Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes
Abstract
:1. Introduction
2. Methods
2.1. Participation
2.2. Measurement of Body Composition
2.3. Hematological Analysis
2.4. Measurement of Physical Fitness
2.5. Taking Black Maca Supplementation
2.6. Statistical Analysis
3. Results
3.1. Change in Physical Fitness after Taking Black Maca Supplementation
3.2. Change in Isokinetic Muscle Function of Trunk after Taking Black Maca Supplementation
3.3. Change in Plasma Components after Taking Black Maca Supplementation
3.4. Change in Inflammation after Taking Black Maca Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sport. Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, R.F.; Shearer, J.; Legg, D.; Parnell, J.A. Evaluation of Dietary Supplement Use in Wheelchair Rugby Athletes. Nutrients 2018, 10, 1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzales, G.F.; Villaorduña, L.; Gasco, M.; Rubio, J.; Gonzales, C. Maca (Lepidium meyenii Walp), a review of its biological properties. Rev. Peru. Med. Exp. Salud. Publica. 2014, 31, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Peres, N.S.L.; Bortoluzzi, L.C.P.; Marques, L.L.M.; Formigoni, M.; Fuchs, R.H.B.; Droval, A.A.; Cardoso, F.A.R. Medicinal effects of Peruvian maca (Lepidium meyenii): A review. Food Funct. 2020, 11, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Miao, H. The Research on the Impact of Maca Polypeptide on Sport Fatigue. Open Biomed. Eng. J. 2016, 10, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zevallos-Concha, A.; Nuñez, D.; Gasco, M.; Vasquez, C.; Quispe, M.; Gonzales, G.F. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp). Toxicol. Mech. Methods 2016, 26, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Vasquez, V.B.; Gasco, M. The transillumination technique as a method for the assessment of spermatogenesis using medicinal plants: The effect of extracts of black maca (Lepidium meyenii) and camu camu (Myrciaria dubia) on stages of the spermatogenic cycle in male rats. Toxicol. Mech. Methods 2013, 23, 559–565. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, W.; Dong, X.; Ao, M.; Liu, H.; Yu, L. Safety evaluation and protective effects of ethanolic extract from maca (Lepidium meyenii Walp.) against corticosterone and H2O2 induced neurotoxicity. Regul. Toxicol. Pharmacol. 2020, 111, 104570. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.V.; Ribeiro, P.R. Structural diversity, biosynthetic aspects, and LC-HRMS data compilation for the identification of bioactive compounds of Lepidium meyenii. Food Res. Int. 2019, 125, 108615. [Google Scholar] [CrossRef]
- Shin, S.H.; Park, D.S.; Jeon, J.H.; Joo, S.S.; Kim, Y.B.; Kang, H.G. Gelatinized and fermented powders of Lepidium meyenii (Maca) improve physical stamina and epididymal sperm counts in male mice. J. Embryo. Trans. 2008, 23, 283–289. [Google Scholar]
- Stone, M.; Ibarra, A.; Roller, M.; Zangara, A.; Stevenson, E. A pilot investigation into the effect of maca supplementation on physical activity and sexual desire in sportsmen. J. Ethnopharmacol. 2009, 126, 574–576. [Google Scholar] [CrossRef]
- Choi, J.W.; Kang, S. Effect of Intake Black Maca on Inflammatory Factors in Female Athletics. J. Sport. Dan. Sci. 2021, 1, 39–47. [Google Scholar] [CrossRef]
- Park, M.H.; Lim, S.T.; Lee, J.; Kim, B.J.; Kang, S. Effects of Resistance Exercise, Black Maca and Combined Treatment on Blood Muscle Fatigue Factors and Muscle Function in Racket Athletes. Exerc. Sci. 2022, 31, 459–468. [Google Scholar] [CrossRef]
- Yu, F.R.; Yang, B.; Li, Z.P.; Lian, X.Z.; Xie, M.R.; Li, D.L.; Zhang, S.S. Effects of the maca extract on the ultrastructures of mitochondria in the spinal nerve cell and exercise endurance. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2017, 33, 535–538. [Google Scholar]
- Kang, S.; Park, I.B.; Lim, S.T. Changing Levels of Myokines after Aerobic Training and Resistance Training in Post-Menopausal Obese Females: A Randomized Controlled Trial. Sustainability 2020, 12, 8413. [Google Scholar] [CrossRef]
- Sellami, M.; Al-muraikhy, S.; Al-Jaber, H.; Al-Amri, H.; Al-Mansoori, L.; Mazloum, N.A.; Donati, F.; Botre, F.; Elrayess, M.A. Age and Sport Intensity-Dependent Changes in Cytokines and Telomere Length in Elite Athletes. Antioxidants 2021, 10, 1035. [Google Scholar] [CrossRef]
- Skarpańska-Stejnborn, A.; Basta, P.; Trzeciak, J.; Szcześniak-Pilaczyńska, L. Effect of intense physical exercise on hepcidin levels and selected parameters of iron metabolism in rowing athletes. Eur. J. Appl. Physiol. 2015, 115, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, T.; Nakamura, T.; Banno, M.; Sasaki, Y.; Umemoto, Y.; Kouda, K.; Kawasaki, T.; Tajima, F. Elevation of interleukin-6 and attenuation of tumor necrosis factor-α during wheelchair half marathon in athletes with cervical spinal cord injuries. Spinal. Cord. 2014, 52, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Joro, R.; Uusitalo, A.; DeRuisseau, K.C.; Atalay, M. Changes in cytokines, leptin, and IGF-1 levels in overtrained athletes during a prolonged recovery phase: A case-control study. J. Sport. Sci. 2017, 35, 2342–2349. [Google Scholar] [CrossRef]
- Kaya, O. Effect of a four-week exercise program on the secretion of IFN-γ, TNF-α, IL-2 and IL-6 cytokines in elite Taekwondo athletes. Biomed. Rep. 2016, 5, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Chang, Y.H. Physicochemical and antioxidant properties of methanol extract from Maca (Lepidium meyenii Walp.) leaves and roots. Food Sci. Technol. 2019, 39, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes’ Health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Seco-Calvo, J.; Pascual-Fernández, J.; Domínguez-Ortega, C.; Soto, M.D.V.; Mielgo-Ayuso, J. 6-Week Supplementation with Tribulus terrestris L. to Trained Male CrossFit® Athletes on Muscle, Inflammation, and Antioxidant Biomarkers: A Randomized, Single-Blind, Placebo-Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 16158. [Google Scholar] [CrossRef]
- Watson, T.A.; MacDonald-Wicks, L.K.; Garg, M.L. Oxidative stress and antioxidants in athletes undertaking regular exercise training. Int. J. Sport. Nutr. Exerc. Metab. 2005, 15, 131–146. [Google Scholar] [CrossRef]
- Cureton, T.K. Relationship of physical fitness to athletic performance and sports. J. Am. Med. Assoc. 1956, 162, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.A.S.; Petroski, E.L.; Gaya, A.C.A. Anthropometric and Physical Fitness Differences Among Brazilian Adolescents who Practise Different Team Court Sports. J. Hum. Kinet. 2013, 36, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Williams, M. Dietary supplements and sports performance: Amino acids. J. Int. Soc. Sport. Nutr. 2005, 2, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Matsunaga, Y.; Kanbara, M.; Kamono, A.; Masuda, T.; Watanabe, M.; Nakanishi, R.; Jinno, T. Effect of exercise therapy combined with branched-chain amino acid supplementation on muscle strength in elderly women after total hip arthroplasty: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2019, 28, 720–726. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Falvo, M.J.; Faigenbaum, A.D. Effect of protein intake on strength, body composition and endocrine changes in strength/power athletes. J. Int. Soc. Sport. Nutr. 2006, 3, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Gül, E.T.; Olgun, O.; Yıldız, A.; Tüzün, A.E.; Sarmiento-García, A. Use of Maca Powder (Lepidium meyenii) as Feed Additive in Diets of Laying Quails at Different Ages: Its Effect on Performance, Eggshell Quality, Serum, Ileum, and Bone Properties. Vet. Sci. 2022, 9, 418. [Google Scholar] [CrossRef] [PubMed]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- Gambardella, J.; Fiordelisi, A.; Spigno, L.; Boldrini, L.; Lungonelli, G.; Vaia, E.D.; Santulli, G.; Sorriento, D.; Cerasuolo, F.A.; Trimarco, V.; et al. Effects of Chronic Supplementation of L-Arginine on Physical Fitness in Water Polo Players. Oxid. Med. Cell. Longev. 2021, 2021, 6684568. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Juajharia, B. Energy variations of sports person. Int. J. Res. Pada. Tec. Edu. Mov. Sci. 2014, 2, 18–21. [Google Scholar]
- Chen, C.T.; Shih, Y.T.V.; Kuo, T.K.; Lee, O.K.; Wei, Y.H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem. Cells 2008, 26, 960–968. [Google Scholar] [CrossRef] [PubMed]
Variable | SA (n = 15) | RSA (n = 16) | FSA (n = 13) |
---|---|---|---|
Age (years) | 27.07 ± 6.33 | 21.25 ± 1.30 | 22.54 ± 3.13 |
Height (cm) | 174.5 ± 5.45 | 176.7 ± 4.14 | 169.6 ± 4.96 |
Weight (kg) | 76.89 ± 9.74 | 71.28 ± 9.72 | 70.79 ± 8.82 |
BMI (kg/m2) | 25.20 ± 2.43 | 22.80 ± 3.06 | 24.50 ± 2.01 |
% fat (%) | 22.71 ± 6.66 | 17.34 ± 4.91 | 22.04 ± 8.35 |
Variable | Time | Group | p-Value | Post Hoc | ||
---|---|---|---|---|---|---|
SA (n = 13) a | RSA (n = 15) b | FSA (n = 13) c | ||||
Left grip strength (kg) | Pre | 43.8 ± 4.7 | 41.0 ± 5.9 | 34.9 ± 7.5 | G: 0.012 T: 0.008 GxT: 0.037 | b > c |
Post | 45.1 ± 4.0 | 41.0 ± 5.0 | 39.0 ± 9.9 ** | |||
Right grip strength (kg) | Pre | 46.0 ± 5.2 | 46.2 ± 5.8 | 38.1 ± 8.1 | G: 0.026 T: 0.002 GxT: 0.032 | b > c |
Post | 47.0 ± 6.3 | 46.8 ± 5.4 | 42.1 ± 9.8 ** | |||
Sit-ups (rep) | Pre | 40.2 ± 7.0 | 41.5 ± 9.3 | 55.8 ± 11.2 | G: <0.001 T: <0.001 GxT: 0.179 | c > a, b |
Post | 47.1 ± 7.7 ** | 47.7 ± 8.0 * | 57.9 ± 8.7 ** | |||
Sit-and-reach (cm) | Pre | 8.53 ± 8.4 | 6.91 ± 11.4 | 22.2 ± 9.5 | G: <0.001 T: <0.001 GxT: 0.720 | c > a, b |
Post | 10.4 ± 7.2 | 9.9 ± 11.1 | 25.3 ± 8.1 ** | |||
Long jump (cm) | Pre | 210.5 ± 19.2 | 228.9 ± 14.0 | 197.8 ± 33.5 | G: 0.007 T: <0.001 GxT: 0.006 | b > a, c |
Post | 215.0 ± 15.1 | 239.5 ± 12.8 * | 222.1 ± 32.5 *** | |||
10 m shuttle run (s) | Pre | 10.0 ± 0.6 | 9.1 ± 0.7 | 10.0 ± 0.9 | G: <0.001 T: <0.001 GxT: 0.106 | b < a, c |
Post | 10.5 ± 0.6 * | 9.5 ± 0.4 * | 11.0 ± 1.2 *** | |||
20 m shuttle run (rep) | Pre | 33.3 ± 3.6 | 62.9 ± 9.4 | 74.5 ± 19.3 | G: <0.001 T: 0.814 GxT: 0.171 | a < b, c |
Post | 37.5 ± 8.0 | 64.1 ± 12.6 | 70.4 ± 17.1 |
Variable | Time | Group | p-Value | Post Hoc | ||
---|---|---|---|---|---|---|
SA (n = 13) a | RSA (n = 15) b | FSA (n = 13) c | ||||
30°/s Extensor (%BW) | Pre | 272.1 ± 56.2 | 340.1 ± 34.8 | 284.8 ± 86.6 | G: 0.002 T: 0.131 GxT: 0.329 | b > a, c |
Post | 274.8 ± 47.3 | 322.0 ± 63.3 | 241.6 ± 64.0 | |||
30°/s Flexor (%BW) | Pre | 282.9 ± 31.8 | 307.8 ± 39.8 | 315.2 ± 36.7 | G: 0.086 T: 0.269 GxT: 0.054 | - |
Post | 290.7 ± 31.5 | 314.8 ± 56.3 | 261.7 ± 71.3 | |||
120°/s Extensor (%BW) | Pre | 158.6 ± 70.8 | 239.4 ± 67.6 | 234.9 ± 89.8 | G: 0.002 T: 0.002 GxT: 0.780 | a < b, c |
Post | 190.1 ± 63.1 | 283.3 ± 71.1 | 287.6 ± 98.0 * | |||
120°/s Flexor (%BW) | Pre | 275.7 ± 88.4 | 320.4 ± 102.0 | 317.6 ± 56.7 | G: 0.249 T: 0.010 GxT: 0.586 | - |
Post | 327.9 ± 69.0 ** | 366.3 ± 62.8 | 335.8 ± 75.3 |
Variable | Time | Group | p-Value | Post Hoc | ||
---|---|---|---|---|---|---|
SA (n = 13) a | RSA (n = 15) b | FSA (n = 13) c | ||||
Myoglobin (mg/mL) | Pre | 31.4 ± 17.5 | 30.0 ± 12.0 | 26.2 ± 6.6 | G: 0.246 T: 0.413 GxT: 0.928 | - |
Post | 28.6 ± 8.6 | 29.3 ± 11.7 | 24.1 ± 5.0 | |||
Creatine kinase (U/L) | Pre | 439.3 ± 523.5 | 265.9 ± 234.4 | 313.2 ± 170.5 | G: 0.215 T: 0.341 GxT: 0.808 | - |
Post | 327.4 ± 259.3 | 229.1 ± 202.3 | 289.8 ± 160.7 | |||
Lactic acid (mg/dL) | Pre | 15.1 ± 6.6 | 8.0 ± 2.5 | 11.1 ± 5.3 | G: 0.001 T: 0.004 GxT: 0.004 | a > b, c |
Post | 10.4 ± 3.2 * | 9.6 ± 3.6 | 6.5 ± 1.7 * | |||
TC (mg/dL) | Pre | 174.6 ± 30.7 | 148.5 ± 24.2 | 170.5 ± 14.9 | G: 0.001 T: 0.017 GxT: <0.001 | a > b, c |
Post | 200.3 ± 33.2 ** | 167.0 ± 21.1 ** | 151.5 ± 19.8 *** | |||
HDL-C (mg/dL) | Pre | 54.9 ± 10.3 | 58.2 ± 11.0 | 59.7 ± 12.5 | G: 0.741 T: 0.269 GxT: 0.178 | - |
Post | 60.4 ± 13.0 | 58.5 ± 13.1 | 61.2 ± 15.6 | |||
CRP (mg/dL) | Pre | 0.12 ± 0.11 | 0.08 ± 0.10 | 0.09 ± 0.02 | G: 0.027 T: 0.001 GxT: 0.699 | a > b |
Post | 0.09 ± 0.09 | 0.02 ± 0.03 ** | 0.04 ± 0.01 *** |
Variable | Time | Group | p-Value | Post Hoc | ||
---|---|---|---|---|---|---|
SA (n = 13) a | RSA (n = 15) b | FSA (n = 13) c | ||||
IL-6 (pg/mL) | Pre | 134.3 ± 6.38 | 136.9 ± 6.90 | 148.3 ± 18.9 | G: 0.005 T: 0.003 GxT: 0.063 | c > a, b |
Post | 133.8 ± 2.96 | 132.0 ± 3.64 *** | 146.3 ± 20.4 | |||
TNF-α (pg/mL) | Pre | 270.8 ± 26.6 | 278.1 ± 16.5 | 283.2 ± 22.2 | G: 0.334 T: <0.001 GxT: 0.276 | - |
Post | 265.6 ± 11.7 | 265.6 ± 5.08 ** | 271.8 ± 16.6 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Park, M.; Kim, B.; Kang, S. Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes. Nutrients 2023, 15, 1618. https://doi.org/10.3390/nu15071618
Lee E, Park M, Kim B, Kang S. Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes. Nutrients. 2023; 15(7):1618. https://doi.org/10.3390/nu15071618
Chicago/Turabian StyleLee, Eunjae, Myeonghun Park, Byoungju Kim, and Sunghwun Kang. 2023. "Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes" Nutrients 15, no. 7: 1618. https://doi.org/10.3390/nu15071618
APA StyleLee, E., Park, M., Kim, B., & Kang, S. (2023). Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes. Nutrients, 15(7), 1618. https://doi.org/10.3390/nu15071618