Occupational Physical Activity and Cardiometabolic Risk Factors: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Participants and Public Involvement
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection
2.5. Anthropometric Data and Associated Medical Conditions
2.6. Laboratory Data and Associated Medical Conditions
2.7. Lifestyle Data
2.8. Employee OPA and Socioeconomic Characteristics
2.9. Sample Size Calculation
2.10. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, J. Healthy Workplace Framework and Model: Background and Supporting Literature and Practice; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Hutchinson, A.D.; Wilson, C. Improving Nutrition and Physical Activity in the Workplace: A Meta-Analysis of Intervention Studies. Health Promot. Int. 2012, 27, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation and Development OECD Employment: Hours Worked. Available online: data.oecd.org/emp/hours-worked.htm (accessed on 22 October 2022).
- de Jonge, J.; Peeters, M.C.W. The Vital Worker: Towards Sustainable Performance at Work. Int. J. Environ. Res. Public Health 2019, 16, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, S.; Kyrönlahti, S.; Oakman, J.; Siukola, A.; Riekhoff, A.J.; Kuivalainen, S.; Nygård, C.H. Can Workplace Intervention Prolong Work Life of Older Workers? A Quasi-Experimental Study. Int. Arch. Occup. Environ. Health 2022, 96, 237–246. [Google Scholar] [CrossRef]
- Arocha Rodulfo, J.I. Sedentarismo, La Enfermedad Del Siglo Xxi. Clin. Investig. Arterioscler. 2019, 31, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Alkandari, J.R.; Andersen, L.B.; Bauman, A.E.; Brownson, R.C.; et al. Effect of Physical Inactivity on Major Non-Communicable Diseases Worldwide: An Analysis of Burden of Disease and Life Expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Matthews, C.E.; George, S.M.; Moore, S.C.; Bowles, H.R.; Blair, A.; Park, Y.; Troiano, R.P.; Hollenbeck, A.; Schatzkin, A. Amount of Time Spent in Sedentary Behaviors and Cause-Specific Mortality in US Adults 1-3. Am. J. Clin. Nutr. 2012, 95, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.; Slater, J.; Tuomilehto, J.; Rauramaa, R. Leisure Time and Occupational Physical Activity: Risk of Death from Ischemic Heart Disease. Am. J. Epidemiol. 1988, 127, 87–94. [Google Scholar] [CrossRef]
- Hu, G.; Eriksson, J.; Barengo, N.C.; Lakka, T.A.; Valle, T.T.; Nissinen, A.; Jousilahti, P.; Tuomilehto, J. Occupational, Commuting, and Leisure-Time Physical Activity in Relation to Total and Cardiovascular Mortality among Finnish Subjects with Type 2 Diabetes. Circulation 2004, 110, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Allesøe, K.; Holtermann, A.; Rugulies, R.; Aadahl, M.; Boyle, E.; Søgaard, K. Does Influence at Work Modify the Relation between High Occupational Physical Activity and Risk of Heart Disease in Women? Int. Arch. Occup. Environ. Health 2017, 90, 433–442. [Google Scholar] [CrossRef]
- Coenen, P.; Huysmans, M.A.; Holtermann, A.; Krause, N.; van Mechelen, W.; Straker, L.M.; van der Beek, A.J. Do Highly Physically Active Workers Die Early? A Systematic Review with Meta-Analysis of Data from 193 696 Participants. Br. J. Sport. Med. 2018, 52, 1320–1326. [Google Scholar] [CrossRef] [Green Version]
- Cillekens, B.; Huysmans, M.A.; Holtermann, A.; van Mechelen, W.; Straker, L.; Krause, N.; van der Beek, A.J.; Coenen, P. Physical Activity at Work May Not Be Health Enhancing. A Systematic Review with Meta-Analysis on the Association between Occupational Physical Activity and Cardiovascular Disease Mortality Covering 23 Studies with 655 892 Participants. Scand. J. Work. Environ. Health 2022, 48, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Marott, J.L.; Gyntelberg, F.; Søgaard, K.; Suadicani, P.; Mortensen, O.S.; Prescott, E.; Schnohr, P. Occupational and Leisure Time Physical Activity: Risk of All-Cause Mortality and Myocardial Infarction in the Copenhagen City Heart Study. A Prospective Cohort Study. BMJ Open 2012, 2, e000556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalene, K.E.; Tarp, J.; Selmer, R.M.; Ariansen, I.K.H.; Nystad, W.; Coenen, P.; Anderssen, S.A.; Steene-Johannessen, J.; Ekelund, U. Occupational Physical Activity and Longevity in Working Men and Women in Norway: A Prospective Cohort Study. Lancet Public Health 2021, 6, e386–e395. [Google Scholar] [CrossRef]
- Ryu, M.; Lee, S.; Gym, H.; Baek, W.C.; Kimm, H. Analysis of Association of Occupational Physical Activity, Leisure-Time Physical Activity, and Sedentary Lifestyle with Hypertension According to the Adherence with Aerobic Activity in Women Using Korea National Health and Nutrition Examination Survey 201. Int. J. Hypertens. 2020, 2020, 8943492. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Brown, R.E.; Diaz-Martínez, X.; Leiva, A.M.; Martinez, M.A.; Poblete-Valderrama, F.; Garrido-Méndez, A.; Matus-Castillo, C.; Luarte-Rocha, C.; Salas-Bravo, C.; et al. Association of Leisure Time and Occupational Physical Activity with Obesity and Cardiovascular Risk Factors in Chile. J. Sport. Sci. 2019, 37, 2549–2559. [Google Scholar] [CrossRef]
- Huang, J.H.; Li, R.H.; Huang, S.L.; Sia, H.K.; Lee, S.S.; Wang, W.H.; Tang, F.C. Relationships between Different Types of Physical Activity and Metabolic Syndrome among Taiwanese Workers. Sci. Rep. 2017, 7, 13735. [Google Scholar] [CrossRef] [Green Version]
- Kwon, C.S.; Lee, J.H. The Association between Type of Work and Insulin Resistance and the Metabolic Syndrome in Middle-Aged Korean Men: Results from the Korean National Health and Nutrition Examination Survey IV (2007~2009). World J. Men’s Health 2013, 31, 232. [Google Scholar] [CrossRef] [Green Version]
- Holtermann, A.; Schnohr, P.; Nordestgaard, B.G.; Marott, J.L. The Physical Activity Paradox in Cardiovascular Disease and All-Cause Mortality: The Contemporary Copenhagen General Population Study with 104 046 Adults. Eur. Heart J. 2021, 42, 1499–1511. [Google Scholar] [CrossRef]
- Strobe Statement STROBE Checklists. Strengthening the Reporting of Observational Studies in Epidemiology. Available online: https://www.strobe-statement.org/index.php?id=available-checklists (accessed on 15 November 2022).
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; p. 177. [Google Scholar] [CrossRef]
- Sociedad Española para el Estudio de la Obesidad (SEEDO). Consenso SEEDO’2000 Para La Evaluación Del Sobrepeso y La Obesidad y El Establecimiento de Criterios de Intervención Terapéutica. Med. Clin. 2000, 115, 587–597. [Google Scholar] [CrossRef]
- WHO Expert. Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef]
- Agència de Salut Pública de Catalunya. Generalitat de Catalunya. ALCOHOL I TREBALL. Available online: https://drogues.gencat.cat/ca/canalsocults/calculadora/ (accessed on 28 February 2023).
- Magrinyà, P.; Mompart, A.; Medina, A.; Schiaffino, A.; Alcañiz, M.; Guillén, M.; López, S.; Ángeles Martínez, M. Caracterització de La Població, de La Mostra i Metodologia de l’Enquesta de Salut de Catalunya. Barcelona, 2017. Available online: https://salutweb.gencat.cat/web/.content/_departament/estadistiques-sanitaries/enquestes/Enquesta-de-salut-de-Catalunya/Resultats-de-lenquesta-de-salut-de-Catalunya/documents/2019/metodologia_2019.pdf (accessed on 14 February 2023).
- The IPAQ Group. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire. 2015. Available online: http://www.ipaq.ki.se (accessed on 22 November 2022).
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S.; et al. Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Labour Organization. International Standard Classification of Occupation. ISCO-08 Part 2: Classification Structure; International Labour Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Cleland, C.L.; Hunter, R.F.; Kee, F.; Cupples, M.E.; Sallis, J.F.; Tully, M.A. Validity of the Global Physical Activity Questionnaire (GPAQ) in Assessing Levels and Change in Moderate-Vigorous Physical Activity and Sedentary Behaviour. BMC Public Health 2014, 14, 1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artigao-Rodenas, L.M.; Carbayo-Herencia, J.A.; Divisón-Garrote, J.A.; Gil-Guillén, V.F.; Massó-Orozco, J.; Simarro-Rueda, M.; Molina-Escribano, F.; Sanchis, C.; Carrión-Valero, L.; López de Coca, E.; et al. Framingham Risk Score for Prediction of Cardiovascular Diseases: A Population-Based Study from Southern Europe. PLoS ONE 2013, 8, e73529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallman, D.M.; Mathiassen, S.E.; Gupta, N.; Korshøj, M.; Holtermann, A. Differences between Work and Leisure in Temporal Patterns of Objectively Measured Physical Activity among Blue-Collar Workers. BMC Public Health 2015, 15, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelman, Y.; van Rijn, B.; Ten Haaf, M.; Boersma, E.; Peters, S. Sex Differences in Cardiovascular Risk Factors and Disease Prevention. Atherosclerosis 2015, 241, 211–218. [Google Scholar] [CrossRef]
- Chin, D.; Nam, S.; Lee, S. Occupational Factors Associated with Obesity and Leisure-Time Physical Activity among Nurses: A Cross Sectional Study. Int. J. Nurs. Stud. 2016, 57, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Poggio, R.; Melendi, S.; Gutierrez, L.; Elorriaga, N.; Irazola, V. Occupational Physical Activity and Cardiovascular Risk Factors Profile in the Adult Population of the Southern Cone of Latin America: Results From the CESCAS I Study. J. Occup. Environ. Med. 2018, 60, e470–e475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feaster, M.; Krause, N. Job Strain Associated with Increases in Ambulatory Blood and Pulse Pressure during and after Work Hours among Female Hotel Room Cleaners. Am. J. Ind. Med. 2018, 61, 492–503. [Google Scholar] [CrossRef]
- Kaplan, G.; Keil, J. Socioeconomic Factors and Cardiovascular Disease: A Review of the Literature. Circulation 1993, 88, 1973–1998. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, R.; Bauld, L.; Amos, A.; Fidler, J.; Munafò, M. Socioeconomic Status and Smoking: A Review. Ann. N. Y. Acad. Sci. 2012, 1248, 107–123. [Google Scholar] [CrossRef]
- Polanka, B.; Berntson, J.; Vrany, E.; Stewart, J. Are Cardiovascular Risk Factors Stronger Predictors of Incident Cardiovascular Disease in U.S. Adults With Versus Without a History of Clinical Depression? Ann. Behav. Med. 2018, 52, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Maske, U.; Buttery, A.; Beesdo-Baum, K.; Riedel-Heller, S.; Hapke, U.; Busch, M. Prevalence and Correlates of DSM-IV-TR Major Depressive Disorder, Self-Reported Diagnosed Depression and Current Depressive Symptoms among Adults in Germany. J. Affect. Disord. 2016, 190, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtermann, A.; Krause, N.; Van Der Beek, A.J.; Straker, L. The Physical Activity Paradox: Six Reasons Why Occupational Physical Activity (OPA) Does Not Confer the Cardiovascular Health Benefits That Leisure Time Physical Activity Does. Br. J. Sport. Med. 2018, 52, 149–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudnadottir, U.; Cadmus-Bertram, L.; Spicer, A.; Gorzelitz, J.; Malecki, K. The Relationship between Occupational Physical Activity and Self-Reported vs Measured Total Physical Activity. Prev. Med. Rep. 2019, 15, 100908. [Google Scholar] [CrossRef] [PubMed]
- Wolfenden, L.; Goldman, S.; Stacey, F.; Grady, A.; Kingsland, M.; Williams, C.; Wiggers, J.; Milat, A.; Rissel, C.; Bauman, A.; et al. Strategies to Improve the Implementation of Workplace-Based Policies or Practices Targeting Tobacco, Alcohol, Diet, Physical Activity and Obesity. Cochrane Database Syst. Rev. 2018, 11, CD012439. [Google Scholar] [CrossRef]
- DiPietro, L.; Al-Ansari, S.; Biddle, S.; Borodulin, K.; Bull, F.; Buman, M.; Cardon, G.; Carty, C.; Chaput, J.; Chastin, S.; et al. Advancing the Global Physical Activity Agenda: Recommendations for Future Research by the 2020 WHO Physical Activity and Sedentary Behavior Guidelines Development Group. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 143. [Google Scholar] [CrossRef]
Low OPA | Moderate-High OPA | |||||
---|---|---|---|---|---|---|
Variable | Total (n = 334) | Male (n = 298) | Female (n = 36) | Total (n = 417) | Male (n = 248) | Female (n = 169) |
Age, y, mean ± (SD) | 45.2 ± 9.2 | 45.6 ± 9.3 | 41.6 ± 7.5 | 45.2 ±10.2 | 44.2 ± 10.5 | 46.7 ± 9.5 † |
Tobacco consumption, % (n) | 37.4 (125) | 37.6 (112) | 36.1 (13) | 42.4 (177) | 47.2 (177) * | 35.5 (60) |
Alcohol consumption,% (n) | 28.7 (96) | 29.9 (89) | 19.4 (7) | 22.5 (94) | 29.8 (74) | 11.8 (20) |
Body mass index, kg/m2 | 28.7 ± 5.1 | 29.0 ± 5.0 | 26.5 ± 4.6 | 27.6 ± 5.3 † | 27.2 ± 5.8 † | 27.2 ± 5.5 |
Waist, cm | 97.9 ± 13.8 | 99.5 ± 12.9 | 85.5 ± 14.5 | 92.9 ± 13.7 ‡ | 96.0 ± 13.4 † | 88.3 ± 12.9 |
Waist-hip ratio | 0.956 ± 0.1 | 0.970 ± 0.1 | 0.951 ± 0.1 | 0.914 ± 0.1 ‡ | 0.840 ± 0.1 † | 0.860 ± 0.1 |
Systolic Blood Pressure, mmHg | 134 ± 18 | 136 ± 18 | 118 ± 12 | 132 ± 19 | 135 ± 20. | 127 ± 18 † |
Diastolic Blood Pressure, mmHg | 82 ± 12 | 83 ± 12 | 74 ± 10 | 80 ± 11 | 81 ± 11 | 79 ± 12 * |
Pulse Pressure, mmHg | 13.5 ± 0.7 | 13.7 ± 0.8 | 9.1 ± 1.5 | 14.0 ± 0.7 | 14.7 ± 0.9 | 12.1 ± 0.9 |
Glucose, mg/dL | 106 ± 44.3 | 108 ± 46.1 | 97 ± 27.1 | 103 ± 36.2 | 105 ± 38.0 | 96 ± 30.3 |
Cholesterol, mg/dL | 201 ± 38.3 | 203 ± 38.2 | 183 ± 35.5 | 191 ± 37.4 * | 189 ± 34.8 † | 196 ± 43.6 |
Triglycerides, mg/dL | 146 ± 86.3 | 153 ± 89.2 | 97 ± 35.7 | 126 ± 80.4 * | 136 ± 87.8 | 99 ± 48.0 |
Low OPA | Moderate-High OPA | |||||
---|---|---|---|---|---|---|
Variable | Total (n = 334) | Male (n = 298) | Female (n = 36) | Total (n = 417) | Male (n = 248) | Female (n = 169) |
Overweight + Obesity, % (n) | 79.3 (265) | 82.2 (245) | 55.6 (20) | 65.0 (271) ‡ | 69.0 (171) ‡ | 59.2 (100) |
Obesity, % (n) | 33.8 (113) | 34.9 (104) | 25.0 (9) | 27.8 (116) | 27.0 (67) | 29.0 (49) |
Abdominal Obesity, % (n) | 33.5 (112) | 33.9 (101) | 30.6 (11) | 33.3 (139) | 26.6 (66) | 43.2 (73) |
Hypertension, % (n) | 18.6 (62) | 20.1 (60) | 5.6 (2) | 14.4 (60) | 14.1 (35) | 14.8 (25) |
Diabetes mellitus, % (n) | 7.5 (25) | 8.4 (25) | 0 (0) | 3.5 (15) * | 4 (10) | 3 (5) |
Impared fasting glucose, % (n) | 7.5 (25) | 8.1 (24) | 2.8 (1) | 6.7 (28) | 10.5 (26) | 1.2 (2) |
Hypercholesterolemia, % (n) | 63.2 (115) | 64.8 (103) | 47.8 (12) | 57.6 (106) | 53.6 (71) | 68.6 (35) |
Hypertriglyceridemia, % (n) | 22.8 (76) | 23.5 (70) | 16.7 (6) | 13.4 (56) * | 19 (47) | 5.3 (9) |
Dyslipidemia, % (n) | 19.8 (66) | 20.5 (61) | 13.9 (5) | 9.6 (40) ‡ | 12.5 (31) † | 5.4 (9) |
Total (n = 751) | Male (n = 546) | Female (n = 205) | ||||
---|---|---|---|---|---|---|
Variable | β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value | β-Coefficient (95% CI) | p-Value |
Weight, kg | −4.092 (−6.49; −1.69) | 0.001 | −4.684 (−7.45; −1.91) | 0.001 | −1.38 (−6.57; 3.81) | 0.600 |
BMI, kg/m2 | −0.879 (−1.66; −0.10) | 0.028 | −1.112 (−1.97; −0.25) | 0.011 | 0.134 (−1.83; 2.10) | 0.893 |
Waist, cm | −2.438 (−4.39; −0.48) | 0.015 | −3.112 (−5.28; −0.94) | 0.005 | 0.545 (−4.19; 5.28) | 0.820 |
Waist/Hip ratio, cm/cm | −0.012 (−0.02; 0.00) | 0.043 | −0.016 (−0.03; −0.002) | 0.021 | 0.008 (−0.02; 0.03) | 0.556 |
Glucose, mg/dL | −2.188 (−10.5; 6.08) | 0.603 | −1.830 (−11.5; 7.82) | 0.709 | −2.653 (−17.9; 12.6) | 0.730 |
Total cholesterol, mg/dL | −9.125 (−16.7; −1.51) | 0.019 | −13.70 (−22.0; −5.41) | 0.001 | 7.691 (−10.7; 26.1) | 0.407 |
Triglycerides, mg/dL | −13.54 (−30.5; 3.43) | 0.118 | −16.42 (−36.8; 4.02) | 0.115 | −3.958 (−24.6; 16.6) | 0.703 |
SBP, mmHg | 1.116 (−1.52; 3.75) | 0.407 | 0.213 (−2.75; 3.18) | 0.888 | 5.840 (−0.33; 12.0) | 0.063 |
DPB, mmHg | −0.589 (−2.33; 1.15) | 0.507 | −1.462 (−3.38; 0.46) | 0.135 | 3.280 (−0.99; 7.55) | 0.131 |
Pulse Pressure, mmHg | 1.670 (−0.30; 3.64) | 0.097 | 1.675 (−0.60; 3.95) | 0.149 | 2.452 (−1.78; 6.68) | 0.254 |
Total (n = 751) | Male (n = 546) | Female (n = 205) | ||||
---|---|---|---|---|---|---|
Variable | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Dyslipidemia | 0.519 (0.33; 0.81) | 0.004 | 0.549 (0.34; 0.88) | 0.013 | 0.185 (0.05; 0.72) | 0.015 |
Hypercholesterolemia | 0.778 (0.50; 1.20) | 0.197 | 0.626 (0.39; 1.01) | 0.056 | 2.072 (0.72; 5.94) | 0.175 |
Hypertension | 0.750 (0.48; 1.16) | 0.198 | 0.658 (0.41; 1.07) | 0.089 | 2.125 (0.46; 9.78) | 0.333 |
Diabetes mellitus | 0.541 (0.26; 1.10) | 0.090 | 0.465 (0.22; 1.00) | 0.051 | ---- | ----- |
Tobacco consumption | 1.367 (0.99; 1.89) | 0.058 | 1.439 (1.01; 2.05) | 0.045 | 1.274 (0.58; 2.82) | 0.550 |
Obesity | 0.736 (0.52; 1.03) | 0.078 | 0.699 (0.48; 1.02) | 0.062 | 0.993 (0.42; 2.35) | 0.988 |
OW + OB | 0.572 (0.40; 0.82) | 0.002 | 0.511 (0.33; 0.74) | 0.001 | 0.809 (0.36; 1.80) | 0.605 |
Abdominal Obesity | 0.798 (0.57; 1.12) | 0.194 | 0.718 (0.49; 1.05) | 0.089 | 1.265 (0.55; 2.88) | 0.576 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Recasens, M.; Alfaro-Barrio, S.; Tarro, L.; Llauradó, E.; Solà, R. Occupational Physical Activity and Cardiometabolic Risk Factors: A Cross-Sectional Study. Nutrients 2023, 15, 1421. https://doi.org/10.3390/nu15061421
Gómez-Recasens M, Alfaro-Barrio S, Tarro L, Llauradó E, Solà R. Occupational Physical Activity and Cardiometabolic Risk Factors: A Cross-Sectional Study. Nutrients. 2023; 15(6):1421. https://doi.org/10.3390/nu15061421
Chicago/Turabian StyleGómez-Recasens, Montserrat, Silvana Alfaro-Barrio, Lucia Tarro, Elisabet Llauradó, and Rosa Solà. 2023. "Occupational Physical Activity and Cardiometabolic Risk Factors: A Cross-Sectional Study" Nutrients 15, no. 6: 1421. https://doi.org/10.3390/nu15061421
APA StyleGómez-Recasens, M., Alfaro-Barrio, S., Tarro, L., Llauradó, E., & Solà, R. (2023). Occupational Physical Activity and Cardiometabolic Risk Factors: A Cross-Sectional Study. Nutrients, 15(6), 1421. https://doi.org/10.3390/nu15061421