Peri-Conceptional Folic Acid Supplementation and Children’s Physical Development: A Birth Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Folic Acid Supplementation
2.3. Assessment of Children’s Physical Development
2.4. Covariates
3. Statistical Analysis
3.1. Trajectory Modeling
3.2. Association between Folic Acid Supplementation Status and Children’s Growth Trajectories and AR
4. Results
4.1. Trajectory Fitting of Physical Development Indicators
4.2. Association between Peri-Conceptional Folic Acid Supplementation and Child Growth and Development Indicators
4.3. Association between Continued Folic Acid Supplementation after the First Trimester of Pregnancy and Children’s Growth and Development
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czeizel, A.E.; Dudás, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- MRC Vitamin Study Research Group. Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. Lancet 1991, 338, 131–137. [Google Scholar] [CrossRef]
- WHO. Available online: https://www.who.int/zh/news/item/07-11-2016-pregnant-women-must-be-able-to-access-the-right-care-at-the-right-time-says-who (accessed on 1 August 2022.).
- US Preventive Services Task Force. Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA 2017, 317, 183–189. [Google Scholar] [CrossRef] [PubMed]
- The Folic Acid Supplementation Working Group. Guideline for the prevention of neural tube defects by periconceptional folic acid supplementation (2017). Chin. J. Reprod. Health 2017, 28, 401–410. [Google Scholar]
- Wilcox, A.J.; Lie, R.T.; Solvoll, K.; Taylor, J.; McConnaughey, D.R.; Åbyholm, F.; Vindenes, H.; Vollset, S.E.; Drevon, C.A. Folic acid supplements and risk of facial clefts: National population based case-control study. BMJ 2007, 334, 464. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.W.; Chen, X.K.; Rodger, M.; White, R.R.; Yang, Q.; Smith, G.N.; Sigal, R.J.; Perkins, S.L.; Walker, M.C. Folic acid supplementation in early second trimester and the risk of preeclampsia. Am. J. Obstet. Gynecol. 2008, 198, 45.e1–45.e7. [Google Scholar] [CrossRef]
- Nilsen, R.M.; Vollset, S.E.; Rasmussen, S.A.; Ueland, P.M.; Daltveit, A.K. Folic acid and multivitamin supplement use and risk of placental abruption: A population-based registry study. Am. J. Epidemiol. 2008, 167, 867–874. [Google Scholar] [CrossRef]
- George, L.; Mills, J.; Johansson, A.; Nordmark, A.; Olander, B.; Granath, F.; Cnattingius, S. Plasma folate levels and risk of spontaneous abortion. JAMA 2002, 288, 1867–1873. [Google Scholar] [CrossRef]
- Hernández-Díaz, S.; Werler, M.M.; Louik, C.; Mitchell, A.A. Risk of gestational hypertension in relation to folic acid supplementation during pregnancy. Am. J. Epidemiol. 2002, 156, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, S.; Jaddoe, V.W.V.; Hofman, A.; Steegers-Theunissen, R.P.M.; Steegers, E.A.P. Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: The Generation R Study. Br. J. Nutr. 2009, 102, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Li, Z.; Ye, R.; Liu, J.; Ren, A. Impact of Periconceptional Folic Acid Supplementation on Low Birth Weight and Small-for-Gestational-Age Infants in China: A Large Pro-spective Cohort Study. J. Pediatr. 2017, 187, 105–110. [Google Scholar] [CrossRef]
- Nilsen, R.M.; Vollset, S.E.; Monsen, A.L.B.; Ulvik, A.; Haugen, M.; Meltzer, H.M.; Magnus, P.; Ueland, P.M. Infant birth size is not associated with maternal intake and status of folate during the second trimester in Norwegian pregnant women. J. Nutr. 2010, 140, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Steenweg-de Graaff, J.; Roza, S.J.; Walstra, A.N.; El Marroun, H.; Steegers, E.A.P.; Jaddoe, V.W.V.; Hofman, A.; Verhulst, F.C.; Tiemeier, H.; White, T. Associations of maternal folic acid supplementation and folate concentrations during pregnancy with foetal and child head growth: The Generation R Study. Eur. J. Nutr. 2017, 56, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Obeid, R.; Eussen, S.J.; Mommers, M.; Smits, L.; Thijs, C. Imbalanced Folate and Vitamin B12 in the Third Trimester of Pregnancy and its Association with Birthweight and Child Growth up to 2 Years. Mol. Nutr. Food Res. 2021, 66, 2100662. [Google Scholar] [CrossRef]
- Greenland, S.; Pearl, J.; Robins, J.M. Causal diagrams for epidemiologic research. Epidemiology 1999, 10, 37–48. [Google Scholar] [CrossRef]
- Simmonds, M.; Burch, J.; Llewellyn, A.; Griffiths, C.; Yang, H.; Owen, C.; Duffy, S.; Woolacott, N. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: A systematic review and meta-analysis. Heal. Technol. Assess. 2015, 19, 1–336. [Google Scholar] [CrossRef] [Green Version]
- Aris, I.M.; Rifas-Shiman, S.L.; Li, L.-J.; Kleinman, K.; Coull, B.A.; Gold, D.R.; Hivert, M.-F.; Kramer, M.S.; Oken, E. Pre-, Perinatal, and Parental Predictors of Body Mass Index Trajectory Milestones. J. Pediatr. 2018, 201, 69–77.e8. [Google Scholar] [CrossRef]
- Cissé, A.H.; Lioret, S.; De Lauzon-Guillain, B.; Forhan, A.; Ong, K.; Charles, M.A.; Heude, B. Association between perinatal factors, genetic susceptibility to obesity and age at adiposity rebound in children of the EDEN mother-child cohort. Int. J. Obes. 2021, 45, 1802–1810. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, J.; Wang, X.; Shi, H.; Huo, Y.; Liu, M.; Sun, F.; Lan, H.; Guo, C.; Liu, H.; et al. Rapid BMI Increases and Persistent Obesity in Small-for-Gestational-Age Infants. Front. Pediatr. 2021, 9, 625853. [Google Scholar] [CrossRef]
- Wen, X.; Kleinman, K.; Gillman, M.W.; Rifas-Shiman, S.L.; Taveras, E.M. Childhood body mass index trajectories: Modeling, characterizing, pairwise correlations and socio-demographic predictors of trajectory characteristics. BMC Med. Res. Methodol. 2012, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, J.; Yang, M.; Zhang, F.; Tao, X.; Tao, F.; Huang, K. Sex-specific association between elective cesarean section and growth trajectories in preschool children: A prospective birth cohort study. Front. Public Heal. 2022, 10, 985851. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Campbell, K.J.; Baur, L.; Rissel, C.; Wen, L.M. Infant feeding and growth trajectories in early childhood: The application and comparison of two longitudinal modelling approaches. Int. J. Obes. 2021, 45, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Rolland-Cachera, M.F.; Deheeger, M.; Bellisle, F.; Sempé, M.; Guilloud-Bataille, M.; Patois, E. Adiposity rebound in children: A simple indicator for predicting obesity. Am. J. Clin. Nutr. 1984, 39, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, M.; Maher, G.; Boland, F.; Fitzgerald, A.P.; Murray, D.M.; Biesma, R. Group-based trajectory modelling for BMI trajectories in childhood: A systematic review. Obes. Rev. 2019, 20, 998–1015. [Google Scholar] [CrossRef]
- Péneau, S.; Giudici, K.V.; Gusto, G.; Goxe, D.; Lantieri, O.; Hercberg, S.; Rolland-Cachera, M.-F. Growth Trajectories of Body Mass Index during Childhood: Associated Factors and Health Outcome at Adulthood. J. Pediatr. 2017, 186, 64–71.e1. [Google Scholar] [CrossRef]
- Pannia, E.; Cho, C.E.; Kubant, R.; Sánchez-Hernández, D.; Huot, P.S.; Anderson, G.H. Role of maternal vitamins in program-ming health and chronic disease. Nutr. Rev. 2016, 74, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.H.; Jaquiery, A.L.; Bloomfield, F.H.; Harding, J.E. The effects of maternal nutrition around the time of conception on the health of the offspring. Soc. Reprod. Fertil. Suppl. 2007, 64, 397–410. [Google Scholar] [CrossRef]
- Pravenec, M.; Kozich, V.; Krijt, J.; Sokolová, J.; Zídek, V.; Landa, V.; Šimáková, M.; Mlejnek, P.; Šilhavý, J.; Oliyarnyk, O.; et al. Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am. J. Hypertens. 2013, 26, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Gargari, B.P.; Aghamohammadi, V.; Aliasgharzadeh, A. Effect of folic acid supplementation on biochemical indices in overweight and obese men with type 2 diabetes. Diabetes Res. Clin. Pr. 2011, 94, 33–38. [Google Scholar] [CrossRef]
- Thomas-Valdés, S.; Tostes, M.D.G.V.; Anunciação, P.C.; da Silva, B.P.; Sant’Ana, H.M.P. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 2017, 57, 3332–3343. [Google Scholar] [CrossRef]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef]
- Caffrey, A.; McNulty, H.; Rollins, M.; Prasad, G.; Gaur, P.; Talcott, J.B.; Witton, C.; Cassidy, T.; Marshall, B.; Dornan, J.; et al. Effects of maternal folic acid supplementation during the second and third trimesters of pregnancy on neurocognitive development in the child: An 11-year follow-up from a randomised controlled trial. BMC Med. 2021, 19, 73. [Google Scholar] [CrossRef]
- Hollingsworth, J.W.; Maruoka, S.; Boon, K.; Garantziotis, S.; Li, Z.; Tomfohr, J.; Bailey, N.; Potts, E.N.; Whitehead, G.; Brass, D.M.; et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest. 2016, 126, 2012. [Google Scholar] [CrossRef] [Green Version]
- Whitrow, M.J.; Moore, V.M.; Rumbold, A.R.; Davies, M.J. Effect of supplemental folic acid in pregnancy on childhood asthma: A prospective birth cohort study. Am. J. Epidemiol. 2009, 170, 1486–1493. [Google Scholar] [CrossRef] [Green Version]
- Håberg, S.E.; London, S.; Nafstad, P.; Nilsen, R.M.; Ueland, P.M.; Vollset, S.E.; Nystad, W. Maternal folate levels in pregnancy and asthma in children at age 3 years. J. Allergy Clin. Immunol. 2011, 127, 262–264.e1. [Google Scholar] [CrossRef] [Green Version]
- Aris, I.M.; Bernard, J.Y.; Chen, L.-W.; Tint, M.T.; Pang, W.W.; Soh, S.E.; Saw, S.-M.; Shek, L.P.-C.; Godfrey, K.M.; Gluckman, P.D.; et al. Modifiable risk factors in the first 1000 days for subsequent risk of childhood overweight in an Asian cohort: Significance of parental overweight status. Int. J. Obes. 2017, 42, 44–51. [Google Scholar] [CrossRef]
- Martorell, R.; Zongrone, A. Intergenerational influences on child growth and undernutrition. Paediatr. Pé;rinat. Epidemiol. 2012, 26 (Suppl. 1), 302–314. [Google Scholar] [CrossRef]
Variables | Total |
---|---|
Demographic Characteristics | |
Maternal age (years, mean ± SD) | 26.6 ± 3.6 |
Education level (years, mean ± SD) | 13.4 ± 3.1 |
Place of residence [n (%)] | |
Urban areas | 2810 (91.7) |
Rural areas | 254 (8.3) |
Monthly household income per capita [yuan, n (%)] | |
<2500 | 807 (26.3) |
2500–4000 | 1319 (43.0) |
>4000 | 938 (30.6) |
Maternal characteristics | |
Smoking during pregnancy [n (%)] | |
Yes | 129 (4.2) |
No | 2935 (95.8) |
Alcohol drinking during pregnancy [n (%)] | |
Yes | 245 (8.0) |
No | 2819 (92.0) |
Weight gain during pregnancy * (kg) (Mean ± SD) (n = 3058) | 17.9 ± 5.1 |
Parity [n (%)] | |
Primiparity | 2725 (88.9) |
Multiparity | 339 (11.1) |
GDM [n (%)] | |
Yes | 398 (13.0) |
No | 2666 (87.0) |
HDCP [n (%)] * (n = 3057) | |
Yes | 182 (6.0) |
No | 2875 (93.8) |
Folic Acid Supplementation Status | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
Traj 1 | Traj 3 | Traj 4 | Traj 1 | Traj 3 | Traj 4 | |
No supplementation both in pre-pregnancy and in the 1st trimester of pregnancy | 1.122 (0.748–1.685) | 1.434 (1.041–1.975) * | 1.719 (1.088–2.715) * | 1.43 (0.750–1.743) | 1.423 (1.022–1.982) * | 1.654 (1.024–2.671) * |
Supplementation in pre-pregnancy or in the 1st trimester of pregnancy | 0.901 (0.722–1.124) | 0.963 (0.804–1.153) | 1.233 (0.939–1.619) | 0.910 (0.724–1.142) | 0.954 (0.793–1.149) | 1.224 (0.923–1.623) |
Folic Acid Supplementation Status | Model 1 | Model 2 | ||
---|---|---|---|---|
Traj 1 | Traj 3 | Traj 1 | Traj 3 | |
No supplementation both in pre-pregnancy and in the 1st trimester of pregnancy | 1.418 (0.994–2.023) | 1.802 (1.041–3.117) | 1.379 (0.954–1.995) | 1.833 (1.037–3.240) |
Supplementation in pre-pregnancy or in the 1st trimester of pregnancy | 1.066 (0.881–1.289) | 1.109 (0.797–1.542) | 1.086 (0.892–1.323) | 1.151 (0.820–1.616) |
Folic Acid Supplementation Status | Model 1 | Model 2 | ||
---|---|---|---|---|
Traj 1 | Traj 3 | Traj 1 | Traj 3 | |
No supplementation both in pre-pregnancy and in the 1st trimester of pregnancy | 1.031 (0.747–1.423) | 0.858 (0.586–1.254) | 1.024 (0.734–1.429) | 1.004 (0.677–1.487) |
Supplementation in pre-pregnancy or in the 1st trimester of pregnancy | 1.059 (0.884–1.270) | 0.942 (0.766–1.157) | 1.048 (0.870–1.263) | 0.982 (0.794–1.215) |
Folic Acid Supplementation Status | Model 1 | Model 2 |
---|---|---|
No supplementation both in pre-pregnancy and in the 1st trimester of pregnancy | 1.175 (0.855–1.614) | 1.110 (0.798–1.544) |
Supplementation in pre-pregnancy or in the 1st trimester of pregnancy | 1.048 (0.879–1.249) | 1.004 (0.837–1.203) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yang, M.; Hao, X.; Zhang, F.; Zhou, J.; Tao, F.; Huang, K. Peri-Conceptional Folic Acid Supplementation and Children’s Physical Development: A Birth Cohort Study. Nutrients 2023, 15, 1423. https://doi.org/10.3390/nu15061423
Zhang S, Yang M, Hao X, Zhang F, Zhou J, Tao F, Huang K. Peri-Conceptional Folic Acid Supplementation and Children’s Physical Development: A Birth Cohort Study. Nutrients. 2023; 15(6):1423. https://doi.org/10.3390/nu15061423
Chicago/Turabian StyleZhang, Shanshan, Mengting Yang, Xuemei Hao, Fu Zhang, Jixing Zhou, Fangbiao Tao, and Kun Huang. 2023. "Peri-Conceptional Folic Acid Supplementation and Children’s Physical Development: A Birth Cohort Study" Nutrients 15, no. 6: 1423. https://doi.org/10.3390/nu15061423
APA StyleZhang, S., Yang, M., Hao, X., Zhang, F., Zhou, J., Tao, F., & Huang, K. (2023). Peri-Conceptional Folic Acid Supplementation and Children’s Physical Development: A Birth Cohort Study. Nutrients, 15(6), 1423. https://doi.org/10.3390/nu15061423