Minerals and Antioxidant Micronutrients Levels and Clinical Outcome in Older Patients Hospitalized for COVID-19 during the First Wave of the Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population Characteristics
2.2. Ethical Consideration
2.3. Data Collection
2.4. Micronutrients Levels
2.5. Study Clinical Endpoints of COVID-19 Disease Severity
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics and Comorbidities
3.2. Clinical Outcomes
3.3. Association between Plasma Antioxidant and Mineral Micronutrients Levels and Clinical Outcomes
3.4. Association between Plasma Antioxidant Micronutrients Levels and CRP Levels or Age
4. Discussion
Limitations and Strengths of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salahshoori, I.; Mobaraki-Asl, N.; Seyfaee, A.; Mirzaei Nasirabad, N.; Dehghan, Z.; Faraji, M.; Ganjkhani, M.; Babapoor, A.; Shadmehr, S.Z.; Hamrang, A. Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines. Biologics 2021, 1, 2–40. [Google Scholar] [CrossRef]
- Lambermont, B.; Rousseau, A.-F.; Seidel, L.; Thys, M.; Cavalleri, J.; Delanaye, P.; Chase, J.G.; Gillet, P.; Misset, B. Outcome Improvement Between the First Two Waves of the Coronavirus Disease 2019 Pandemic in a Single Tertiary-Care Hospital in Belgium. Crit. Care Explor. 2021, 3, e0438. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.Y.S.; Cheng, D.; Martin, J. Impact of COVID-19 on Excess Mortality, Life Expectancy, and Years of Life Lost in the United States. PLoS ONE 2021, 16, e0256835. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, C.A.; Achilleos, S.; Quattrocchi, A.; Gabel, J.; Critselis, E.; Constantinou, C.; Nicolaou, N.; Ambrosio, G.; Bennett, C.M.; Le Meur, N.; et al. Impact of the COVID-19 Pandemic on Total, Sex- and Age-Specific All-Cause Mortality in 20 Countries Worldwide during 2020: Results from the C-MOR Project. Int. J. Epidemiol. 2022, dyac170. [Google Scholar] [CrossRef]
- Dessie, Z.G.; Zewotir, T. Mortality-Related Risk Factors of COVID-19: A Systematic Review and Meta-Analysis of 42 Studies and 423,117 Patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Fitero, A.; Bungau, S.G.; Tit, D.M.; Endres, L.; Khan, S.A.; Bungau, A.F.; Romanul, I.; Vesa, C.M.; Radu, A.-F.; Tarce, A.G.; et al. Comorbidities, Associated Diseases, and Risk Assessment in COVID-19—A Systematic Review. Int. J. Clin. Pract. 2022, 2022, e1571826. [Google Scholar] [CrossRef]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 2021, 11, 571416. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why Does COVID-19 Disproportionately Affect Older People? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Cortes-Telles, A.; Gutiérrez-Solis, A.L.; Álvarez-Sánchez, V.A.; González-Garay, A.G.; Lugo, R.; Avila-Nava, A. Dynamic Inflammatory Response among Routine Laboratory Biomarkers and Their Predictive Ability for Mortality in Patients with Severe COVID-19. Front. Med. 2022, 9, 1047304. [Google Scholar] [CrossRef]
- Kabir, M.T.; Uddin, M.S.; Hossain, M.F.; Abdulhakim, J.A.; Alam, M.A.; Ashraf, G.M.; Bungau, S.G.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Aleya, L. NCOVID-19 Pandemic: From Molecular Pathogenesis to Potential Investigational Therapeutics. Front. Cell Dev. Biol. 2020, 8, 616. [Google Scholar] [CrossRef]
- Tourkochristou, E.; Triantos, C.; Mouzaki, A. The Influence of Nutritional Factors on Immunological Outcomes. Front. Immunol. 2021, 12, 665968. [Google Scholar] [CrossRef]
- Damayanthi, H.D.W.T.; Prabani, K.I.P. Nutritional Determinants and COVID-19 Outcomes of Older Patients with COVID-19: A Systematic Review. Arch. Gerontol. Geriatr. 2021, 95, 104411. [Google Scholar] [CrossRef]
- Richardson, D.P.; Lovegrove, J.A. Nutritional Status of Micronutrients as a Possible and Modifiable Risk Factor for COVID-19: A UK Perspective. Br. J. Nutr. 2021, 125, 678–684. [Google Scholar] [CrossRef]
- Munteanu, C.; Schwartz, B. The Relationship between Nutrition and the Immune System. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Renata, R.-B.N.; Arely, G.-R.A.; Gabriela, L.-M.A.; Esther, M.-L.M. Immunomodulatory Role of Microelements in COVID-19 Outcome: A Relationship with Nutritional Status. Biol. Trace Elem. Res. 2023, 201, 1596–1614. [Google Scholar] [CrossRef]
- Baudry, J.; Kopp, J.F.; Boeing, H.; Kipp, A.P.; Schwerdtle, T.; Schulze, M.B. Changes of Trace Element Status during Aging: Results of the EPIC-Potsdam Cohort Study. Eur. J. Nutr. 2020, 59, 3045–3058. [Google Scholar] [CrossRef] [Green Version]
- Kaur, I.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Subramanian, V.; Fuloria, S.; Fuloria, N.K.; Sekar, M.; Dailah, H.G.; et al. A Motley of Possible Therapies of the COVID-19: Reminiscing the Origin of the Pandemic. Environ. Sci. Pollut. Res. 2022, 29, 67685–67703. [Google Scholar] [CrossRef] [PubMed]
- Lanham-New, S.A.; Webb, A.R.; Cashman, K.D.; Buttriss, J.L.; Fallowfield, J.L.; Masud, T.; Hewison, M.; Mathers, J.C.; Kiely, M.; Welch, A.A.; et al. Vitamin D and SARS-CoV-2 Virus/COVID-19 Disease. BMJ Nutr. Prev. Health 2020, 3, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Parant, F.; Bouloy, J.; Haesebaert, J.; Bendim’red, L.; Goldet, K.; Vanhems, P.; Henaff, L.; Gilbert, T.; Cuerq, C.; Blond, E.; et al. Vitamin D and COVID-19 Severity in Hospitalized Older Patients: Potential Benefit of Prehospital Vitamin D Supplementation. Nutrients 2022, 14, 1641. [Google Scholar] [CrossRef] [PubMed]
- Saadatian-Elahi, M.; Picot, V.; Hénaff, L.; Pradel, F.K.; Escuret, V.; Dananché, C.; Elias, C.; Endtz, H.P.; Vanhems, P. Protocol for a Prospective, Observational, Hospital-Based Multicentre Study of Nosocomial SARS-CoV-2 Transmission: NOSO-COR Project. BMJ Open 2020, 10, e039088. [Google Scholar] [CrossRef] [PubMed]
- Culbertson, E.M.; Culotta, V.C. Copper in Infectious Disease: Using Both Sides of the Penny. Semin. Cell Dev. Biol. 2021, 115, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pechlivanidou, E.; Vlachakis, D.; Tsarouhas, K.; Panidis, D.; Tsitsimpikou, C.; Darviri, C.; Kouretas, D.; Bacopoulou, F. The Prognostic Role of Micronutrient Status and Supplements in COVID-19 Outcomes: A Systematic Review. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 162, 112901. [Google Scholar] [CrossRef]
- Fischer Walker, C.; Black, R.E. Zinc and the Risk for Infectious Disease. Annu. Rev. Nutr. 2004, 24, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Johnson, E.J. Carotenoid Actions and Their Relation to Health and Disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Martinez, S.S.; Huang, Y.; Acuna, L.; Laverde, E.; Trujillo, D.; Barbieri, M.A.; Tamargo, J.; Campa, A.; Baum, M.K. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int. J. Mol. Sci. 2021, 23, 280. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A Global Clinical Measure of Fitness and Frailty in Elderly People. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Salo, P.M.; Mendy, A.; Wilkerson, J.; Molsberry, S.A.; Feinstein, L.; London, S.J.; Fessler, M.B.; Thorne, P.S.; Zeldin, D.C. Serum Antioxidant Vitamins and Respiratory Morbidity and Mortality: A Pooled Analysis. Respir. Res. 2022, 23, 150. [Google Scholar] [CrossRef]
- Akbaraly, N.T.; Arnaud, J.; Hininger-Favier, I.; Gourlet, V.; Roussel, A.-M.; Berr, C. Selenium and Mortality in the Elderly: Results from the EVA Study. Clin. Chem. 2005, 51, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Heller, R.A.; Sun, Q.; Hackler, J.; Seelig, J.; Seibert, L.; Cherkezov, A.; Minich, W.B.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Prediction of Survival Odds in COVID-19 by Zinc, Age and Selenoprotein P as Composite Biomarker. Redox Biol. 2021, 38, 101764. [Google Scholar] [CrossRef]
- Vogel-González, M.; Talló-Parra, M.; Herrera-Fernández, V.; Pérez-Vilaró, G.; Chillón, M.; Nogués, X.; Gómez-Zorrilla, S.; López-Montesinos, I.; Arnau-Barrés, I.; Sorli-Redó, M.L.; et al. Low Zinc Levels at Admission Associates with Poor Clinical Outcomes in SARS-CoV-2 Infection. Nutrients 2021, 13, 562. [Google Scholar] [CrossRef]
- Tomasa-Irriguible, T.-M.; Bielsa-Berrocal, L.; Bordejé-Laguna, L.; Tural-Llàcher, C.; Barallat, J.; Manresa-Domínguez, J.-M.; Torán-Monserrat, P. Low Levels of Few Micronutrients May Impact COVID-19 Disease Progression: An Observational Study on the First Wave. Metabolites 2021, 11, 565. [Google Scholar] [CrossRef]
- Voelkle, M.; Gregoriano, C.; Neyer, P.; Koch, D.; Kutz, A.; Bernasconi, L.; Conen, A.; Mueller, B.; Schuetz, P. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients 2022, 14, 1862. [Google Scholar] [CrossRef]
- Im, J.H.; Je, Y.S.; Baek, J.; Chung, M.-H.; Kwon, H.Y.; Lee, J.-S. Nutritional Status of Patients with COVID-19. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 100, 390–393. [Google Scholar] [CrossRef]
- Younesian, O.; Khodabakhshi, B.; Abdolahi, N.; Norouzi, A.; Behnampour, N.; Hosseinzadeh, S.; Alarzi, S.S.H.; Joshaghani, H. Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol. Trace Elem. Res. 2022, 200, 1562–1567. [Google Scholar] [CrossRef]
- Muthuvattur Pallath, M.; Ahirwar, A.K.; Chandra Tripathi, S.; Asia, P.; Sakarde, A.; Gopal, N. COVID-19 and Nutritional Deficiency: A Review of Existing Knowledge. Horm. Mol. Biol. Clin. Investig. 2021, 42, 77–85. [Google Scholar] [CrossRef]
- Rederstorff, M.; Krol, A.; Lescure, A. Understanding the Importance of Selenium and Selenoproteins in Muscle Function. Cell. Mol. Life Sci. 2006, 63, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Katona, P.; Katona-Apte, J. The Interaction between Nutrition and Infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P.; Rinaldi, N.A.; Ho, E. Zinc Deficiency Enhanced Inflammatory Response by Increasing Immune Cell Activation and Inducing IL6 Promoter Demethylation. Mol. Nutr. Food Res. 2015, 59, 991–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and Respiratory Tract Infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouw, N.; van de Maat, J.; Veerman, K.; Ten Oever, J.; Janssen, N.; Abbink, E.; Reijers, M.; de Mast, Q.; Hoefsloot, W.; van Crevel, R.; et al. Clinical Characteristics and Outcomes of 952 Hospitalized COVID-19 Patients in The Netherlands: A Retrospective Cohort Study. PLoS ONE 2021, 16, e0248713. [Google Scholar] [CrossRef] [PubMed]
- Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. [Google Scholar] [CrossRef] [Green Version]
- Homem, S.G.; Moreira, E.A.M.; da Silva, A.F.; Barni, G.C.; da Rosa, J.S.; de Lima Oliveira, D.; Tomio, C.; de Freitas, M.B.; Portari, G.V.; Furkim, A.M.; et al. Relationship between Oropharyngeal Dysphagia, Nutritional Status, Antioxidant Vitamins and the Inflammatory Response in Adults and Elderly: A Cross-Sectional Study. Clin. Nutr. ESPEN 2020, 38, 211–217. [Google Scholar] [CrossRef]
- Koekkoek, W.A.C.; Hettinga, K.; de Vries, J.H.M.; Zanten, A.R.H. van Micronutrient Deficiencies in Critical Illness. Clin. Nutr. 2021, 40, 3780–3786. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Gowda, S.; Mundkur, L. An Exploratory Study of Selenium Status in Healthy Individuals and in Patients with COVID-19 in a South Indian Population: The Case for Adequate Selenium Status. Nutrition 2021, 82, 111053. [Google Scholar] [CrossRef]
- Elham, A.S.; Azam, K.; Azam, J.; Mostafa, L.; Nasrin, B.; Marzieh, N. Serum Vitamin D, Calcium, and Zinc Levels in Patients with COVID-19. Clin. Nutr. ESPEN 2021, 43, 276–282. [Google Scholar] [CrossRef]
- Rosa, C.; Franca, C.; Lanes Vieira, S.; Carvalho, A.; Penna, A.; Nogueira, C.; Lessa, S.; Ramalho, A. Reduction of Serum Concentrations and Synergy between Retinol, β-Carotene, and Zinc According to Cancer Staging and Different Treatment Modalities Prior to Radiation Therapy in Women with Breast Cancer. Nutrients 2019, 11, 2953. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Selenium Deficiency is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098. [Google Scholar] [CrossRef]
- Koekkoek, W.A.C.; van Zanten, A.R.H. Antioxidant Vitamins and Trace Elements in Critical Illness. Nutr. Clin. Pract. 2016, 31, 457–474. [Google Scholar] [CrossRef]
- Casaer, M.P.; Bellomo, R. Micronutrient Deficiency in Critical Illness: An Invisible Foe? Intensive Care Med. 2019, 45, 1136–1139. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- El Sabbagh, E.; El-Sayed, M.; Elbaz, T. Vitamins and Minerals: A Means for Surviving the COVID-19 Pandemic or Just a Myth? J. Infect. Dev. Ctries. 2022, 16, 782–786. [Google Scholar] [CrossRef]
- de Faria Coelho-Ravagnani, C.; Corgosinho, F.C.; Sanches, F.L.F.Z.; Prado, C.M.M.; Laviano, A.; Mota, J.F. Dietary Recommendations during the COVID-19 Pandemic. Nutr. Rev. 2020, 79, 382–393. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Guerra-Valle, M.; Casas-Forero, N.; Sobral, M.M.C.; Viegas, O.; Alarcón-Enos, J.; Ferreira, I.M.; Pinho, O. Western Dietary Pattern Antioxidant Intakes and Oxidative Stress: Importance During the SARS-CoV-2/COVID-19 Pandemic. Adv. Nutr. 2021, 12, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Notz, Q.; Herrmann, J.; Schlesinger, T.; Helmer, P.; Sudowe, S.; Sun, Q.; Hackler, J.; Roeder, D.; Lotz, C.; Meybohm, P.; et al. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients 2021, 13, 2113. [Google Scholar] [CrossRef] [PubMed]
- Beran, A.; Mhanna, M.; Srour, O.; Ayesh, H.; Stewart, J.M.; Hjouj, M.; Khokher, W.; Mhanna, A.S.; Ghazaleh, D.; Khader, Y.; et al. Clinical Significance of Micronutrient Supplements in Patients with Coronavirus Disease 2019: A Comprehensive Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2022, 48, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Summers, J.; Lei, K.; Card, D.; Harrington, D.J.; Sherwood, R.; Turner, C.; Dalton, N.; Peacock, J.; Bear, D.E. Micronutrients in Critically Ill Patients with Severe Acute Kidney Injury—A Prospective Study. Sci. Rep. 2020, 10, 1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Total Patients | COVID-19 Survivors | COVID-19- Related Death | Severe COVID-19 (Including Death) * | Non-Severe COVID-19 | Primary Objective Subgroup |
---|---|---|---|---|---|---|
(n = 228) | 85% (193/228) | 15% (35/228) | 46% (105/228) | 54% (123/228) | (n = 94) | |
Median age (IQR) | 78 years (68–87) | 76 years (66–87) | 82 years (76–86) | 73 years (66–82) | 82 years (71–90) | 79 years (70–88) |
Age ≥ 80 years % (n) | 43% (99/228) | 41% (80/193) | 54% (19/35) | 27% (28/105) | 58% (71/123) | 47% (44/94) |
Sex ratio (male/female) | 1.3 (129/99) | 1.1 (101/92) | 4.0 (28/7) | 2.2 (72/33) | 0.9 (57/66) | 0.9 (45/49) |
Living in institutions % (n) | 25% (56/228) | 24% (47/193) | 26% (9/35) | 19% (20/105) | 29% (36/123) | 38% (36/94) |
Median BMI (IQR) | 25.7 kg/m2 (22.1–29.1) n = 224 ** | 25.9 kg/m2 (22.2–29.1) n = 190 | 24.7 kg/m2 (20.6–27.6) n = 34 | 26.7 kg/m2 (23.8–30.4) n = 104 | 24.3 kg/m2 (21.3–28.6) n = 120 | 24.5 kg/m2 (21.1–28.6) n = 94 |
BMI ≥ 35 kg/m2 % (n) | 7% (16/224) | 6% (11/190) | 15% (5/34) | 12% (12/104) | 3% (4/120) | 10% (9/94) |
Median CRP (IQR) | 40 mg/L (8–105) (n = 220) | 29 mg/L (6–78) (n = 186) | 102 mg/L (54–181) (n = 34) | 179 mg/L (111–271) (n = 104) | 20 mg/L (5–64) (n = 121) | 55 mg/L (24–124) (n = 91) |
Median albumin (IQR) | 27.3 g/L (23.0–32.4) (n = 214) | 28.3 g/L (24.2–33.3) (n = 183) | 22.0 g/L (18.7–26.1) (n = 31) | 19.7 g/L (16–23.9) (n = 98) | 30.0 g/L (26.7–34.1) (n = 117) | 27.3 g/L (23.5–31.6) (n = 86) |
Antioxidant Micronutrients | Non-Severe COVID-19 (n = 53) | Severe COVID-19, Including Death (n = 41) | p-Value * (z Value) | COVID-19 Survivors (n = 78) | COVID-19- Related Death (n = 16) | p-Value * (z Value) |
---|---|---|---|---|---|---|
Zinc (mg/L) | 0.66 (0.53–0.76) (n = 53) | 0.55 (049–0.68) (n = 41) | 0.012 (2.505) | 0.62 (0.52–0.75) (n = 78) | 0.51 (0.44–0.59) (n = 16) | 0.009 (2.591) |
Selenium (µg/L) | 64 (49–78) (n = 43) | 62 (45–74) (n = 33) | NS (0.650) | 65 (50–77) (n = 63) | 53 (39–61) (n = 13) | 0.014 (2.456) |
Copper (mg/L) | 1.20 (1.02–1.41) (n = 53) | 1.20 (1.0–1.4) (n = 41) | NS (0.335) | 1.21 (1.03–1.41) (n = 78) | 1.13 (0.99–1.34) (n = 16) | NS (0.805) |
Vitamin A (µmol/L) | 1.35 (0.95–1.81) (n = 53) | 1.15 (0.74–1.71) (n = 41) | NS (1.647) | 1.38 (0.93–1.88) (n = 78) | 0.79 (0.61–1.00) (n = 16) | 0.001 (3.229) |
β-carotene (µmol/L) | 0.42 (0.29–0.67) (n = 53) | 0.28 (0.19–0.38) (n = 41) | 0.001 (3.477) | 0.37 (0.26–0.57) (n = 78) | 0.24 (0.14–0.29) (n = 16) | 0.002 (3.029) |
Vitamin E (µmol/L) | 25.7 (21.5–29.9) (n = 53) | 26.2 (21.2–29.9) (n = 41) | NS (0.175) | 26.6 (21.5–30.9) (n = 78) | 23.0 (18.9–26.5) (n = 16) | 0.047 (1.982) |
COVID-19-Related Deaths | Severe COVID-19 | |||||
---|---|---|---|---|---|---|
Parameters | Crude OR | 95% CI | p-Value | Crude OR | 95% CI | p-Value |
Age > 75 years | 3.348 | 0.883–12.694 | 0.0755 | 0.595 | 0.258–1.375 | 0.2246 |
Male sex | 2.847 | 0.903–8.973 | 0.0740 | 1.510 | 0.665–3.428 | 0.3242 |
CRP (mg/L) * | 1.004 | 0.998–1.010 | 0.1739 | 1.005 | 1.000–1.011 | 0.0614 |
Vit D supp | 0.768 | 0.243–2.432 | 0.6536 | 0.583 | 0.245–1.387 | 0.2225 |
Albumin (g/L) ** | 0.918 | 0.825–1.022 | 0.1183 | 0.741 | 0.646–0.850 | <0.0001 |
BMI ≥ 35 (kg/m2) | 2.875 | 0.632–13.085 | 0.1720 | 2.765 | 0.646–11.838 | 0.1706 |
Zinc (mg/L) # | 1.683 | 1.076–2.631 | 0.0225 | 1.411 | 1.057–1.884 | 0.0196 |
Selenium (µg/L) ### | 1.727 | 1.110–2.687 | 0.0154 | 1.120 | 0.890–1.410 | 0.3345 |
Copper (mg/L) # | 1.038 | 0.864–1.246 | 0.6926 | 0.956 | 0.836–1.093 | 0.5085 |
Vitamin A (µmol/L) # | 1.214 | 1.060–1.390 | 0.0051 | 1.060 | 0.992–1.132 | 0.0840 |
β-carotene (µmol/L) # | 1.455 | 1.038–2.040 | 0.0294 | 1.421 | 1.142–1.767 | 0.0016 |
Vitamin E (µmol/L) ## | 1.011 | 0.965–1.060 | 0.6393 | 1.011 | 0.965–1.060 | 0.6393 |
COVID-19-Related Deaths | Severe COVID-19 | |||||
---|---|---|---|---|---|---|
Antioxidant Micronutrients | Adjusted OR | 95% CI | p-Value | Adjusted OR | 95% CI | p-Value |
Zinc (mg/L) # | 1.396 | 0.778–2.506 | 0.2631 | 2.133 | 1.139–3.993 | 0.0179 |
Selenium (µg/L) ### | 1.506 | 0.880–2.579 | 0.1356 | 1.157 | 0.752–1.780 | 0.5065 |
Copper (mg/L) # | 1.025 | 0.815–1.289 | 0.8334 | 0.963 | 0.774–1.198 | 0.7341 |
Vitamin A (µmol/L) # | 1.298 | 1.041–1.620 | 0.0206 | 1.022 | 0.919–1.137 | 0.4025 |
β-carotene (µmol/L) # | 1.243 | 0.825–1.874 | 0.2985 | 1.230 | 0.904–1.672 | 0.1871 |
Vitamin E (µmol/L) ## | 1.043 | 0.942–1.155 | 0.4135 | 1.004 | 0.934–1.079 | 0.5873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahaye, C.; Parant, F.; Haesebaert, J.; Goldet, K.; Bendim’red, L.; Henaff, L.; Saadatian-Elahi, M.; Vanhems, P.; Cuerq, C.; Gilbert, T.; et al. Minerals and Antioxidant Micronutrients Levels and Clinical Outcome in Older Patients Hospitalized for COVID-19 during the First Wave of the Pandemic. Nutrients 2023, 15, 1516. https://doi.org/10.3390/nu15061516
Lahaye C, Parant F, Haesebaert J, Goldet K, Bendim’red L, Henaff L, Saadatian-Elahi M, Vanhems P, Cuerq C, Gilbert T, et al. Minerals and Antioxidant Micronutrients Levels and Clinical Outcome in Older Patients Hospitalized for COVID-19 during the First Wave of the Pandemic. Nutrients. 2023; 15(6):1516. https://doi.org/10.3390/nu15061516
Chicago/Turabian StyleLahaye, Clément, François Parant, Julie Haesebaert, Karine Goldet, Lamia Bendim’red, Laetitia Henaff, Mitra Saadatian-Elahi, Philippe Vanhems, Charlotte Cuerq, Thomas Gilbert, and et al. 2023. "Minerals and Antioxidant Micronutrients Levels and Clinical Outcome in Older Patients Hospitalized for COVID-19 during the First Wave of the Pandemic" Nutrients 15, no. 6: 1516. https://doi.org/10.3390/nu15061516