Neurol. 2009, 8, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.C.; Santos, N.C.; Portugal-Nunes, C.; Castanho, T.C.; Moreira, P.; Costa, P.S.; Sousa, N.; Palha, J.A. 25-oh vitamin d levels and cognitive performance: Longitudinal assessment in a healthy aging cohort. Front. Aging Neurosci. 2019, 11, 330. [Google Scholar] [CrossRef]
- Palacios, N.; Scott, T.; Sahasrabudhe, N.; Gao, X.; Tucker, K.L. Serum vitamin d and cognition in a cohort of boston-area puerto ricans. Nutr. Neurosci. 2020, 23, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Nakatani, S.; Kabata, D.; Mori, K.; Shintani, A.; Yoshida, H.; Takahashi, K.; Ota, K.; Fujii, H.; Ueda, S.; et al. Comparative effects of etelcalcetide and maxacalcitol on serum calcification propensity in secondary hyperparathyroidism: A randomized clinical trial. Clin. J. Am. Soc. Nephrol. 2021, 16, 599–612. [Google Scholar] [CrossRef]
- Thal, D.R.; Del Tredici, K.; Braak, H. Neurodegeneration in normal brain aging and disease. Sci. Aging Knowl. Environ. 2004, 2004, pe26. [Google Scholar] [CrossRef]
- Schott, J.M.; Price, S.L.; Frost, C.; Whitwell, J.L.; Rossor, M.N.; Fox, N.C. Measuring atrophy in alzheimer disease: A serial mri study over 6 and 12 months. Neurology 2005, 65, 119–124. [Google Scholar] [CrossRef]
- Brewer, L.D.; Porter, N.M.; Kerr, D.S.; Landfield, P.W.; Thibault, O. Chronic 1alpha,25-(oh)2 vitamin d3 treatment reduces ca2+ -mediated hippocampal biomarkers of aging. Cell Calcium. 2006, 40, 277–286. [Google Scholar] [CrossRef]
- Brewer, L.D.; Thibault, V.; Chen, K.C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin d hormone confers neuroprotection in parallel with downregulation of l-type calcium channel expression in hippocampal neurons. J. Neurosci. 2001, 21, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveilhan, P.; Neveu, I.; Wion, D.; Brachet, P. 1,25-dihydroxyvitamin d3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport 1996, 7, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological stageing of alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Walsh, S.; Merrick, R.; Milne, R.; Brayne, C. Aducanumab for alzheimer’s disease? Br. Med. J. 2021, 374, n1682. [Google Scholar] [CrossRef]
- Grimm, M.O.W.; Thiel, A.; Lauer, A.A.; Winkler, J.; Lehmann, J.; Regner, L.; Nelke, C.; Janitschke, D.; Benoist, C.; Streidenberger, O.; et al. Vitamin d and its analogues decrease amyloid-beta (abeta) formation and increase abeta-degradation. Int. J. Mol. Sci. 2017, 18, 2764. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.G.; Guo, T.; Han, X.R.; Liu, J.L.; Cai, Y.T.; Xue, H.; Huang, X.S.; Li, Y.C.; Wang, Z.Y.; Guo, C. Paricalcitol accelerates bace1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in app/ps1 transgenic mice. EBioMedicine 2019, 45, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Saad El-Din, S.; Rashed, L.; Medhat, E.; Emad Aboulhoda, B.; Desoky Badawy, A.; Mohammed ShamsEldeen, A.; Abdelgwad, M. Active form of vitamin d analogue mitigates neurodegenerative changes in alzheimer’s disease in rats by targeting keap1/nrf2 and mapk-38p/erk signaling pathways. Steroids 2020, 156, 108586. [Google Scholar] [CrossRef]
- Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased clearance of cns beta-amyloid in alzheimer’s disease. Science 2010, 330, 1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coupland, C.A.C.; Hill, T.; Dening, T.; Morriss, R.; Moore, M.; Hippisley-Cox, J. Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Intern. Med. 2019, 179, 1084–1093. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Wu, X.; Acheampong, K.; Liu, A. Dopamine and dopamine receptors in alzheimer’s disease: A systematic review and network meta-analysis. Front. Aging Neurosci. 2019, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.A.; Herrmann, N.; Lanctot, K.L. The role of dopamine in symptoms and treatment of apathy in alzheimer’s disease. CNS Neurosci. Ther. 2011, 17, 411–427. [Google Scholar] [CrossRef]
- Mega, M.S.; Cummings, J.L.; Fiorello, T.; Gornbein, J. The spectrum of behavioral changes in alzheimer’s disease. Neurology 1996, 46, 130–135. [Google Scholar] [CrossRef]
- Sun, Y.; Lai, M.S.; Lu, C.J.; Chen, R.C. How long can patients with mild or moderate alzheimer’s dementia maintain both the cognition and the therapy of cholinesterase inhibitors: A national population-based study. Eur. J. Neurol. 2008, 15, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Brown, R.T.; Ding, E.L.; Kiel, D.P.; Berry, S.D. Dementia medications and risk of falls, syncope, and related adverse events: Meta-analysis of randomized controlled trials. J. Am. Geriatr. Soc. 2011, 59, 1019–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Fukatsu, T.; Kanemoto, K. Risk of hospitalization associated with anticholinergic medication for patients with dementia. Psychogeriatrics 2018, 18, 57–63. [Google Scholar] [CrossRef]
- Lanctot, K.L.; Herrmann, N.; Yau, K.K.; Khan, L.R.; Liu, B.A.; LouLou, M.M.; Einarson, T.R. Efficacy and safety of cholinesterase inhibitors in alzheimer’s disease: A meta-analysis. Can. Med. Assoc. J. 2003, 169, 557–564. [Google Scholar]
- Sonnenberg, J.; Luine, V.N.; Krey, L.C.; Christakos, S. 1,25-dihydroxyvitamin d3 treatment results in increased choline acetyltransferase activity in specific brain nuclei. Endocrinology 1986, 118, 1433–1439. [Google Scholar] [CrossRef]
- Wilcock, G.K.; Esiri, M.M.; Bowen, D.M.; Smith, C.C. Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J. Neurol. Sci. 1982, 57, 407–417. [Google Scholar] [CrossRef]
- Rodrigues, M.V.; Gutierres, J.M.; Carvalho, F.; Lopes, T.F.; Antunes, V.; da Costa, P.; Pereira, M.E.; Schetinger, M.R.C.; Morsch, V.M.; de Andrade, C.M. Protection of cholinergic and antioxidant system contributes to the effect of vitamin d(3) ameliorating memory dysfunction in sporadic dementia of alzheimer’s type. Redox Rep. 2019, 24, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertile, R.A.; Cui, X.; Eyles, D.W. Vitamin d signaling and the differentiation of developing dopamine systems. Neuroscience 2016, 333, 193–203. [Google Scholar] [CrossRef]
- Smith, M.P.; Fletcher-Turner, A.; Yurek, D.M.; Cass, W.A. Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem. Res. 2006, 31, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.A.R.; Lopes, M.J.P.; Costa, R.O.; Lima, F.A.V.; Neves, K.R.T.; Calou, I.B.F.; Andrade, G.M.; Viana, G.S.B. Vitamin d protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J. Neuroinflamm. 2018, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Cui, X.; Ko, P.; McGrath, J.J.; Burne, T.H.; Eyles, D.W. Developmental vitamin d deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci. Lett. 2009, 461, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Taniura, H.; Ito, M.; Sanada, N.; Kuramoto, N.; Ohno, Y.; Nakamichi, N.; Yoneda, Y. Chronic vitamin d3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin d receptor mrna expression in cultured rat cortical neurons. J. Neurosci. Res. 2006, 83, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Kajta, M.; Makarewicz, D.; Zieminska, E.; Jantas, D.; Domin, H.; Lason, W.; Kutner, A.; Lazarewicz, J.W. Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro. Neurochem. Int. 2009, 55, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Herrmann, F.R.; Fantino, B.; Brugg, B.; Beauchet, O. Effectiveness of the combination of memantine plus vitamin d on cognition in patients with alzheimer disease: A pre-post pilot study. Cogn. Behav. Neurol. 2012, 25, 121–127. [Google Scholar] [CrossRef]
- Annweiler, C.; Beauchet, O. Possibility of a new anti-alzheimer’s disease pharmaceutical composition combining memantine and vitamin d. Drugs Aging 2012, 29, 81–91. [Google Scholar] [CrossRef]
- Annweiler, C.; Brugg, B.; Peyrin, J.M.; Bartha, R.; Beauchet, O. Combination of memantine and vitamin d prevents axon degeneration induced by amyloid-beta and glutamate. Neurobiol. Aging 2014, 35, 331–335. [Google Scholar] [CrossRef]
- Parisi, E.; Bozic, M.; Ibarz, M.; Panizo, S.; Valcheva, P.; Coll, B.; Fernandez, E.; Valdivielso, J.M. Sustained activation of renal n-methyl-d-aspartate receptors decreases vitamin d synthesis: A possible role for glutamate on the onset of secondary hpt. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E825–E831. [Google Scholar] [CrossRef] [Green Version]
- van Gelder, B.M.; Tijhuis, M.A.; Kalmijn, S.; Giampaoli, S.; Nissinen, A.; Kromhout, D. Physical activity in relation to cognitive decline in elderly men: The fine study. Neurology 2004, 63, 2316–2321. [Google Scholar] [CrossRef]
- Stephen, R.; Hongisto, K.; Solomon, A.; Lonnroos, E. Physical activity and alzheimer’s disease: A systematic review. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 733–739. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; Garcia-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G.; et al. Physical exercise in the prevention and treatment of alzheimer’s disease. J. Sport Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Fari, G.; Lunetti, P.; Pignatelli, G.; Raele, M.V.; Cera, A.; Mintrone, G.; Ranieri, M.; Megna, M.; Capobianco, L. The effect of physical exercise on cognitive impairment in neurodegenerative disease: From pathophysiology to clinical and rehabilitative aspects. Int. J. Mol. Sci. 2021, 22, 11632. [Google Scholar] [CrossRef]
- Okonkwo, O.C.; Schultz, S.A.; Oh, J.M.; Larson, J.; Edwards, D.; Cook, D.; Koscik, R.; Gallagher, C.L.; Dowling, N.M.; Carlsson, C.M.; et al. Physical activity attenuates age-related biomarker alterations in preclinical ad. Neurology 2014, 83, 1753–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, G.M.; Cranston, L.; Lindblad, A.; McCormack, J.; Kolber, M.R.; Garrison, S.; Korownyk, C. Vitamin d: A narrative review examining the evidence for ten beliefs. J. Gen. Intern. Med. 2016, 31, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Bischoff-Ferrari, H.A.; Willett, W.C.; Orav, E.J.; Lips, P.; Meunier, P.J.; Lyons, R.A.; Flicker, L.; Wark, J.; Jackson, R.D.; Cauley, J.A.; et al. A pooled analysis of vitamin d dose requirements for fracture prevention. N. Engl. J. Med. 2012, 367, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murad, M.H.; Elamin, K.B.; Abu Elnour, N.O.; Elamin, M.B.; Alkatib, A.A.; Fatourechi, M.M.; Almandoz, J.P.; Mullan, R.J.; Lane, M.A.; Liu, H.; et al. Clinical review: The effect of vitamin d on falls: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2011, 96, 2997–3006. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.; Bennett, D.; Mafham, M.; Lin, X.; Chen, Z.; Armitage, J.; Clarke, R. Vitamin d and calcium for the prevention of fracture: A systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1917789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.Y. Anesthesia and alzheimer’s: A review. J. Anaesthesiol. Clin. Pharmacol. 2020, 36, 297–302. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, S.; Moher, D.; Thomas, K.; Hanley, D.A.; Cranney, A. Systematic review of the benefits and harms of calcitriol and alfacalcidol for fractures and falls. J. Bone Miner. Metab. 2008, 26, 531–542. [Google Scholar] [CrossRef]
- Wanleenuwat, P.; Iwanowski, P.; Kozubski, W. Alzheimer’s dementia: Pathogenesis and impact of cardiovascular risk factors on cognitive decline. Postgrad. Med. 2019, 131, 415–422. [Google Scholar] [CrossRef]
- Lee, W.J.; Liao, Y.C.; Wang, Y.F.; Lin, Y.S.; Wang, S.J.; Fuh, J.L. Summative effects of vascular risk factors on the progression of alzheimer disease. J. Am. Geriatr. Soc. 2020, 68, 129–136. [Google Scholar] [CrossRef]
- Rai, V.; Agrawal, D.K. Role of vitamin d in cardiovascular diseases. Endocrinol. Metab. Clin. North Am. 2017, 46, 1039–1059. [Google Scholar] [CrossRef]
- Podzolkov, V.I.; Pokrovskaya, A.E.; Panasenko, O.I. Vitamin d deficiency and cardiovascular pathology. Ter. Arkh. 2018, 90, 144–150. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin d deficiency and diabetes. Biochem. J. 2017, 474, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shang, J.; Yuan, W.; Zhang, S.; Jiang, Y.; Zhao, B.; Duan, Y.; Xiao, J.; Zhao, Z. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease: A meta-analysis. Herz 2018, 43, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Giakoumis, M.; Tsioufis, C.; Dimitriadis, K.; Sonikian, M.; Kasiakogias, A.; Andrikou, E.; Kalos, T.; Konstantinidis, D.; Filis, K.; Petras, D.; et al. Effects of oral paricalcitol therapy on arterial stiffness and osteopontin in hypertensive patients with chronic kidney disease and secondary hyperparathyroidism. Hell. J. Cardiol. 2019, 60, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.P.; Dzekic, T.; Bukuroshi, P.; Pang, K.S. Potencies of vitamin d analogs, 1alpha-hydroxyvitamin d(3), 1alpha-hydroxyvitamin d(2) and 25-hydroxyvitamin d(3), in lowering cholesterol in hypercholesterolemic mice in vivo. Biopharm. Drug Dispos. 2018, 39, 196–204. [Google Scholar] [CrossRef]
- Grimes, D.S. Are statins analogues of vitamin d? Lancet 2006, 368, 83–86. [Google Scholar] [CrossRef]
- Li, Y.C. Vitamin d regulation of the renin-angiotensin system. J. Cell. Biochem. 2003, 88, 327–331. [Google Scholar] [CrossRef]
- Freundlich, M.; Li, Y.C.; Quiroz, Y.; Bravo, Y.; Seeherunvong, W.; Faul, C.; Weisinger, J.R.; Rodriguez-Iturbe, B. Paricalcitol downregulates myocardial renin-angiotensin and fibroblast growth factor expression and attenuates cardiac hypertrophy in uremic rats. Am. J. Hypertens. 2014, 27, 720–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.X.; Jiang, T.; Shen, Y.; Santamaria, H.; Solis, N.; Arbeeny, C.; Levi, M. Vitamin d receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Renal. Physiol. 2011, 300, F801–F810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, L.; Wengle, B.; Wide, L.; Sorensen, O.H.; Ljunghall, S. Hypertension in primary hyperparathyroidism--reduction of blood pressure by long-term treatment with vitamin d (alphacalcidol). A double-blind, placebo-controlled study. Am. J. Hypertens. 1988, 1, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Pollare, T.; Hvarfner, A.; Lithell, H.; Sorensen, O.H.; Ljunghall, S. Long-term treatment with active vitamin d (alphacalcidol) in middle-aged men with impaired glucose tolerance. Effects on insulin secretion and sensitivity, glucose tolerance and blood pressure. Diabetes Res. 1989, 11, 141–147. [Google Scholar]
- Pilz, S.; Tomaschitz, A.; Ritz, E.; Pieber, T.R. Vitamin d status and arterial hypertension: A systematic review. Nat. Rev. Cardiol. 2009, 6, 621–630. [Google Scholar] [CrossRef]
- Loera-Valencia, R.; Eroli, F.; Garcia-Ptacek, S.; Maioli, S. Brain renin-angiotensin system as novel and potential therapeutic target for alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 10139. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Gutzmann, H.; Qazi, A. Depression associated with dementia. Z. Gerontol. Geriatr. 2015, 48, 305–311. [Google Scholar] [CrossRef]
- Penckofer, S.; Byrn, M.; Adams, W.; Emanuele, M.A.; Mumby, P.; Kouba, J.; Wallis, D.E. Vitamin d supplementation improves mood in women with type 2 diabetes. J. Diabetes Res. 2017, 2017, 8232863. [Google Scholar] [CrossRef] [Green Version]
- Uyanikgil, Y.; Solmaz, V.; Cavusoglu, T.; Cinar, B.P.; Cetin, E.O.; Sur, H.Y.; Erbas, O. Inhibitor effect of paricalcitol in rat model of pentylenetetrazol-induced seizures. Naunyn-Schmiedebergs Arch. Pharmacol. 2016, 389, 1117–1122. [Google Scholar] [CrossRef]
Enzyme and Effect | Drugs |
---|---|
partial CYP27A1 inhibitors [36] |
|
CYP3A4 inhibitors [38] |
|
CYP3A4 inducers [39] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiel, A.; Hermanns, C.; Lauer, A.A.; Reichrath, J.; Erhardt, T.; Hartmann, T.; Grimm, M.O.W.; Grimm, H.S. Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease. Nutrients 2023, 15, 1684. https://doi.org/10.3390/nu15071684
Thiel A, Hermanns C, Lauer AA, Reichrath J, Erhardt T, Hartmann T, Grimm MOW, Grimm HS. Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease. Nutrients. 2023; 15(7):1684. https://doi.org/10.3390/nu15071684
Chicago/Turabian StyleThiel, Andrea, Carina Hermanns, Anna Andrea Lauer, Jörg Reichrath, Tobias Erhardt, Tobias Hartmann, Marcus Otto Walter Grimm, and Heike Sabine Grimm. 2023. "Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease" Nutrients 15, no. 7: 1684. https://doi.org/10.3390/nu15071684
APA StyleThiel, A., Hermanns, C., Lauer, A. A., Reichrath, J., Erhardt, T., Hartmann, T., Grimm, M. O. W., & Grimm, H. S. (2023). Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease. Nutrients, 15(7), 1684. https://doi.org/10.3390/nu15071684