Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Participants
2.2. Calculation of Nightly Fasting Duration and Meal Timing
2.3. Assessment of Type 2 Diabetes Mellitus
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of Study Participants According to Nightly Fasting Duration
3.2. Nutrient and Meal Intake and Dietary Behaviors of Study Participants According to Nightly Fasting Duration
3.3. Relationship between Nightly Fasting Duration and Risk of Type 2 Diabetes Mellitus
3.4. Relationship between Meal Timing and Type 2 Diabetes Mellitus Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bin Lee, G.; Kim, Y.; Park, S.; Kim, H.C.; Oh, K. Obesity, hypertension, diabetes mellitus, and hypercholesterolemia in Korean adults before and during the COVID-19 pandemic: A special report of the 2020 Korea National Health and Nutrition Examination Survey. Epidemiology Health 2022, 44, e2022041. [Google Scholar]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Watson, P.G.; Mendoza, J.T.; Smith, K.A. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Moon, S.; Kang, J.; Kim, S.H.; Chung, H.S.; Kim, Y.J.; Yu, J.M.; Cho, S.T.; Oh, C.-M.; Kim, T. Beneficial effects of time-restricted eating on metabolic diseases: A systemic review and meta-analysis. Nutrients 2020, 12, 1267. [Google Scholar] [CrossRef]
- Kesztyüs, D.; Cermak, P.; Gulich, M.; Kesztyüs, T. Adherence to time-restricted feeding and impact on abdominal obesity in primary care patients: Results of a pilot study in a pre–post design. Nutrients 2019, 11, 2854. [Google Scholar] [CrossRef] [Green Version]
- Manoogian, E.N.C.; Chow, L.S.; Taub, P.R.; Laferrère, B.; Panda, S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr. Rev. 2022, 43, 405–436. [Google Scholar] [CrossRef]
- Chaix, A.; Manoogian, E.N.; Melkani, G.C.; Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef]
- Liu, H.; Javaheri, A.; Godar, R.J.; Murphy, J.; Ma, X.; Rohatgi, N.; Mahadevan, J.; Hyrc, K.; Saftig, P.; Marshall, C.; et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 2017, 13, 1952–1968. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; Richey, J.J.; Johnson, S.A.; Ziemba, B.P.; Wang, Y.; et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. Geroscience 2020, 42, 667–686. [Google Scholar] [CrossRef]
- Jamshed, H.; Beyl, R.A.; della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef]
- Antoni, R.; Robertson, T.M.; Robertson, M.D.; Johnston, J.D. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J. Nutr. Sci. 2018, 7, e22. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G., III; Leeuwenburgh, C.; Mattson, M.P. Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Kalsbeek, A.; la Fleur, S.; Fliers, E. Circadian control of glucose metabolism. Mol. Metab. 2014, 3, 372–383. [Google Scholar] [CrossRef]
- Van Cauter, E.; Polonsky, K.S.; Scheen, A.J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 1997, 18, 716–738. [Google Scholar]
- la Fleur, S.E.; Kalsbeek, A.; Wortel, J.; Fekkes, M.L.; Buijs, R.M. A daily rhythm in glucose tolerance: A role for the suprachiasmatic nucleus. Diabetes 2001, 50, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.; Zhao, L.; Turner-McGrievy, G.; Ortaglia, A. Associations between fasting duration, timing of first and last meal, and cardiometabolic endpoints in the national health and nutrition examination survey. Nutrients 2021, 13, 2686. [Google Scholar] [CrossRef]
- Zeraattalab-Motlagh, S.; Lesani, A.; Janbozorgi, N.; Djafarian, K.; Majdi, M.; Shab-Bidar, S. Association of Nightly Fasting Duration, Meal Timing, and Frequency with Metabolic Syndrome among Iranian Adults. Br. J. Nutr. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- LeCheminant, J.D.; Christenson, E.; Bailey, B.; Tucker, L.A. Restricting night-time eating reduces daily energy intake in healthy young men: A short-term cross-over study. Br. J. Nutr. 2013, 110, 2108–2113. [Google Scholar] [CrossRef] [PubMed]
- Kessler, K.; Pivovarova-Ramich, O. Meal timing, aging, and metabolic health. Int. J. Mol. Sci. 2019, 20, 1911. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Turek, F.W. Timing of meals: When is as critical as what and how much. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E369–E380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowicz, D.; Wainstein, J.; Ahrén, B.; Bar-Dayan, Y.; Landau, Z.; Rabinovitz, H.R.; Froy, O. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: A randomised clinical trial. Diabetologia 2015, 58, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Scheer, F.A.J.L.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Ozaki, M.; Kang, M.-I.; Sasaki, H.; Fukazawa, M.; Iwakami, T.; Lim, P.J.; Kim, H.-K.; Aoyama, S.; Shibata, S. Effects of meal timing on postprandial glucose metabolism and blood metabolites in healthy adults. Nutrients 2018, 10, 1763. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.; Kajiyama, S.; Hashimoto, Y.; Yamane, C.; Miyawaki, T.; Ozasa, N.; Tanaka, M.; Fukui, M. Divided consumption of late-night-dinner improves glycemic excursions in patients with type 2 diabetes: A randomized cross-over clinical trial. Diabetes Res. Clin. Pract. 2017, 129, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.d.C.; Levandovski, R.; Dantas, G.; Caumo, W.; Hidalgo, M. Obesity and shift work: Chronobiological aspects. Nutr. Res. Rev. 2010, 23, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A.; Kim, M.K.; Ko, S.-H.; Kim, B.-Y.; Kang, E.S.; Noh, J.; Kim, S.-K. 2019 Clinical practice guidelines for type 2 diabetes mellitus in Korea. Diabetes Metab. J. 2019, 43, 398–406. [Google Scholar]
- Wehrens, S.M.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal timing regulates the human circadian system. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwazono, Y.; Dochi, M.; Oishi, M.; Tanaka, K.; Kobayashi, E.; Sakata, K. Shiftwork and impaired glucose metabolism: A 14-year cohort study on 7104 male workers. Chronobiol. Int. 2009, 26, 926–941. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Schernhammer, E.; Sun, Q.; Hu, F.B. Rotating night shift work and risk of type 2 diabetes: Two prospective cohort studies in women. PLOS Med. 2011, 8, e1001141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.J.L.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef] [Green Version]
- Merikanto, I.; Lahti, T.; Puolijoki, H.; Vanhala, M.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Salomaa, V.; Kronholm, E.; Partonen, T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol. Int. 2013, 30, 470–477. [Google Scholar] [CrossRef]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef]
- Parsons, M.J.; Moffitt, T.E.; Gregory, A.M.; Goldman-Mellor, S.; Nolan, P.M.; Poulton, R.; Caspi, A. Social jetlag, obesity and metabolic disorder: Investigation in a cohort study. Int. J. Obes. 2015, 39, 842–848. [Google Scholar] [CrossRef] [Green Version]
- Nedeltcheva, A.V.; Scheer, F.A. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes 2014, 21, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.J.; Yang, J.N.; Scheer, F.A. The impact of the circadian timing system on cardiovascular and metabolic function. Prog. Brain Res. 2012, 199, 337–358. [Google Scholar]
- Jovanovic, A.; Gerrard, J.; Taylor, R. The second-meal phenomenon in type 2 diabetes. Diabetes Care 2009, 32, 1199–1201. [Google Scholar] [CrossRef] [Green Version]
- Mekary, R.A.; Giovannucci, E.; Willett, W.C.; Van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Morse, S.A.; Ciechanowski, P.S.; Katon, W.J.; Hirsch, I.B. Isn’t this just bedtime snacking? The potential adverse effects of night-eating symptoms on treatment adherence and outcomes in patients with diabetes. Diabetes Care 2006, 29, 1800–1804. [Google Scholar] [CrossRef] [Green Version]
- Bo, S.; Musso, G.; Beccuti, G.; Fadda, M.; Fedele, D.; Gambino, R.; Gentile, L.; Durazzo, M.; Ghigo, E.; Cassader, M. Consuming more of daily caloric intake at dinner predisposes to obesity. A 6-year population-based prospective cohort study. PLoS ONE 2014, 9, e108467. [Google Scholar] [CrossRef]
- Al-Naimi, S.; Hampton, S.M.; Richard, P.; Tzung, C.; Morgan, L.M. Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol. Int. 2004, 21, 937–947. [Google Scholar] [CrossRef]
- Van Cauter, E.; Desir, D.; DeCoster, C.; Fery, F.; Balasse, E.O. Nocturnal decrease in glucose tolerance during constant glucose infusion. J. Clin. Endocrinol. Metab. 1989, 69, 604–611. [Google Scholar] [CrossRef]
- Sakai, R.; Hashimoto, Y.; Ushigome, E.; Miki, A.; Okamura, T.; Matsugasumi, M.; Fukuda, T.; Majima, S.; Matsumoto, S.; Senmaru, T.; et al. Late-night-dinner is associated with poor glycemic control in people with type 2 diabetes: The KAMOGAWA-DM cohort study. Endocr. J. 2018, 65, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Suwa, K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J. Diabetes Metab. Disord. 2015, 14, 16. [Google Scholar] [CrossRef] [Green Version]
- Morgan, L.M.; Shi, J.-W.; Hampton, S.M.; Frost, G. Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. Br. J. Nutr. 2012, 108, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
Men (n = 9683) | Women (n = 13,002) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nightly Fasting Duration | p Value (1) | Nightly Fasting Duration | p Value (1) | |||||||
Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | |||
(n = 2680) | (n = 1954) | (n = 2728) | (n = 2321) | (n = 3524) | (n = 3073) | (n = 3627) | (n = 2778) | |||
Age, years | 45.4 ± 0.4 | 49.6 ± 0.4 | 49.9 ± 0.4 | 41.3 ± 0.4 | <0.0001 | 48.5 ± 0.3 | 50.6 ± 0.3 | 50.1 ± 0.4 | 42.0 ± 0.4 | <0.0001 |
Education level | <0.0001 | <0.0001 | ||||||||
≤Elementary | 228 (4.9) | 236 (7.9) | 403 (9.7) | 200 (8.6) | 639 (13.3) | 696 (16.6) | 930 (19.0) | 418 (10.4) | ||
Middle | 242 (6.5) | 235 (8.6) | 314 (8.3) | 188 (8.1) | 397 (9.4) | 394 (11.3) | 414 (9.6) | 222 (6.2) | ||
High school | 802 (29.4) | 555 (27.7) | 737 (26.4) | 576 (24.8) | 1074 (31.3) | 787 (27.5) | 882 (25.8) | 720 (25.4) | ||
≥College | 1408 (59.2) | 928 (55.9) | 1274 (55.6) | 1357 (58.5) | 1414 (46.0) | 1196 (44.6) | 1401 (45.6) | 1418 (57.9) | ||
Household income | <0.0001 | <0.0001 | ||||||||
Low | 249 (7.3) | 272 (10.5) | 494 (13.3) | 368 (12.0) | 452 (10.1) | 503 (12.8) | 718 (15.2) | 429 (12.3) | ||
Lower-middle | 454 (14.3) | 371 (17.3) | 535 (17.2) | 401 (15.7) | 658 (17.4) | 599 (17.6) | 701 (17.5) | 503 (17.2) | ||
Middle | 588 (22.5) | 386 (20.7) | 516 (19.6) | 464 (20.0) | 720 (21.1) | 603 (19.5) | 745 (21.7) | 594 (22.7) | ||
Upper-middle | 688 (27.3) | 441 (23.4) | 546 (22.4) | 524 (25.1) | 785 (24.1) | 684 (24.7) | 724 (22.1) | 656 (24.5) | ||
High | 701 (28.6) | 484 (28.1) | 637 (27.5) | 564 (27.1) | 909 (27.3) | 684 (25.4) | 739 (23.5) | 596 (23.3) | ||
Household type | 0.0002 | 0.1042 | ||||||||
Single-person | 299 (9.7) | 203 (9.0) | 309 (10.1) | 320 (13.2) | 410 (9.0) | 403 (9.3) | 530 (10.5) | 385 (10.4) | ||
Multi-person | 2381 (90.3) | 1751 (91.0) | 2419 (89.9) | 2001 (86.8) | 3114 (91.0) | 2670 (90.7) | 3097 (89.5) | 2393 (89.6) | ||
Alcohol consumption | 0.0057 | <0.0001 | ||||||||
None | 769 (27.1) | 591 (29.2) | 912 (31.6) | 703 (28.2) | 2002 (52.8) | 1901 (58.1) | 2255 (57.8) | 1511 (50.4) | ||
Moderate | 946 (37.5) | 704 (38.3) | 885 (35.1) | 844 (39.9) | 1055 (33.0) | 856 (30.1) | 1019 (31.6) | 921 (36.8) | ||
High | 965 (35.4) | 659 (32.4) | 931 (33.3) | 774 (31.9) | 467 (14.1) | 316 (11.8) | 353 (10.5) | 346 (12.7) | ||
Smoking status | <0.0001 | <0.0001 | ||||||||
Never | 576 (23.9) | 464 (25.5) | 668 (26.2) | 674 (32.8) | 3080 (85.7) | 2799 (90.3) | 3294 (89.7) | 2406 (85.2) | ||
Past | 1077 (37.6) | 926 (44.5) | 1323 (44.2) | 901 (33.0) | 233 (7.0) | 151 (5.0) | 187 (5.5) | 227 (8.7) | ||
Current | 1027 (38.5) | 564 (30.1) | 737 (29.6) | 746 (34.3) | 211 (7.3) | 123 (4.6) | 146 (4.8) | 145 (6.0) | ||
BMI, kg/m2 | 24.7 ± 0.1 | 24.6 ± 0.1 | 24.5 ± 0.1 | 24.8 ± 0.1 | 0.0680 | 23.3 ± 0.1 | 23.3 ± 0.1 | 23.4 ± 0.1 | 23.1 ± 0.1 | 0.0273 |
Physical activity | 0.0017 | 0.1104 | ||||||||
Yes | 1377 (48.3) | 1078 (52.1) | 1539 (52.3) | 1172 (47.2) | 2050 (55.4) | 1885 (58.7) | 2136 (56.1) | 1619 (55.6) | ||
No | 1303 (51.7) | 876 (47.9) | 1189 (47.7) | 1149 (52.8) | 1474 (44.6) | 1188 (41.3) | 1491 (44.0) | 1159 (44.4) |
Men (n = 9683) | Women (n = 13,002) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nightly Fasting Duration | p Value (1) | Nightly Fasting Duration | p Value | |||||||
Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | |||
(n = 2680) | (n = 1954) | (n = 2728) | (n = 2321) | (n = 3524) | (n = 3073) | (n = 3627) | (n = 2778) | |||
Energy, kcal/day | 2324 ± 18 | 2207 ± 22 | 2070 ± 18 | 1919 ± 21 | <0.0001 | 1748 ± 13 | 1682 ± 12 | 1600 ± 12 | 1458 ± 14 | <0.0001 |
Nutrient intake | ||||||||||
Energy from carbohydrates, % | 61.8 ± 0.2 | 63.5 ± 0.3 | 63.3 ± 0.3 | 60.0 ± 0.3 | <0.0001 | 64.4 ± 0.2 | 65.2 ± 0.3 | 64.4 ± 0.2 | 61.4 ± 0.3 | <0.0001 |
Energy from protein, % | 15.9 ± 0.1 | 15.4 ± 0.1 | 15.8 ± 0.1 | 16.5 ± 0.1 | <0.0001 | 14.8 ± 0.1 | 14.7 ± 0.1 | 15.0 ± 0.1 | 15.3 ± 0.1 | 0.0001 |
Energy from fats, % | 22.3 ± 0.2 | 21.1 ± 0.3 | 20.9 ± 0.2 | 23.6 ± 0.3 | <0.0001 | 20.8 ± 0.2 | 20.1 ± 0.2 | 20.7 ± 0.2 | 23.3 ± 0.2 | <0.0001 |
Dietary fiber, g/day | 28.6 ± 0.3 | 28.8 ± 0.4 | 27.2 ± 0.3 | 22.3 ± 0.3 | <0.0001 | 25.4 ± 0.3 | 24.7 ± 0.3 | 22.8 ± 0.3 | 18.7 ± 0.3 | <0.0001 |
Meal intake | ||||||||||
Energy from main meals, % | 77.5 ± 0.4 | 83.0 ± 0.4 | 85.6 ± 0.3 | 85.8 ± 0.3 | <0.0001 | 75.9 ± 0.3 | 80.6 ± 0.4 | 82.6 ± 0.3 | 83.0 ± 0.3 | <0.0001 |
Energy from breakfast, % | 16.2 ± 0.3 | 18.4 ± 0.3 | 19.0 ± 0.3 | 11.2 ± 0.4 | <0.0001 | 18.7 ± 0.3 | 20.4 ± 0.3 | 20.1 ± 0.3 | 13.0 ± 0.4 | <0.0001 |
Energy from lunch, % | 28.1 ± 0.3 | 30.4 ± 0.4 | 30.9 ± 0.4 | 33.4 ± 0.5 | <0.0001 | 28.7 ± 0.3 | 30.2 ± 0.3 | 30.4 ± 0.3 | 34.0 ± 0.5 | <0.0001 |
Energy from dinner, % | 33.2 ± 0.4 | 34.1 ± 0.4 | 35.6 ± 0.4 | 41.1 ± 0.5 | <0.0001 | 28.5 ± 0.3 | 29.9 ± 0.3 | 32.1 ± 0.3 | 36.0 ± 0.5 | <0.0001 |
Energy from snacks, % | 22.5 ± 0.4 | 17.0 ± 0.4 | 14.4 ± 0.3 | 14.2 ± 0.4 | <0.0001 | 24.1 ± 0.3 | 19.4 ± 0.4 | 17.4 ± 0.3 | 17.0 ± 0.4 | <0.0001 |
Men (n = 9683) | Women (n = 13,002) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nightly Fasting Duration | p Value (1) | Nightly Fasting Duration | p Value | |||||||
Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | |||
(n = 2680) | (n = 1954) | (n = 2728) | (n = 2321) | (n = 3524) | (n = 3073) | (n = 3627) | (n = 2778) | |||
Dietary behaviors | ||||||||||
Eating episodes, times/d | 6.3 ± 0.05 | 5.9 ± 0.05 | 5.1 ± 0.04 | 4.0 ± 0.04 | <0.0001 | 6.2 ± 0.03 | 5.5 ± 0.03 | 4.9 ± 0.02 | 3.9 ± 0.03 | <0.0001 |
Main meal episodes, times/d | 2.7 ± 0.01 | 2.8 ± 0.01 | 2.7 ± 0.01 | 2.2 ± 0.01 | <0.0001 | 2.7 ± 0.01 | 2.8 ± 0.01 | 2.7 ± 0.01 | 2.2 ± 0.01 | <0.0001 |
Snack episodes, times/d | 3.6 ± 0.05 | 3.1 ± 0.04 | 2.4 ± 0.04 | 1.7 ± 0.03 | <0.0001 | 3.4 ± 0.03 | 2.8 ± 0.03 | 2.3 ± 0.03 | 1.7 ± 0.03 | <0.0001 |
Nightly fasting duration, h | 8.1 ± 0.1 | 11.1 ± 0.01 | 12.5 ± 0.01 | 15.6 ± 0.1 | <0.0001 | 9.4 ± 0.04 | 11.9 ± 0.01 | 13.4 ± 0.01 | 16.1 ± 0.04 | <0.0001 |
Time of first eating episode, h | 5.5 ± 0.1 | 7.6 ± 0.03 | 8.4 ± 0.04 | 10.8 ± 0.1 | <0.0001 | 6.6 ± 0.05 | 8.0 ± 0.03 | 8.8 ± 0.03 | 10.8 ± 0.05 | <0.0001 |
Time of last eating episode, h | 21.4 ± 0.03 | 20.5 ± 0.04 | 19.8 ± 0.04 | 19.2 ± 0.05 | <0.0001 | 21.2 ± 0.03 | 20.1 ± 0.03 | 19.4 ± 0.03 | 18.7 ± 0.04 | <0.0001 |
Energy in the morning (05:00 to 9:00 a.m.), % | 15.7 ± 0.3 | 18.0 ± 0.4 | 17.4 ± 0.4 | 7.2 ± 0.3 | <0.0001 | 18.9 ± 0.3 | 19.2 ± 0.3 | 16.9 ± 0.3 | 6.5 ± 0.3 | <0.0001 |
Energy in the evening (06:00 to 9:00 p.m.), % | 30.5 ± 0.4 | 34.5 ± 0.5 | 35.3 ± 0.4 | 37.1 ± 0.6 | <0.0001 | 28.3 ± 0.4 | 31.3 ± 0.4 | 31.2 ± 0.4 | 31.8 ± 0.6 | <0.0001 |
Energy in the night (after 9:00 p.m.), % | 14.9 ± 0.4 | 5.2 ± 0.3 | 3.8 ± 0.3 | 3.9 ± 0.3 | <0.0001 | 9.0 ± 0.3 | 3.2 ± 0.2 | 2.6 ± 0.2 | 2.0 ± 0.2 | <0.0001 |
Energy from foods consumed outside the home, % | 50.3 ± 0.8 | 42.4 ± 0.9 | 38.9 ± 0.8 | 39.0 ± 0.9 | <0.0001 | 34.7 ± 0.6 | 30.7 ± 0.7 | 29.1 ± 0.7 | 33.0 ± 0.9 | <0.0001 |
Nightly Fasting Duration | |||||||
---|---|---|---|---|---|---|---|
Quartiles | P for trend (3) | ≥12.0 (M)/12.7 (W) vs. <12.0 (M)/12.7 (W) | Per 1 h Increase | ||||
Q1 (Lowest) | Q2 | Q3 | Q4 (Highest) | ||||
Men (n = 9683) | 2680 | 1954 | 2728 | 2321 | 9683 | 9683 | |
Cases (n) | 419 | 372 | 531 | 312 | 1634 | 1634 | |
Age-adjusted model (1) | 1.00 | 0.95 (0.78–1.15) (2) | 0.92 (0.77–1.09) | 0.77 (0.63–0.94) | 0.29 | 0.87 (0.76–0.99) | 0.98 (0.95–1.00) |
Multivariable-adjusted model | 1.00 | 0.98 (0.81–1.19) | 0.94 (0.79–1.13) | 0.75 (0.61–0.91) | 0.06 | 0.88 (0.77–1.01) | 0.98 (0.95–1.00) |
Women (n = 13,002) | 3524 | 3073 | 3627 | 2778 | 13,002 | 13,002 | |
Cases (n) | 423 | 413 | 522 | 273 | 1631 | 1631 | |
Age-adjusted model | 1.00 | 0.92 (0.77–1.11) | 0.93 (0.78–1.10) | 0.86 (0.71–1.05) | 0.29 | 0.94 (0.82–1.07) | 0.98 (0.95–1.01) |
Multivariable-adjusted model | 1.00 | 0.92 (0.76–1.12) | 0.90 (0.75–1.07) | 0.77 (0.62–0.95) | 0.43 | 0.89 (0.77–1.02) | 0.97 (0.94–0.99) |
Men (n = 9683) | Women (n = 13,002) | |
---|---|---|
Cases (n) | 1634 | 1631 |
First mealtime | ||
<09:00 a.m. (n = 14,788) | 1.00 | 1.00 |
≥09:00 a.m. (n = 7897) | 0.91 (0.77–1.08) (1) | 0.96 (0.81–1.14) |
Last mealtime | ||
<09:00 p.m. (n = 14,853) | 1.00 | 1.00 |
≥09:00 p.m. (n = 7832) | 1.18 (1.02–1.37) | 1.20 (1.02–1.40) |
Energy in the morning (05:00 to 9:00 a.m.) | ||
None (n = 6410) | 1.00 | 1.00 |
<25% (n = 8698) | 1.09 (0.90–1.32) | 0.93 (0.75–1.15) |
≥25% (n = 7577) | 1.09 (0.88–1.35) | 1.10 (0.90–1.35) |
Energy in the evening (06:00 to 9:00 p.m.) | ||
None (n = 2563) | 1.00 | 1.00 |
<40% (n = 13,027) | 1.35 (1.06–1.71) | 1.38 (1.12–1.71) |
≥40% (n = 7095) | 1.40 (1.08–1.83) | 1.32 (1.02–1.70) |
Energy at night (after 9:00 p.m.) | ||
None (n = 17,038) | 1.00 | 1.00 |
<25% (n = 4012) | 1.14 (0.95–1.37) | 1.14 (0.93–1.40) |
≥25% (n = 1635) | 0.89 (0.68–1.18) | 1.61 (1.13–2.30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, J.; Jang, K.-A.; Kim, H.-R.; Kang, M.-S.; Lee, K.W.; Shin, D. Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey. Nutrients 2023, 15, 1385. https://doi.org/10.3390/nu15061385
Kwak J, Jang K-A, Kim H-R, Kang M-S, Lee KW, Shin D. Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey. Nutrients. 2023; 15(6):1385. https://doi.org/10.3390/nu15061385
Chicago/Turabian StyleKwak, Junkyung, Kyeong-A Jang, Haeng-Ran Kim, Min-Sook Kang, Kyung Won Lee, and Dayeon Shin. 2023. "Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey" Nutrients 15, no. 6: 1385. https://doi.org/10.3390/nu15061385
APA StyleKwak, J., Jang, K. -A., Kim, H. -R., Kang, M. -S., Lee, K. W., & Shin, D. (2023). Identifying the Associations of Nightly Fasting Duration and Meal Timing with Type 2 Diabetes Mellitus Using Data from the 2016–2020 Korea National Health and Nutrition Survey. Nutrients, 15(6), 1385. https://doi.org/10.3390/nu15061385